Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = lentiviral vector manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 986 KiB  
Review
Past, Present, and Future of Viral Vector Vaccine Platforms: A Comprehensive Review
by Justin Tang, Md Al Amin and Jian L. Campian
Vaccines 2025, 13(5), 524; https://doi.org/10.3390/vaccines13050524 - 15 May 2025
Viewed by 2655
Abstract
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often [...] Read more.
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often superior to what traditional inactivated or subunit vaccines can achieve. This has accelerated their application to a wide array of pathogens and disease targets, from well-established threats like HIV and malaria to emerging infections such as Ebola, Zika, and SARS-CoV-2. The COVID-19 pandemic further highlighted the agility of viral vector platforms, with several adenovirus-based vaccines quickly authorized and deployed on a global scale. Despite these advances, significant challenges remain. One major hurdle is pre-existing immunity against commonly used vector backbones, which can blunt vaccine immunogenicity. Rare but serious adverse events, including vector-associated inflammatory responses and conditions like vaccine-induced immune thrombotic thrombocytopenia (VITT), have raised important safety considerations. Additionally, scaling up manufacturing, ensuring consistency in large-scale production, meeting rigorous regulatory standards, and maintaining equitable global access to these vaccines present profound logistical and ethical dilemmas. In response to these challenges, the field is evolving rapidly. Sophisticated engineering strategies, such as integrase-defective lentiviral vectors, insect-specific flaviviruses, chimeric capsids to evade neutralizing antibodies, and plug-and-play self-amplifying RNA approaches, seek to bolster safety, enhance immunogenicity, circumvent pre-existing immunity, and streamline production. Lessons learned from the COVID-19 pandemic and prior outbreaks are guiding the development of platform-based approaches designed for rapid deployment during future public health emergencies. This review provides an exhaustive, in-depth examination of the historical evolution, immunobiological principles, current platforms, manufacturing complexities, regulatory frameworks, known safety issues, and future directions for viral vector-based vaccines. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

19 pages, 4770 KiB  
Article
Establishment and Characterization of a Stable Producer Cell Line Generation Platform for the Manufacturing of Clinical-Grade Lentiviral Vectors
by Ane Arrasate, Igone Bravo, Carlos Lopez-Robles, Ane Arbelaiz-Sarasola, Maddi Ugalde, Martha Lucia Meijueiro, Miren Zuazo, Ana Valero, Soledad Banos-Mateos, Juan Carlos Ramirez, Carmen Albo, Andrés Lamsfus-Calle and Marie J. Fertin
Biomedicines 2024, 12(10), 2265; https://doi.org/10.3390/biomedicines12102265 - 4 Oct 2024
Viewed by 3020
Abstract
Background/Objectives: To date, nearly 300 lentiviral-based gene therapy clinical trials have been conducted, with eight therapies receiving regulatory approval for commercialization. These advances, along with the increased number of advanced-phase clinical trials, have prompted contract development and manufacturing organizations (CDMOs) to develop innovative [...] Read more.
Background/Objectives: To date, nearly 300 lentiviral-based gene therapy clinical trials have been conducted, with eight therapies receiving regulatory approval for commercialization. These advances, along with the increased number of advanced-phase clinical trials, have prompted contract development and manufacturing organizations (CDMOs) to develop innovative strategies to address the growing demand for large-scale batches of lentiviral vectors (LVVs). Consequently, manufacturers have focused on optimizing processes under good manufacturing practices (GMPs) to improve cost-efficiency, increase process robustness, and ensure regulatory compliance. Nowadays, the LVV production process mainly relies on the transient transfection of four plasmids encoding for the lentiviral helper genes and the transgene. While this method is efficient at small scales and has also proven to be scalable, the industry is exploring alternative processes due to the high cost of GMP reagents, and the batch-to-batch variability predominantly attributed to the transfection step. Methods: Here, we report the development and implementation of a reliable and clinical-grade envisioned platform based on the generation of stable producer cell lines (SCLs) from an initial well-characterized lentiviral packaging cell line (PCL). Results: This platform enables the production of VSV-G-pseudotyped LVVs through a fully transfection-free manufacturing process. Our data demonstrate that the developed platform will facilitate successful technological transfer to large-scale LVV production for clinical application. Conclusions: With this simple and robust stable cell line generation strategy, we address key concerns associated with the costs and reproducibility of current manufacturing processes. Full article
(This article belongs to the Special Issue Gene Delivery and Gene Editing)
Show Figures

Figure 1

16 pages, 2508 KiB  
Article
Abolishing Retro-Transduction of Producer Cells in Lentiviral Vector Manufacturing
by Soledad Banos-Mateos, Carlos Lopez-Robles, María Eugenia Yubero, Aroa Jurado, Ane Arbelaiz-Sarasola, Andrés Lamsfus-Calle, Ane Arrasate, Carmen Albo, Juan Carlos Ramírez and Marie J. Fertin
Viruses 2024, 16(8), 1216; https://doi.org/10.3390/v16081216 - 29 Jul 2024
Cited by 4 | Viewed by 2259
Abstract
Transduction of producer cells during lentiviral vector (LVV) production causes the loss of 70–90% of viable particles. This process is called retro-transduction and it is a consequence of the interaction between the LVV envelope protein, VSV-G, and the LDL receptor located on the [...] Read more.
Transduction of producer cells during lentiviral vector (LVV) production causes the loss of 70–90% of viable particles. This process is called retro-transduction and it is a consequence of the interaction between the LVV envelope protein, VSV-G, and the LDL receptor located on the producer cell membrane, allowing lentiviral vector transduction. Avoiding retro-transduction in LVV manufacturing is crucial to improve net production and, therefore, the efficiency of the production process. Here, we describe a method for quantifying the transduction of producer cells and three different strategies that, focused on the interaction between VSV-G and the LDLR, aim to reduce retro-transduction. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology 3.0)
Show Figures

Figure 1

16 pages, 2863 KiB  
Article
Integrated Semi-Continuous Manufacturing of Lentiviral Vectors Using a HEK-293 Producer Cell Line
by Michelle Yen Tran, Shantoshini Dash, Zeyu Yang and Amine A. Kamen
Processes 2023, 11(12), 3347; https://doi.org/10.3390/pr11123347 - 1 Dec 2023
Cited by 1 | Viewed by 2488
Abstract
There have been considerable efforts on improving the lentiviral vector (LV) system and their production. However, there remains the persisting challenge of producing a sufficient quantity of LVs at manufacturing scale to support treatments beyond early clinical trials. Furthermore, their innately labile nature [...] Read more.
There have been considerable efforts on improving the lentiviral vector (LV) system and their production. However, there remains the persisting challenge of producing a sufficient quantity of LVs at manufacturing scale to support treatments beyond early clinical trials. Furthermore, their innately labile nature poses an equally important obstacle in LV production. As LVs lose function over time and they are sensitive to environmental factors in each unit operation in the bioprocess workflow, integrated continuous manufacturing is an attractive strategy for process intensification. This manuscript describes the implementation of nuclease treatment, clarification, and capture step in a semi-continuous mode. Combining the clarification and loading of the capture step as well as operating those steps in parallel to the purification of the capture step expedite the processing time, reducing it by 4-fold as compared to processing the same volume in batch mode using the same membrane size. This semi-continuous operation also improves the recoveries of functional vector particles and total vector particles by 26% and 18%, respectively, showing an added benefit in loading the capture membranes in series in continuous flow chromatography. Building on previously published upstream work using a scalable cell retention device in perfusion mode, this manuscript demonstrates the integration of upstream and downstream in a semi-continuous manner, reducing processing and hold times as well as showing improvements in LV product quality and recovery. Full article
(This article belongs to the Special Issue Advances in Bioprocess Technology)
Show Figures

Figure 1

22 pages, 2956 KiB  
Review
Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines
by Brankica Filipić, Ivana Pantelić, Ines Nikolić, Dragomira Majhen, Zorica Stojić-Vukanić, Snežana Savić and Danina Krajišnik
Vaccines 2023, 11(7), 1172; https://doi.org/10.3390/vaccines11071172 - 29 Jun 2023
Cited by 39 | Viewed by 9182
Abstract
Ever since the development of the first vaccine, vaccination has had the great impact on global health, leading to the decrease in the burden of numerous infectious diseases. However, there is a constant need to improve existing vaccines and develop new vaccination strategies [...] Read more.
Ever since the development of the first vaccine, vaccination has had the great impact on global health, leading to the decrease in the burden of numerous infectious diseases. However, there is a constant need to improve existing vaccines and develop new vaccination strategies and vaccine platforms that induce a broader immune response compared to traditional vaccines. Modern vaccines tend to rely on certain nanotechnology platforms but are still expected to be readily available and easy for large-scale manufacturing and to induce a durable immune response. In this review, we present an overview of the most promising nanoadjuvants and nanoparticulate delivery systems and discuss their benefits from tehchnological and immunological standpoints as well as their objective drawbacks and possible side effects. The presented nano alums, silica and clay nanoparticles, nanoemulsions, adenoviral-vectored systems, adeno-associated viral vectors, vesicular stomatitis viral vectors, lentiviral vectors, virus-like particles (including bacteriophage-based ones) and virosomes indicate that vaccine developers can now choose different adjuvants and/or delivery systems as per the requirement, specific to combatting different infectious diseases. Full article
(This article belongs to the Collection Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Graphical abstract

19 pages, 2388 KiB  
Article
Implementation of Novel Affinity Ligand for Lentiviral Vector Purification
by Ana Sofia Moreira, Sandra Bezemer, Tiago Q. Faria, Frank Detmers, Pim Hermans, Laurens Sierkstra, Ana Sofia Coroadinha and Cristina Peixoto
Int. J. Mol. Sci. 2023, 24(4), 3354; https://doi.org/10.3390/ijms24043354 - 8 Feb 2023
Cited by 8 | Viewed by 5205
Abstract
The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, [...] Read more.
The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, eventually, commercialization. Affinity chromatography (AC) can be used to simplify purification processes and generate clinical-grade products with high titer and purity. However, one of the major challenges in the purification of Lentiviral vectors (LVs) using AC is to combine a highly specific ligand with a gentle elution condition assuring the preservation of vector biological activity. In this work, we report for the first time the implementation of an AC resin to specifically purify VSV-G pseudotyped LVs. After ligand screening, different critical process parameters were assessed and optimized. A dynamic capacity of 1 × 1011 total particles per mL of resin was determined and an average recovery yield of 45% was found for the small-scale purification process. The established AC robustness was confirmed by the performance of an intermediate scale providing an infectious particles yield of 54%, which demonstrates the scalability and reproducibility of the AC matrix. Overall, this work contributes to increasing downstream process efficiency by delivering a purification technology that enables high purity, scalability, and process intensification in a single step, contributing to time-to-market reduction. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 13439 KiB  
Review
Hematopoietic Stem Cell Gene Therapy for Cystinosis: From Bench-to-Bedside
by Stephanie Cherqui
Cells 2021, 10(12), 3273; https://doi.org/10.3390/cells10123273 - 23 Nov 2021
Cited by 21 | Viewed by 6037
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The gene involved is the CTNS gene that encodes cystinosin, a seven-transmembrane domain lysosomal protein, which is a proton-driven cystine transporter. Cystinosis is characterized by the lysosomal [...] Read more.
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The gene involved is the CTNS gene that encodes cystinosin, a seven-transmembrane domain lysosomal protein, which is a proton-driven cystine transporter. Cystinosis is characterized by the lysosomal accumulation of cystine, a dimer of cysteine, in all the cells of the body leading to multi-organ failure, including the failure of the kidney, eye, thyroid, muscle, and pancreas, and eventually causing premature death in early adulthood. The current treatment is the drug cysteamine, which is onerous and expensive, and only delays the progression of the disease. Employing the mouse model of cystinosis, using Ctns−/− mice, we first showed that the transplantation of syngeneic wild-type murine hematopoietic stem and progenitor cells (HSPCs) led to abundant tissue integration of bone marrow-derived cells, a significant decrease in tissue cystine accumulation, and long-term kidney, eye and thyroid preservation. To translate this result to a potential human therapeutic treatment, given the risks of mortality and morbidity associated with allogeneic HSPC transplantation, we developed an autologous transplantation approach of HSPCs modified ex vivo using a self-inactivated lentiviral vector to introduce a functional version of the CTNS cDNA, pCCL-CTNS, and showed its efficacy in Ctns−/− mice. Based on these promising results, we held a pre-IND meeting with the Food and Drug Administration (FDA) to carry out the FDA agreed-upon pharmacological and toxicological studies for our therapeutic candidate, manufacturing development, production of the GMP lentiviral vector, design Phase 1/2 of the clinical trial, and filing of an IND application. Our IND was cleared by the FDA on 19 December 2018, to proceed to the clinical trial using CD34+ HSPCs from the G-CSF/plerixafor-mobilized peripheral blood stem cells of patients with cystinosis, modified by ex vivo transduction using the pCCL-CTNS vector (investigational product name: CTNS-RD-04). The clinical trial evaluated the safety and efficacy of CTNS-RD-04 and takes place at the University of California, San Diego (UCSD) and will include up to six patients affected with cystinosis. Following leukapheresis and cell manufacturing, the subjects undergo myeloablation before HSPC infusion. Patients also undergo comprehensive assessments before and after treatment to evaluate the impact of CTNS-RD-04 on the clinical outcomes and cystine and cystine crystal levels in the blood and tissues for 2 years. If successful, this treatment could be a one-time therapy that may eliminate or reduce renal deterioration as well as the long-term complications associated with cystinosis. In this review, we will describe the long path from bench-to-bedside for autologous HSPC gene therapy used to treat cystinosis. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Nephropathic Cystinosis)
Show Figures

Figure 1

22 pages, 2962 KiB  
Review
Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives
by Roman P. Labbé, Sandrine Vessillier and Qasim A. Rafiq
Viruses 2021, 13(8), 1528; https://doi.org/10.3390/v13081528 - 2 Aug 2021
Cited by 93 | Viewed by 14227
Abstract
Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after [...] Read more.
Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies. Full article
(This article belongs to the Special Issue Lentiviral Vectors)
Show Figures

Figure 1

11 pages, 2686 KiB  
Brief Report
Efficient Pseudotyping of Different Retroviral Vectors Using a Novel, Codon-Optimized Gene for Chimeric GALV Envelope
by Manuela Mirow, Lea Isabell Schwarze, Boris Fehse and Kristoffer Riecken
Viruses 2021, 13(8), 1471; https://doi.org/10.3390/v13081471 - 27 Jul 2021
Cited by 8 | Viewed by 4337
Abstract
The Gibbon Ape Leukemia Virus envelope protein (GALV-Env) mediates efficient transduction of human cells, particularly primary B and T lymphocytes, and is therefore of great interest in gene therapy. Using internal domains from murine leukemia viruses (MLV), chimeric GALV-Env proteins such as GALV-C [...] Read more.
The Gibbon Ape Leukemia Virus envelope protein (GALV-Env) mediates efficient transduction of human cells, particularly primary B and T lymphocytes, and is therefore of great interest in gene therapy. Using internal domains from murine leukemia viruses (MLV), chimeric GALV-Env proteins such as GALV-C4070A were derived, which allow pseudotyping of lentiviral vectors. In order to improve expression efficiency and vector titers, we developed a codon-optimized (co) variant of GALV-C4070A (coGALV-Env). We found that coGALV-Env mediated efficient pseudotyping not only of γ-retroviral and lentiviral vectors, but also α-retroviral vectors. The obtained titers on HEK293T cells were equal to those with the classical GALV-Env, whereas the required plasmid amounts for transient vector production were significantly lower, namely, 20 ng coGALV-Env plasmid per 106 293T producer cells. Importantly, coGALV-Env-pseudotyped γ- and α-retroviral, as well as lentiviral vectors, mediated efficient transduction of primary human T cells. We propose that the novel chimeric coGALV-Env gene will be very useful for the efficient production of high-titer vector preparations, e.g., to equip human T cells with novel specificities using transgenic TCRs or CARs. The considerably lower amount of plasmid needed might also result in a significant cost advantage for good manufacturing practice (GMP) vector production based on transient transfection. Full article
(This article belongs to the Special Issue State-of-the-Art Viral Vector Gene Therapy in Germany)
Show Figures

Figure 1

17 pages, 2163 KiB  
Review
Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives
by Wendy Dong and Boris Kantor
Viruses 2021, 13(7), 1288; https://doi.org/10.3390/v13071288 - 1 Jul 2021
Cited by 89 | Viewed by 18448
Abstract
CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to [...] Read more.
CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications. Full article
(This article belongs to the Special Issue Novel Developments and Perspectives in Viral Vector Technology)
Show Figures

Figure 1

46 pages, 1004 KiB  
Review
Lentiviral Vector Bioprocessing
by Christopher Perry and Andrea C. M. E. Rayat
Viruses 2021, 13(2), 268; https://doi.org/10.3390/v13020268 - 9 Feb 2021
Cited by 125 | Viewed by 22696
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen [...] Read more.
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes. Full article
(This article belongs to the Special Issue Lentiviral Vectors)
Show Figures

Figure 1

20 pages, 2517 KiB  
Review
Large-Scale Production of Lentiviral Vectors: Current Perspectives and Challenges
by Eduardo Martínez-Molina, Carlos Chocarro-Wrona, Daniel Martínez-Moreno, Juan A. Marchal and Houria Boulaiz
Pharmaceutics 2020, 12(11), 1051; https://doi.org/10.3390/pharmaceutics12111051 - 3 Nov 2020
Cited by 60 | Viewed by 14957
Abstract
Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. [...] Read more.
Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs. Full article
(This article belongs to the Special Issue Gene Delivery Vectors and Physical Methods: Present and Future Trends)
Show Figures

Figure 1

16 pages, 3355 KiB  
Article
Functional Assessment for Clinical Use of Serum-Free Adapted NK-92 Cells
by Michael Chrobok, Carin I. M. Dahlberg, Ece Canan Sayitoglu, Vladimir Beljanski, Hareth Nahi, Mari Gilljam, Birgitta Stellan, Tolga Sutlu, Adil Doganay Duru and Evren Alici
Cancers 2019, 11(1), 69; https://doi.org/10.3390/cancers11010069 - 10 Jan 2019
Cited by 21 | Viewed by 8311
Abstract
Natural killer (NK) cells stand out as promising candidates for cellular immunotherapy due to their capacity to kill malignant cells. However, the therapeutic use of NK cells is often dependent on cell expansion and activation with considerable amounts of serum and exogenous cytokines. [...] Read more.
Natural killer (NK) cells stand out as promising candidates for cellular immunotherapy due to their capacity to kill malignant cells. However, the therapeutic use of NK cells is often dependent on cell expansion and activation with considerable amounts of serum and exogenous cytokines. We aimed to develop an expansion protocol for NK-92 cells in an effort to generate a cost-efficient, xeno-free, clinical grade manufactured master cell line for therapeutic applications. By making functional assays with NK-92 cells cultured under serum-free conditions (NK-92SF) and comparing to serum-supplemented NK-92 cells (NK-92S) we did not observe significant alterations in the viability, proliferation, receptor expression levels, or in perforin and granzyme levels. Interestingly, even though NK-92SF cells displayed decreased degranulation and cytotoxicity against tumor cells in vitro, the degranulation capacity was recovered after overnight incubation with 20% serum in the medium. Moreover, lentiviral vector-based genetic modification efficiency of NK-92SF cells was comparable with NK-92S cells. The application of similar strategies can be useful in reducing the costs of manufacturing cells for clinical use and can help us understand and implement strategies towards chemically defined expansion and genetic modification protocols. Full article
(This article belongs to the Special Issue Natural Killer Cells and Cancer Therapy)
Show Figures

Figure 1

12 pages, 1952 KiB  
Article
Development of Inducible CD19-CAR T Cells with a Tet-On System for Controlled Activity and Enhanced Clinical Safety
by Xingjian Gu, Dongyang He, Caixin Li, Hua Wang and Guanghua Yang
Int. J. Mol. Sci. 2018, 19(11), 3455; https://doi.org/10.3390/ijms19113455 - 3 Nov 2018
Cited by 43 | Viewed by 5964
Abstract
The tetracycline regulatory system has been widely used to control the transgene expression. With this powerful tool, it might be possible to effectively control the functional activity of chimeric antigen receptor (CAR) T cells and manage the severe side effects after infusion. In [...] Read more.
The tetracycline regulatory system has been widely used to control the transgene expression. With this powerful tool, it might be possible to effectively control the functional activity of chimeric antigen receptor (CAR) T cells and manage the severe side effects after infusion. In this study, we developed novel inducible CD19CAR (iCAR19) T cells by incorporating a one-vector Tet-on system into the CD19CAR construct. The iCAR19 T cells showed dox-dependent cell proliferation, cytokine production, CAR expression, and strong CD19-specific cytotoxicity. After 48 h of dox induction, the relative CAR expression of induced cells was five times greater than that of uninduced cells. Twenty-four hours after dox removal, CAR expression significantly decreased by more than 60%. In cytotoxicity assays, dox-treated cells induced significantly higher specific lysis against target cells. These results suggested that the activity of iCAR19 T cells was successfully controlled by our Tet-on system, offering an enhanced safety profile while maintaining a robust anti-tumor effect. Besides, all manufacture processes of the lentiviral vectors and the T cells were conducted according to the Good Manufacturing Practice (GMP) standards for subsequent clinical translation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1149 KiB  
Review
Lentivirus-Induced Dendritic Cells (iDC) for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation
by Renata Stripecke
Biomedicines 2014, 2(3), 229-246; https://doi.org/10.3390/biomedicines2030229 - 21 Aug 2014
Cited by 7 | Viewed by 11076
Abstract
Conventional dendritic cells (cDC) are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed [...] Read more.
Conventional dendritic cells (cDC) are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed poor trafficking of cDC from subcutaneous injection sites to lymph nodes (LN), where DC can optimally stimulate naïve lymphocytes for long-lasting memory responses. We demonstrated in mouse and human systems that a single overnight ex vivo lentiviral (LV) gene transfer into DC precursors for production of combination of cytokines and antigens was capable to induce autonomous self-differentiation of antigen-loaded DC in vitro and in vivo. These highly viable induced DC (iDC) effectively migrated from the injected skin to LN, where they effectively activated de novo antigen-specific effector memory T cells. Two iDC modalities were validated in relevant animal models and are now in clinical development: Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors co-expressing GM-CSF/IL-4/TRP2 for melanoma immunotherapy in the autologous setting (SmartDCtrp2), and Self-differentiated Myeloid-derived Lentivirus-induced against human cytomegalovirus as an allogeneic matched adoptive cell after stem cell transplantation (SmyleDCpp65). The lentiviral vector design and packaging methodology has “evolved” continuously in order to simplify and optimize function and biosafety of in vitro and in vivo genetic reprogramming of iDC. Here, we address the challenges seeking for new creations of genetically programmed iDC and integrase-defective LV vaccines for immune regeneration. Full article
(This article belongs to the Special Issue Gene Therapy Used in Cancer Treatment)
Show Figures

Graphical abstract

Back to TopTop