Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
| Contents | ||
| 1 | Introduction · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 2 |
| 2 | Bioprocessing of Lentiviral Vectors · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 2 |
| 2.1 Pseudotyped Envelope Proteins · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 4 | |
| 3 | Upstream Bioprocessing of Lentiviral Vectors · · · · · · · · · · · · · · · · · · · · · · · | 8 |
| 3.1 Cell Lines for LV Production · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 8 | |
| 3.2 Transient, Stable and Induced Production · · · · · · · · · · · · · · · · · · · · · · | 8 | |
| 3.3 Upstream Culture to Produce Lentiviral Vectors · · · · · · · · · · · · · · · · | 11 | |
| 3.3.1 Adherent Culture · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 12 | |
| 3.3.2 Suspension Culture · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 13 | |
| 3.3.3 Perfusion Culture · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 14 | |
| 3.3.4 Cell Media and Supplements · · · · · · · · · · · · · · · · · · · · · · · · · · · | 14 | |
| 4 | Downstream Processing of Lentiviral Vectors · · · · · · · · · · · · · · · · · · · · · · | 15 |
| 4.1 Vector Filtration: Initial Clarification · · · · · · · · · · · · · · · · · · · · · · · · · | 15 | |
| 4.2 Vector Filtration: Sterile Filtration · · · · · · · · · · · · · · · · · · · · · · · · · · · | 17 | |
| 4.3 Non-Chromatographic Purification · · · · · · · · · · · · · · · · · · · · · · · · · · | 17 | |
| 4.4 Nucleic Acid Reduction · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 18 | |
| 4.5 Chromatographic Purification · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 18 | |
| 4.5.1 Anion Exchange Chromatography · · · · · · · · · · · · · · · · · · · · · · | 22 | |
| 4.5.2 Affinity Chromatography · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 23 | |
| 4.5.3 Size Exclusion Chromatography · · · · · · · · · · · · · · · · · · · · · · · · | 23 | |
| 4.5.4 Steric Exclusion Chromatography · · · · · · · · · · · · · · · · · · · · · · · | 24 | |
| 4.6 Concentration and Buffer Exchange by Tangential Flow Filtration · | 24 | |
| 4.7 Formulation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 28 | |
| 5 | Vector Characterisation and Quality Control · · · · · · · · · · · · · · · · · · · · · · · | 29 |
| 6 | Whole-Bioprocess Assessment of LV Production · · · · · · · · · · · · · · · · · · · · | 31 |
| 7 | Conclusions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 34 |
| References | · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | 35 |
1. Introduction
Lentiviral vectors (LV) are commonly used in cell and gene therapies for the transfer and integration of transgenes of interest into recipient cells for therapeutic benefit []. As vectors, they are capable of transducing dividing and non-dividing cells such as neurons, haematopoietic stem cells and those of the immune system, notably T-cells, delivering transgenes of up to 11 kilobases (kb) in size. LVs represent a major vector of interest for the treatment of monogenic diseases and adoptive cell therapy trials where gene delivery is required, being present in 57% of ex vivo UK Advanced Therapy Medicinal Products (ATMP) []. Over 100 ongoing clinical trials in the US, China, EU and Canada are employing lentiviral vectors both for ex vivo modification of cells or in vivo therapy []. Overall, the market for LV production is predicted to grow up to $800 M by 2026 [] as a result of its popularity in clinical trials and the market approval of recent CAR-T therapies, Kymriah and Yescarta.
With continued interest in lentiviral vectored-therapies, demand for efficient LV bioprocessing is growing. Problems during scale-up and production could delay the adoption of lentiviral vectors for clinical and commercial use. Some bioprocessing challenges encountered today are the inability to produce sufficient titres in the upstream coupled with generally low recoveries during downstream processing, resulting in many companies unable to provide enough capacity to satisfy demand at scale []. Despite the current issues with developing suitable quantities of vectors, the applications of viral vectors and their bioprocessing is a valuable enterprise. Considering that only the transgene needs to be changed to pivot to another product, the rise of a universal production process is likely. This can be in the form of a packaging cell line whereby the cell constitutively expresses vector components and an envelope protein of choice, awaiting a suitable transfer cassette for stable or transient expression []. For established platforms, a producer cell line may be valuable, whereby the cell constitutively expresses all components relevant to vector generation []. Such cell lines lend favourable commercial properties in theory, due to the lack of plasmid DNA and transfection step required. Once the optimised upstream and downstream are designed, the viability of developing a platform for rapid transgene exchange and validation is high. Intensified and continuous processing, such as that seen in recombinant protein production, may be beneficial for cost effective vector production.
5. Vector Characterisation and Quality Control
For applications in human trials, the LV batch should be extensively characterised, and QC tested before release. To maintain safety, the product must remain within a pre-determined specification backed up by suitably validated, precise and repeatable assay protocols. A typical LV batch will require specifications for purity, identity, safety and potency, and these must remain reasonably consistent from batch to batch as required by regulatory agencies, with stringency developing as a potential therapy extends through animal investigations to commercial release. Assays required can be typical and expected of most recombinant processes but can also extend to vector and transgene specific assays. For example, residual DNA can be assayed by Picogreen or quantitative polymerase chain reaction (qPCR), whereas host cell proteins can be analysed by enzyme linked immunosorbent assay (ELISA), SDS-PAGE or any form of total protein quantification such as Bradford, Lowry or bicinchoninic acid colorimetric assay, in addition to standard mycoplasma and endotoxin testing. Additives to the process such as nucleases can be titered by ELISA as can SV40 T-antigen from HEK-293T cells (qPCR for the antigen can signal host cell DNA impurity). Vector specific assays are more complicated due to the nature of the vector particle itself, containing nucleic acids, lipids and proteins, as well as differentiating functional titres and total particle numbers.
Validating quantification methods is essential for the development process and the QA/QC of LV for commercial supply. It is problematic to reach consensus with methodologies due to the variety of transgenes, envelope proteins and recipient cells available across various industrial or academic groups and even inter-group titres vary broadly depending on operator. Despite this, vector quantification is essential when characterising the effectiveness of a production run and is a requirement as a critical quality attribute for regulatory approval. The quantification of LV can broadly be separated into the quantification of various parts of the vector with some degree of crossover, these groupings can be listed as functionality, vector RNA quantification, vector protein, vector enzyme activity and physically counting said particles.
For functionality, the quantification method of choice is the transduction of a known quantity of cells and examining for transgene expression. This method typically requires a titration of the vector of interest across a variety of dilutions and mixing the vector solution and a known quantity of cells together []. Polybrene can be added to enhance transduction by minimising electrostatic repulsion between envelope protein and receptor []. After a period of time to allow cell expansion and to dilute out any episomal transgene expression, cells are examined for expression, typically by staining with antibodies or affinity-based dyes unless a marker gene is used (often GFP) and analysed with flow cytometry. The transducing units can be determined by knowing the per cent of transduced cells, the volume of vector solution added and the number of cells. However, this does not account for multiple integrations which may arise with high multiplicity of infections and thus titrations must be carried out. Moreover, the risk of overestimating titre due to transgene expression in episomes is apparent, and therefore suitable lengths of time between transduction and cell reading is recommended to dilute out non-integrated transgenes to better reflect long term cell culture for therapies. Furthermore, the total volume, density of cells, availability of cellular receptors and agitation may affect outcomes [], and thus consistent titres between groups are difficult to compare directly. The transduced cells ideally should be of the same type as the target recipient cell, although typically HEK-293T are used. Moreover, the gating strategy during FACS analysis, the number of transgenes to stain and quality of the stain will need to be considered. In addition, the presence of transduction inhibitors, such as non-functional vector, free floating envelope proteins and proteoglycans, may cause the titre to be under reported in addition to the chance of vector never reaching the cell or available receptor.
A non-staining protocol for functional titre can be carried out via an integration assay where transduced cell genomic DNA (gDNA) is extracted and the provirus is quantified by qPCR and compared to a housekeeping gene. This assay can be unique to the transgene of interest, although a World Health Organization (WHO) standard has been produced for cross group comparison if sequences between the vector transgene and standard are shared []. qPCR can quantify multiple integrations although this is not an indicator of transgene functionality. In addition, quality is dependent on gDNA isolation and the lack of DNA contamination from plasmids, host cells and episomal forms [], and thus expansion time and/or nucleases are required to minimise false positives. Considering the assay is still based on transduction efficiency, the practical applications are in cells where the transgene is difficult to stain for or for legacy sampling of transduced cell gDNA.
Nucleic acid quantification involves the quantification of vector RNA. This method requires the disruption of the vector, isolation of vector RNA, its reverse transcription to complementary DNA and then quantification. Of note, this method does not quantify vector function, and therefore its application is limited to an extent. There is a risk of plasmid DNA inflating the results which necessitates correction with non-reverse transcribed controls or DNase treatment. Furthermore, non-functional but packaged vector may cause over reporting. There is dependence on the efficiency of RNA extraction and its stability, although this can be controlled by a spiked RNA standard. However, its validity may be problematic for process development purposes, whereby varying inhibitors of qPCR or reverse transcriptase in samples may affect results, for example high salt from chromatography elution. qPCR can be further extended with digital droplet qPCR (ddqPCR), wherein individual qPCR reactions are separated by water–oil emulsion droplets at high dilution. By counting the number of positive droplets, the concentration of template can be calculated without a standard curve as responses follow a Poisson distribution. Such technology has been utilised with LV [], can provide results even if templates are very low in abundance [] and can be utilised to calculate the number of vector copies in recipient cells [].
The p24 ELISA assay is a method to quantify the mass of the p24 HIV capsid protein from samples and can be purchased as regular commercial kits. The antibody-based assay can provide quantification of the protein over the course of a day compared to 2–3 days for functional infectivity. In the assay, the vector is disrupted by a detergent before incubation on a plate where either the protein binds by charge onto the plastic or the p24 is captured by a pre-immobilised antibody. An additional primary antibody is incubated and washed away before an enzyme linked secondary antibody is added. After washing, the bound enzyme allows for the colorimetric measurement of a change in a substrate which can be measured by absorbance or fluorescence, which directly corresponds to p24 quantity. This method has seen widespread adoption, with results typically reported as a ratio of the mass of p24 and transducing units (P:I ratio). This links particle mass to functionality and therefore acts as a measure of quality for vector, and even allowing groups to assume LV number by the estimate of particles of LV per pg of p24 []. However, p24 kits are reliant on the specificity of their antibodies, and in some cases over report due to the inclusion of non-processed p24 in the form of GAG, vector fragments and inactivated or immature virions.
The measurement of vector enzyme activity can offer an alternative quantification assay for viral proteins. In qPCR-based product enhanced reverse transcription assay (PERT), the vector is titrated and lysed with detergents before mixing with a standard RNA template [,]. A thermocycler is set-up with an initial incubation time for reverse transcription to occur, before a temperature rise leads to the enzyme’s inactivation. qPCR is then run to quantify the amount of RNA template converted to DNA, comparing to a known HIV-1 recombinant reverse transcriptase control. As it is dependent on the activity of reverse transcriptase, the assay will be sensitive to inhibitors of reverse transcriptase and may require its stabilisation by inert proteins typically provided in qPCR master mixes. This may appear problematic with processing samples which may have varying ranges of stabilisers or inhibitors. However, the method is rapid, providing results within 2 h and as a result can offer high throughput quantification for multiple samples within a day. The assay can also be more cost-effective than p24 assays due to the lack of specific antibodies and usage of common qPCR mixes.
Another technique is the counting of physical particles. Dynamic light scattering (DLS) is a method whereby the amount of light scattered from a beam when interrupted by a particle is quantified, and, by using the known viscosity of the sample, the hydrodynamic diameter of particles is calculated via the Stokes–Einstein equation. Results can be obtained within 30 min and estimate the mean particle size, polydispersity and a calculation for the particle size distribution. Although this too only determines physical particle numbers and not-functionality, the quality of the data from DLS is progressively unreliable with greater polydispersity, with increased particle numbers causing errant scattering which detracts from the particle of interest. This is problematic with process mixtures which may be reasonably high in polydispersity, in addition to varying viscosities which must be characterised for DLS accuracy. Unless a clean sample is provided, the method is mainly used for average particle sizes in a mixture and determining if a sample is aggregating. Although the DLS technique has been improved with multi-angle dynamic light scattering, which increases the number of detection angles for light scattering and offers more robust results with high polydispersity, accuracy for particle concentration may vary within 50% of a nominal value [,].
Alternative methods on similar principles as DLS can be found with nanoparticle tracking analysis methods. Here video clips are recorded through a microscope and the Brownian motion of small particles quantified by a tracking algorithm. Although unable to differentiate LV from other similar sized particles, some newer models allow for the staining and tracking of particles of a specific fluorescence and hence allows for the quantification of specific species. Similarly, tunable resistive pulse sensing detects the size and number of particles passing through a small pore and have been used with LV []. Other physical particle-based quantification can be accomplished by counting particles in electron microscopy with a negative stain, modern systems, e.g. the benchtop MiniTem from Vironova, offer automated electron microscopy and analysis []. In addition, the fluorescence of tagged LV can be compared with fluorescent beads in confocal microscopy. Both methods can be very time consuming to complete and insufficient for large numbers of samples. A recent addition, which utilises high-performance liquid chromatography (HPLC) with AEX resins, can elute bands of vector, and, based on their fluorescence, estimate the number of vector particles within to total particles per mL range []. This method has been used to differentiate DNA from vector and is comparable to ELISA and ddPCR and allows for the application of various samples from differing aspects of the process within 6.5 min. Although this method only quantifies vector particles and does not display functional units, such rapid and high throughput analytical considerations are of strong value for process development.
6. Whole-Bioprocess Assessment of LV Production
Figure 2 illustrates the different process options available for the manufacture of lentiviral vectors. There are process options which are only useful at small scale or for applications where low number of doses are required (ultracentrifugation, SEC and basket centrifugation) while mostly are scalable (e.g., filtration options, chromatography, etc). The final sequence of operations depends on the scale of application of the LV product, the technology used for LV generation, LV titres and the desired product and impurity profile. In this regard, the actual point in which certain operations need to be applied (e.g., concentration, diafiltration, DNA digestion, etc) will depend on these factors. For example, the application of benzonase, or similar products, for DNA digestion may be performed anywhere from the LV generation step [], as part of the clarification step [] or before or after chromatography [].
Figure 2.
Bioprocess options in the production of lentiviral vectors. Some studies have shown sequence of membrane filtration of different pore sizes or inclusion of low-speed centrifugation prior [,,]. Sequence of filtration processes would be an option depending on scale and cell density and product and impurity profile. These are examples of sequences of operations used in pre-clinical and clinical investigations [,,]. Benzonase may be added at a variety of steps within the downstream process.
In their review paper, McCarron et al. [] provided an overview of the challenges of scaling-up lentiviral vector production. These are briefly summarised in Table 9. Among the challenges in LV production, bioprocess understanding is most relevant in addressing the low recoveries and loss of vector functionality. This starts with the understanding of the application of the final product, which define the final scale of operation and, the product and process specifications. In addition, determining the relevant parameters which impact the performance of process options will be important in the optimal selection of these options and their operation. Screening studies can provide crucial bioprocess information such as the level of transmembrane pressures [] or crossflow rate [] in TFF operations, column flow rate in AEX chromatography [] or the right molecular weight cut-off (MWCO) or membrane material in TFF operation [,,,]. It is also important to determine the impact of using frozen-thawed materials in process development of unformulated LV products (e.g., [,]), as opposed to using fresh material, as this step may have a huge influence on the process performance rather than as result of the bioprocess operation itself.
Table 9.
Known challenges in LV Production.
Defining the steps in the bioprocess sequence of LV production requires a whole-bioprocess analysis due to the interaction among the different operations. For example, concentration and buffer exchange (TFF) followed by AEX chromatography produced an LV product that when used in transduction was not toxic to cells, despite the lower overall yield compared to just using a TFF step []. In another example, TFF operation, whether on its own or combined with ultracentrifugation, resulted in an LV product with higher functional titre not seen when this step was removed []. Finally, the location of DNA digestion within the process sequence [] or the location of the TFF step [] may be used to improve the following AEX chromatography.
The increased interest in viral vectored cell and gene therapies pushes the boundaries of what is currently done in bioprocessing. For larger scale LV production, the role of process shear needs to be investigated as large-scale production means using larger pumps or running pumps at higher flowrate and therefore, potentially higher shear rates. Furthermore, higher productivity requirements also mean increased flux requirements to shorten the time during TFF operation. This impacts LV production in several ways: the shorter time may be beneficial for LV stability while the increased flux may mean the need to run at higher crossflow rates [] or higher transmembrane pressure []; both may result in exposure to high process shear [,]. Viral vectors in general are known to be fragile and therefore sensitive to shear. For example, Valkama et al. [] mentioned that an increased recirculating flowrate, by-passing a column, resulted in the 20% loss of infective LVs. However, an early analysis of work in our lab found that some pseudotyped LVs have high recoveries even after exposure to very high process shear using ultra scale-down (USD) (unpublished data). This demonstrates that process shear may have different effects on different lentiviral vectors and that the design of bioprocess operations (e.g., TFF) should account for these in order to increase productivity and meet requirements at larger-scale manufacturing. We previously demonstrated the use of ultra scale-down devices to predict a larger scale TFF operation to produce monoclonal antibodies []. This larger-scale equipment is of similar type to that used in LV TFF processing [,]. Ultra scale-down approaches have also been used to evaluate other unit operations []. USD enables whole-bioprocess assessment because of the small amount of material required to perform the analysis. Lastly, as part of the whole-bioprocess analysis of the production of LVs, incorporating a process economic analysis would be beneficial as it could demonstrate the economic viability of bioprocess options [].
7. Conclusions
We reviewed the basic unit operations, whole bioprocess options and other current developments in the bioprocessing of lentiviral vectors. The demand for LVs will remain high in the foreseeable future as the therapeutic benefits of cell and gene therapy are realised and transferred into the clinic with new applications being explored (e.g., as viral vaccine vectors []). Although current manufacturing capacity for LVs is low globally, and LV bioprocessing requires optimisation, efforts are apparent which are improving yields and recoveries. Such developments will lead to greater implementation of gene transfer agents to improve therapeutic outcomes. The fundamental understanding of the bioprocess requirements of lentiviral vectors is key in ensuring the translation of LV products from clinical development to use by patients. TFF and AEX chromatography are front-runners as unit operations of choice for scalable LV bioprocessing as does microfiltration. From what we already know of these operations, the solution environment (i.e., buffers, additives, excipients, etc.) as well as the solid-phase materials (e.g., membranes, resins or fibres) will have important contributions during processing of different pseudotyped LVs. The determination of key operational parameters and process conditions will be an essential activity in process development, along with a whole bioprocess assessment. This should lead to obtaining high LV concentrations and yields with minimal impurities in the LV product.
Author Contributions
C.P., Writing—original draft preparation, conceptualisation, visualisation and investigation; and A.C.M.E.R., Writing—review and editing, conceptualisation, validation and supervision. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by UK EPSRC CDT Bioprocess Engineering Leadership (EP/L01520X/1) at University College London and the National Institute for Biological Standards and Control (NIBSC).
Data Availability Statement
Not applicable.
Acknowledgments
The authors would like to thank: Dale Stibbs for comments on early draft; Joanne Del Rosario for proofreading the manuscript; Yasu Takeuchi for discussions and project supervision; Tarit Mukhopadhyay and Mary Collins, as former UCL supervisors.
Conflicts of Interest
One of the authors (A.C.M.E.R.) is supervising a on-going project on LV processing that is partly funded by Pall Biotech under the UCL—Pall Biotech Centre of Excellence (UCL—Pall COE) for research and training. The funders had no role in the design of the review; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish of the review.
Abbreviations
The following abbreviations are used in this manuscript:
| AEX | Anion Exchange Chromatography |
| ATMP | Advanced Therapy Medicinal Products |
| CaPi | Calcium Phosphate |
| CAR-T | Chimeric Antigen Receptor T-Cell |
| Cocal-G | Cocal Glycoprotein |
| ddPCR | Digital Droplet Polymerase Chain Reaction |
| DEAE | Diethylaminoethyl |
| DLS | Dynamic Light Scattering |
| DMEM | Dulbecco’s Modified Eagle Medium |
| Elisa | Enzyme Linked Immunosorbent assay |
| GFP | Green Fluorescent Protein |
| HEK | Human embryonic Kidney |
| HIV | Human Immunodeficiency Virus |
| HPLC | High Performance Liquid Chromatography |
| IEX | Ion Exchange Chromatography |
| kb | Kilobase |
| LDL-R | Low-Density Lipoprotein Receptor |
| LMH | Litres/metres/hour |
| LNGFR | Low Affinity Nerve Growth Factor Receptor |
| LTR | Long Terminal Repeats |
| LV | Lentiviral Vector |
| mAb | Monoclonal Antibody |
| MLV | Murine leukemia virus |
| MOI | Multiplicity of Infection |
| MWCO | Molecular Weight Cut Off |
| p/v | Power /Volume |
| PBS | Phosphate Buffered Saline |
| PEG | Polyethylene glycol |
| PEI | Polyethylenimine |
| PERT | Product Enhanced Reverse Transcription |
| PES | Polyethersulphone |
| PVDF | Polyvinylidene Fluoride |
| QA | Quaternary Amine |
| QA/QC | Quality assurance/Quality Control |
| qPCR | Quantitative Polymerase Chain Reaction |
| SEC | Size Exclusion Chromatography |
| SF | Sterile Filtration |
| TFF | Tangential Flow Filtration |
| TMP | Transmembrane Pressure |
| TU | Transducing Unit |
| UC | Ultracentrifuge |
| UF/DF | Ultrafiltration/Diafiltration |
| USD | Ultra Scale Down |
| VSV-G | Vesicular Stomatitis Virus Glycoprotein |
| WHO | World Health Organization |
References
- Naldini, L.; Blömer, U.; Gallay, P.; Ory, D.; Mulligan, R.; Gage, F.H.; Verma, I.M.; Trono, D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996, 272, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Cell and Gene Therapy Catapult. Cell and Gene Therapy Catapult Clinical Trials Database 2019; Technical Report; Cell and Gene Therapy Catapult: London, UK, 2020. [Google Scholar]
- Milone, M.C.; O’Doherty, U. Clinical use of lentiviral vectors. Leukemia 2018, 32, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Southey, F. Oxford BioMedica to capture 25–30% of lentiviral vector market by 2026. Predicts CTO, 10 December 2018. [Google Scholar]
- Kolata, G. Gene Therapy Hits a Peculiar Roadblock: A Virus Shortage. The New York Times, 28 April 2016. [Google Scholar]
- Cosset, F.L.; Takeuchi, Y.; Battini, J.L.; Weiss, R.A.; Collins, M.K. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 1995, 69, 7430–7436. [Google Scholar] [CrossRef]
- Sanber, K.S.; Knight, S.B.; Stephen, S.L.; Bailey, R.; Escors, D.; Minshull, J.; Santilli, G.; Thrasher, A.J.; Collins, M.K.; Takeuchi, Y. Construction of stable packaging cell lines for clinical lentiviral vector production. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Segura, M.D.L.M.; Garnier, A.; Kamen, A. Purification and characterization of retrovirus vector particles by rate zonal ultracentrifugation. J. Virol. Methods 2006, 133, 82–91. [Google Scholar] [CrossRef]
- Higashikawa, F.; Chang, L.J. Kinetic analyses of stability of simple and complex retroviral vectors. Virology 2001, 280, 124–131. [Google Scholar] [CrossRef]
- Kumru, O.S.; Wang, Y.; Gombotz, C.W.R.; Kelley-Clarke, B.; Cieplak, W.; Kim, T.; Joshi, S.B.; Volkin, D.B. Physical Characterization and Stabilization of a Lentiviral Vector Against Adsorption and Freeze-Thaw. J. Pharm. Sci. 2018, 107, 2764–2774. [Google Scholar] [CrossRef]
- Kowolik, C.M.; Yee, J.K. Preferential Transduction of Human Hepatocytes with Lentiviral Vectors Pseudotyped by Sendai Virus F Protein. Mol. Ther. 2002, 5, 762–769. [Google Scholar] [CrossRef]
- Ye, K.; Dhiman, H.K.; Suhan, J.; Schultz, J.S. Effect of pH on infectivity and morphology of ecotropic moloney murine leukemia virus. Biotechnol. Prog. 2003, 19, 538–543. [Google Scholar] [CrossRef]
- Burns, J.C.; Friedmann, T.; Driever, W.; Burrascano, M.; Yee, J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 1993, 90, 8033–8037. [Google Scholar] [CrossRef]
- Coroadinha, A.; Silva, A.; Pires, E.; Coelho, A.; Alves, P.; Carrondo, M. Effect of osmotic pressure on the production of retroviral vectors: Enhancement in vector stability. Biotechnol. Bioeng. 2006, 94, 322–329. [Google Scholar] [CrossRef]
- Beer, C.; Meyer, A.; Müller, K.; Wirth, M. The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 2003, 308, 137–146. [Google Scholar] [CrossRef][Green Version]
- Fernandes, J.D.; Jayaraman, B.; Frankel, A.D. The HIV-1 Rev response element: An RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol. 2012, 9, 6–11. [Google Scholar] [CrossRef]
- De Guzman, R.N. Structure of the HIV-1 Nucleocapsid Protein Bound to the SL3 -RNA Recognition Element. Science 1998, 279, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Zufferey, R.; Nagy, D.; Mandel, R.J.; Naldini, L.; Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 1997, 15, 871–875. [Google Scholar] [CrossRef]
- Kim, V.N.; Mitrophanous, K.; Kingsman, S.M.; Kingsman, A.J. Minimal Requirement for a Lentivirus Vector Based on Human Immunodeficiency Virus Type 1. J. Virol. 1998, 72, 811–816. [Google Scholar] [CrossRef]
- Dull, T.; Zufferey, R.; Kelly, M.; Mandel, R.J.; Nguyen, M.; Trono, D.; Naldini, L. A Third-Generation Lentivirus Vector with a Conditional Packaging System. J. Virol. 1998, 72, 8463–8471. [Google Scholar] [CrossRef]
- Rodrigues, T.; Carrondo, M.J.; Alves, P.M.; Cruz, P.E. Purification of retroviral vectors for clinical application: Biological implications and technological challenges. J. Biotechnol. 2007. [Google Scholar] [CrossRef]
- Hacein-Bey-Abina, S. LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1. Science 2003, 302, 415–419. [Google Scholar] [CrossRef]
- Moiani, A.; Paleari, Y.; Sartori, D.; Mezzadra, R.; Miccio, A.; Cattoglio, C.; Cocchiarella, F.; Lidonnici, M.R.; Ferrari, G.; Mavilio, F. Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts. J. Clin. Investig. 2012, 122, 1653–1666. [Google Scholar] [CrossRef]
- Themis, M.; Waddington, S.N.; Schmidt, M.; von Kalle, C.; Wang, Y.; Al-Allaf, F.; Gregory, L.G.; Nivsarkar, M.; Themis, M.; Holder, M.V.; et al. Oncogenesis Following Delivery of a Nonprimate Lentiviral Gene Therapy Vector to Fetal and Neonatal Mice. Mol. Ther. 2005, 12, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Masri, F.; Cheeseman, E.; Ansorge, S. Viral vector manufacturing: How to address current and future demands? Cell Gene Ther. Insights 2019, 5, 949–970. [Google Scholar] [CrossRef]
- Spink, K.; Steinsapir, A. The long road to affordability: A cost of goods analysis for an autologous CAR-T process. Cell Gene Ther. Insights 2018, 4, 1105–1116. [Google Scholar] [CrossRef]
- Comisel, R.M.; Kara, B.; Fiesser, F.H.; Farid, S.S. Lentiviral vector bioprocess economics for cell and gene therapy commercialization. Biochem. Eng. J. 2020, 107868. [Google Scholar] [CrossRef]
- Duvergé, A.; Negroni, M. Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus. Viruses 2020, 12, 1311. [Google Scholar] [CrossRef]
- Gutierrez-Guerrero, A.; Cosset, F.L.; Verhoeyen, E. Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses 2020, 12, 1016. [Google Scholar] [CrossRef] [PubMed]
- Hanawa, H.; Kelly, P.F.; Nathwani, A.C.; Persons, D.A.; Vandergriff, J.A.; Hargrove, P.; Vanin, E.F.; Nienhuis, A.W. Comparison of Various Envelope Proteins for Their Ability to Pseudotype Lentiviral Vectors and Transduce Primitive Hematopoietic Cells from Human Blood. Mol. Ther. 2002, 5, 242–251. [Google Scholar] [CrossRef]
- Marin, M.; Lavillette, D.; Kelly, S.M.; Kabat, D. N-Linked Glycosylation and Sequence Changes in a Critical Negative Control Region of the ASCT1 and ASCT2 Neutral Amino Acid Transporters Determine Their Retroviral Receptor Functions. J. Virol. 2003, 77, 2936–2945. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Cosset, F.L.; Lachmann, P.J.; Okada, H.; Weiss, R.A.; Collins, M.K. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J. Virol. 1994, 68, 8001–8007. [Google Scholar] [CrossRef]
- Tomás, H.A.; Mestre, D.A.; Rodrigues, A.F.; Guerreiro, M.R.; Carrondo, M.J.; Coroadinha, A.S. Improved GaLV-TR Glycoproteins to Pseudotype Lentiviral Vectors: Impact of Viral Protease Activity in the Production of LV Pseudotypes. Mol. Ther. Methods Clin. Dev. 2019, 15, 1–8. [Google Scholar] [CrossRef]
- Ikeda, Y.; Takeuchi, Y.; Martin, F.; Cosset, F.L.; Mitrophanous, K.; Collins, M. Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 2003, 21, 569–572. [Google Scholar] [CrossRef]
- Sandrin, V.; Boson, B.; Salmon, P.; Gay, W.; Negre, D.; Le Grand, R.; Trono, D.; Cosset, F.L. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002, 100, 823–832. [Google Scholar] [CrossRef]
- Humbert, O.; Gisch, D.W.; Wohlfahrt, M.E.; Adams, A.B.; Greenberg, P.D.; Schmitt, T.M.; Trobridge, G.D.; Kiem, H.P.P. Development of Third-generation Cocal Envelope Producer Cell Lines for Robust Lentiviral Gene Transfer into Hematopoietic Stem Cells and T-cells. Mol. Ther. 2016, 24, 1237–1246. [Google Scholar] [CrossRef]
- Tijani, M.; Munis, A.M.; Perry, C.; Sanber, K.; Ferraresso, M.; Mukhopadhyay, T.; Themis, M.; Nisoli, I.; Mattiuzzo, G.; Collins, M.K.; et al. Lentivector Producer Cell Lines with Stably Expressed Vesiculovirus Envelopes. Mol. Ther. Methods Clin. Dev. 2018, 10, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Olah, Z.; Lehel, C.; Anderson, W.B.; Eiden, M.V.; Wilson, C.A. The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J. Biol. Chem. 1994, 269, 25426–25431. [Google Scholar] [CrossRef]
- O’Hara, B.; Johann, S.V.; Klinger, H.P.; Blair, D.G.; Rubinson, H.; Dunn, K.J.; Sass, P.; Vitek, S.M.; Robins, T. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 1990, 1, 119. [Google Scholar]
- Christodoulopoulos, I.; Cannon, P.M. Sequences in the Cytoplasmic Tail of the Gibbon Ape Leukemia Virus Envelope Protein That Prevent Its Incorporation into Lentivirus Vectors. J. Virol. 2001, 75, 4129–4138. [Google Scholar] [CrossRef]
- Girard-Gagnepain, A.; Amirache, F.; Costa, C.; Lévy, C.; Frecha, C.; Fusil, F.; Nègre, D.; Lavillette, D.; Cosset, F.L.; Verhoeyen, E. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014, 124, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.; Tailor, C.S.; Nouri, A.; Kabat, D. Sodium-Dependent Neutral Amino Acid Transporter Type 1 Is an Auxiliary Receptor for Baboon Endogenous Retrovirus. J. Virol. 2000, 74, 8085–8093. [Google Scholar] [CrossRef]
- Humbert, J.M.; Frecha, C.; Bouafia, F.A.; N’Guyen, T.H.; Boni, S.; Cosset, F.L.; Verhoeyen, E.; Halary, F. Measles Virus Glycoprotein-Pseudotyped Lentiviral Vectors Are Highly Superior to Vesicular Stomatitis Virus G Pseudotypes for Genetic Modification of Monocyte-Derived Dendritic Cells. J. Virol. 2012, 86, 5192–5203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Schneider, I.C.; Gallet, M.; Kneissl, S.; Buchholz, C.J. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM. Virology 2011, 413, 149–152. [Google Scholar] [CrossRef][Green Version]
- Frecha, C.; Levy, C.; Costa, C.; Negre, D.; Amirache, F.; Buckland, R.; Russell, S.J.; Cosset, F.L.; Verhoeyen, E. Measles Virus Glycoprotein-Pseudotyped Lentiviral Vector-Mediated Gene Transfer into Quiescent Lymphocytes Requires Binding to both SLAM and CD46 Entry Receptors. J. Virol. 2011, 85, 5975–5985. [Google Scholar] [CrossRef]
- Witting, S.R.; Vallanda, P.; Gamble, A.L. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther. 2013, 20, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Palomares, K.; Vigant, F.; Van Handel, B.; Pernet, O.; Chikere, K.; Hong, P.; Sherman, S.P.; Patterson, M.; An, D.S.; Lowry, W.E.; et al. Nipah Virus Envelope-Pseudotyped Lentiviruses Efficiently Target ephrinB2-Positive Stem Cell Populations In Vitro and Bypass the Liver Sink When Administered in vivo. J. Virol. 2013, 87, 2094–2108. [Google Scholar] [CrossRef]
- Hislop, J.N.; Islam, T.A.; Eleftheriadou, I.; Carpentier, D.C.J.; Trabalza, A.; Parkinson, M.; Schiavo, G.; Mazarakis, N.D. Rabies Virus Envelope Glycoprotein Targets Lentiviral Vectors to the Axonal Retrograde Pathway in Motor Neurons. J. Biol. Chem. 2014, 289, 16148–16163. [Google Scholar] [CrossRef] [PubMed]
- Mazarakis, N.D. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 2001, 10, 2109–2121. [Google Scholar] [CrossRef]
- Lentz, T.; Burrage, T.; Smith, A.; Crick, J.; Tignor, G. Is the acetylcholine receptor a rabies virus receptor? Science 1982, 215, 182–184. [Google Scholar] [CrossRef]
- Thoulouze, M.I.; Lafage, M.; Schachner, M.; Hartmann, U.; Cremer, H.; Lafon, M. The Neural Cell Adhesion Molecule Is a Receptor for Rabies Virus. J. Virol. 1998, 72, 7181–7190. [Google Scholar] [CrossRef] [PubMed]
- Tuffereau, C. Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J. 1998, 17, 7250–7259. [Google Scholar] [CrossRef]
- Mochizuki, H.; Schwartz, J.P.; Tanaka, K.; Brady, R.O.; Reiser, J. High-Titer Human Immunodeficiency Virus Type 1-Based Vector Systems for Gene Delivery into Nondividing Cells. J. Virol. 1998, 72, 8873–8883. [Google Scholar] [CrossRef]
- Sena-Esteves, M.; Tebbets, J.C.; Steffens, S.; Crombleholme, T.; Flake, A.W. Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 2004, 122, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Belot, L.; Ouldali, M.; Roche, S.; Legrand, P.; Gaudin, Y.; Albertini, A.A. Crystal structure of Mokola virus glycoprotein in its post-fusion conformation. PLoS Pathog. 2020, 16, e1008383. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.J.; Kobinger, G.P.; Passini, M.A.; Wilson, J.M.; Wolfe, J.H. Targeted Transduction Patterns in the Mouse Brain by Lentivirus Vectors Pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV Envelope Proteins. Mol. Ther. 2002, 5, 528–537. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Kutner, R.H.; Bialkowska, A.; Marino, M.P.; Klimstra, W.B.; Reiser, J. Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus. Retrovirology 2010, 7, 3. [Google Scholar] [CrossRef]
- Wang, K.S.; Kuhn, R.J.; Strauss, E.G.; Ou, S.; Strauss, J.H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 1992, 66, 4992–5001. [Google Scholar] [CrossRef]
- Rose, P.P.; Hanna, S.L.; Spiridigliozzi, A.; Wannissorn, N.; Beiting, D.P.; Ross, S.R.; Hardy, R.W.; Bambina, S.A.; Heise, M.T.; Cherry, S. Natural Resistance-Associated Macrophage Protein Is a Cellular Receptor for Sindbis Virus in Both Insect and Mammalian Hosts. Cell Host Microbe 2011, 10, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Morizono, K.; Ku, A.; Xie, Y.; Harui, A.; Kung, S.K.P.; Roth, M.D.; Lee, B.; Chen, I.S.Y. Redirecting Lentiviral Vectors Pseudotyped with Sindbis Virus-Derived Envelope Proteins to DC-SIGN by Modification of N-Linked Glycans of Envelope Proteins. J. Virol. 2010, 84, 6923–6934. [Google Scholar] [CrossRef]
- Hu, S.; Mohan Kumar, D.; Sax, C.; Schuler, C.; Akkina, R. Pseudotyping of lentiviral vector with novel vesiculovirus envelope glycoproteins derived from Chandipura and Piry viruses. Virology 2016, 488, 162–168. [Google Scholar] [CrossRef]
- Tenenhouse, H.S.; Gauthier, C.; Martel, J.; Gesek, F.A.; Coutermarsh, B.A.; Friedman, P.A. Na+-Phosphate Cotransport in Mouse Distal Convoluted Tubule Cells: Evidence for Glvr-1 and Ram-1 Gene Expression. J. Bone Miner. Res. 1998, 13, 590–597. [Google Scholar] [CrossRef]
- Bitzer, M.; Lauer, U.; Baumann, C.; Spiegel, M.; Gregor, M.; Neubert, W.J. Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry. J. Virol. 1997, 71, 5481–5486. [Google Scholar] [CrossRef]
- Okano, S.; Yonemitsu, Y.; Nagata, S.; Sata, S.; Onimaru, M.; Nakagawa, K.; Tomita, Y.; Kishihara, K.; Hashimoto, S.; Nakashima, Y.; et al. Recombinant Sendai virus vectors for activated T lymphocytes. Gene Ther. 2003, 10, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Rosales Gerpe, M.C.; van Lieshout, L.P.; Domm, J.M.; van Vloten, J.P.; Datu, J.; Ingrao, J.C.; Yu, D.L.; de Jong, J.; Moraes, T.J.; Krell, P.J.; et al. Optimized Pre-Clinical Grade Production of Two Novel Lentiviral Vector Pseudotypes for Lung Gene Delivery. Hum. Gene Ther. 2020, 31, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Halbert, C.L.; Miller, A.D. Jaagsiekte Sheep Retrovirus Envelope Efficiently Pseudotypes Human Immunodeficiency Virus Type 1-Based Lentiviral Vectors. J. Virol. 2004, 78, 2642–2647. [Google Scholar] [CrossRef]
- Rai, S.K.; Duh, F.M.; Vigdorovich, V.; Danilkovitch-Miagkova, A.; Lerman, M.I.; Miller, A.D. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc. Natl. Acad. Sci. USA 2001, 98, 4443–4448. [Google Scholar] [CrossRef] [PubMed]
- Finkelshtein, D.; Werman, A.; Novick, D.; Barak, S.; Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 2013, 110, 7306–7311. [Google Scholar] [CrossRef] [PubMed]
- Munis, A.M.; Bentley, E.M.; Takeuchi, Y. A tool with many applications: Vesicular stomatitis virus in research and medicine. Expert Opinion Biol. Therapy 2020, 1–15. [Google Scholar] [CrossRef]
- Ory, D.S.; Neugeboren, B.A.; Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 1996, 93, 11400–11406. [Google Scholar] [CrossRef]
- DePolo, N.J.; Reed, J.D.; Sheridan, P.L.; Townsend, K.; Sauter, S.L.; Jolly, D.J.; Dubensky, T.W. VSV-G Pseudotyped Lentiviral Vector Particles Produced in Human Cells Are Inactivated by Human Serum. Mol. Ther. 2000, 2, 218–222. [Google Scholar] [CrossRef]
- Brown, B.D.; Sitia, G.; Annoni, A.; Hauben, E.; Sergi, L.S.; Zingale, A.; Roncarolo, M.G.; Guidotti, L.G.; Naldini, L. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 2007, 109, 2797–2805. [Google Scholar] [CrossRef]
- Munis, A.M.; Mattiuzzo, G.; Bentley, E.M.; Collins, M.K.; Eyles, J.E.; Takeuchi, Y. Use of Heterologous Vesiculovirus G Proteins Circumvents the Humoral Anti-envelope Immunity in Lentivector-Based In Vivo Gene Delivery. Mol. Ther. Nucleic Acids 2019, 17, 126–137. [Google Scholar] [CrossRef]
- Amirache, F.; Lévy, C.; Costa, C.; Mangeot, P.E.E.; Torbett, B.E.; Wang, C.X.; Nègre, D.; Cosset, F.L.L.; Verhoeyen, E. Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood 2014, 123, 1422–1424. [Google Scholar] [CrossRef]
- Kim, S.H.; Lim, K.I. Stability of retroviral vectors against ultracentrifugation is determined by the viral internal core and envelope proteins used for pseudotyping. Mol. Cells 2017, 40, 339–345. [Google Scholar] [CrossRef]
- Friedmann, T.; Yee, J. Pseudotyped Retroviral Vectors for Studies of Human Gene Therapy. Nat. Med. 1995, 1, 275. [Google Scholar] [CrossRef] [PubMed]
- Ichim, C.V.; Wells, R.A. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation. J. Transl. Med. 2011, 9, 137. [Google Scholar] [CrossRef]
- Trobridge, G.D.; Wu, R.A.; Hansen, M.; Ironside, C.; Watts, K.L.; Olsen, P.; Beard, B.C.; Kiem, H.P.P. Cocal-pseudotyped Lentiviral Vectors Resist Inactivation by Human Serum and Efficiently Transduce Primate Hematopoietic Repopulating Cells. Mol. Ther. 2010, 18, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Munis, A.M.; Tijani, M.; Hassall, M.; Mattiuzzo, G.; Collins, M.K.; Takeuchi, Y. Characterization of antibody interactions with the G protein of vesicular stomatitis virus Indiana strain and other vesiculovirus G proteins. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.F.; Vandergriff, J.; Nathwani, A.; Nienhuis, A.W.; Vanin, E.F. Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood 2000, 96, 1206–1214. [Google Scholar] [CrossRef]
- Strang, B.L.; Ikeda, Y.; Cosset, F.L.; Collins, M.K.; Takeuchi, Y. Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Ther. 2004, 11, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Gatlin, J.; Melkus, M.W.; Padgett, A.; Kelly, P.F.; Garcia, J.V. Engraftment of NOD/SCID Mice with Human CD34+Cells Transduced by Concentrated Oncoretroviral Vector Particles Pseudotyped with the Feline Endogenous Retrovirus (RD114) Envelope Protein. J. Virol. 2001, 75, 9995–9999. [Google Scholar] [CrossRef]
- Ward, M.; Sattler, R.; Grossman, I.; Bell, A.J.; Skerrett, D.; Baxi, L.; Bank, A. A stable murine-based RD114 retroviral packaging line efficiently transduces human hematopoietic cells. Mol. Ther. 2003, 8, 804–812. [Google Scholar] [CrossRef]
- Bell, A.J.; Fegen, D.; Ward, M.; Bank, A. RD114 envelope proteins provide an effective and versatile approach to pseudotype lentiviral vectors. Exp. Biol. Med. 2010, 235, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Ghani, K.; Wang, X.; de Campos-Lima, P.O.; Olszewska, M.; Kamen, A.; Rivière, I.; Caruso, M. Efficient Human Hematopoietic Cell Transduction Using RD114- and GALV-Pseudotyped Retroviral Vectors Produced in Suspension and Serum-Free Media. Hum. Gene Ther. 2009, 20, 966–974. [Google Scholar] [CrossRef]
- Müller, S.; Bexte, T.; Gebel, V.; Kalensee, F.; Stolzenberg, E.; Hartmann, J.; Koehl, U.; Schambach, A.; Wels, W.S.; Modlich, U.; et al. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Front. Immunol. 2020, 10. [Google Scholar] [CrossRef]
- Relander, T.; Johansson, M.; Olsson, K.; Ikeda, Y.; Takeuchi, Y.; Collins, M.; Richter, J. Gene Transfer to Repopulating Human CD34+ Cells Using Amphotropic-, GALV-, or RD114-Pseudotyped HIV-1-Based Vectors from Stable Producer Cells. Mol. Ther. 2005, 11, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, M.; Homma, M. Trypsin action on the growth of Sendai virus in tissue culture cells. IV. Evidence for activation of sendai virus by cleavage of a glycoprotein. J. Virol. 1976, 18, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Homma, M.; Ohuchi, M. Trypsin Action on the Growth of Sendai Virus in Tissue Culture Cells III. Structural Difference of Sendai Viruses Grown in Eggs and Tissue Culture Cells. J. Virol. 1973, 12, 1457–1465. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kasaraneni, N.; Chamoun-Emanuelli, A.M.; Wright, G.A.; Chen, Z. A simple strategy for retargeting lentiviral vectors to desired cell types via a disulfide-bond-forming protein-peptide pair. Sci. Rep. 2018, 8, 10990. [Google Scholar] [CrossRef]
- Milani, M.; Annoni, A.; Bartolaccini, S.; Biffi, M.; Russo, F.; Di Tomaso, T.; Raimondi, A.; Lengler, J.; Holmes, M.C.; Scheiflinger, F.; et al. Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Mol. Med. 2017, 9, 1558–1573. [Google Scholar] [CrossRef]
- Lu, X.; Humeau, L.; Slepushkin, V.; Binder, G.; Yu, Q.; Slepushkina, T.; Chen, Z.; Merling, R.; Davis, B.; Chang, Y.N.; et al. Safe two-plasmid production for the first clinical lentivirus vector that achieves >99% transduction in primary cells using a one-step protocol. J. Gene Med. 2004, 6, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Naldini, L.; Blomer, U.; Gage, F.H.; Trono, D.; Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 1996, 93, 11382–11388. [Google Scholar] [CrossRef]
- Ahuja, D.; Sáenz-Robles, M.T.; Pipas, J.M. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 2005. [Google Scholar] [CrossRef]
- Ferreira, C.B.; Sumner, R.P.; Rodriguez-Plata, M.T.; Rasaiyaah, J.; Milne, R.S.; Thrasher, A.J.; Qasim, W.; Towers, G.J. Lentiviral Vector Production Titer Is Not Limited in HEK293T by Induced Intracellular Innate Immunity. Mol. Ther. Methods Clin. Dev. 2020, 17, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Merten, O.W.; Charrier, S.; Laroudie, N.; Fauchille, S.; Dugué, C.; Jenny, C.; Audit, M.; Zanta-Boussif, M.A.; Chautard, H.; Radrizzani, M.; et al. Large-scale manufacture and characterization of a lentiviral vector produced for clinical Ex vivo gene therapy application. Hum. Gene Ther. 2011, 22, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Ausubel, L.J.; Hall, C.; Sharma, A.; Shakeley, R.; Lopez, P.; Quezada, V.; Couture, S.; Laderman, K.; McMahon, R.; Huang, P.; et al. Production of CGMP-grade lentiviral vectors. BioProcess Int. 2012, 10, 32–43. [Google Scholar]
- Bauler, M.; Roberts, J.K.; Wu, C.C.; Fan, B.; Ferrara, F.; Yip, B.H.; Diao, S.; Kim, Y.I.; Moore, J.; Zhou, S.; et al. Production of Lentiviral Vectors Using Suspension Cells Grown in Serum-free Media. Mol. Ther. Methods Clin. Dev. 2020, 17, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, S.; Lanthier, S.; Transfiguracion, J.; Durocher, Y.; Henry, O.; Kamen, A. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J. Gene Med. 2009, 11, 868–876. [Google Scholar] [CrossRef]
- Iammarino, M.; Nti-Gyabaah, J.; Chandler, M.; Roush, D.; Göklen, K. Impact of Cell Density and Viability on Primary Clarification of Mammalian Cell Broth an Analysis Using Disc-Stack Centrifugation and Charged Depth Filtration; Technical Report; Bioprocess International: New York, NY, USA, 2007. [Google Scholar]
- al Yacoub, N.; Romanowska, M.; Haritonova, N.; Foerster, J. Optimized production and concentration of lentiviral vectors containing large inserts. J. Gene Med. 2007, 9, 579–584. [Google Scholar] [CrossRef]
- Sastry, L.; Xu, Y.; Cooper, R.; Pollok, K.; Cornetta, K. Evaluation of Plasmid DNA Removal from Lentiviral Vectors by Benzonase Treatment. Hum. Gene Ther. 2004, 15, 221–226. [Google Scholar] [CrossRef]
- Shaw, A.; Bischof, D.; Jasti, A.; Ernstberger, A.; Hawkins, T.; Cornetta, K. Using pulmozyme dnase treatment in lentiviral vector production. Hum. Gene Ther. Methods 2012, 23, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Grassman, E.; Higashimoto, T.; Rohrbach, J.; Hall, D.; Williams, D.A.; Reeves, L.; Malik, P. Pulmozyme® Treatment of Vectors Produced by Transient Transfection Reduces Residual Plasmid DNA on Human CD34+ Hematopoietic Progenitor Cells without Loss of Transduction or Engraftment Efficiency. Blood 2008, 112, 4626. [Google Scholar] [CrossRef]
- Tuvesson, O.; Uhe, C.; Rozkov, A.; Lüllau, E. Development of a generic transient transfection process at 100 L scale. Cytotechnology 2008, 56, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Tom, R.; Perret, S.; Moussouami, P.; L’Abbé, D.; St-Laurent, G.; Durocher, Y. A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 2011, 55, 44–51. [Google Scholar] [CrossRef]
- Lesch, H.; Valkama, A.; Malinen, J.; Lipponen, E.; Leinonen, H. Large Scale Pei-Mediated Plasmid Transfection. U.S. Patent US2020165557, 28 May 2020. [Google Scholar]
- Chen, C.; Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 1987, 7, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Rhizobium, G.P.E. Complete Genome Sequence of the Sesbania Symbiont and Rice. Nucleic Acids Res. 2013, 1, 13–14. [Google Scholar] [CrossRef]
- Kuroda, H.; Kutner, R.H.; Bazan, N.G.; Reiser, J. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection. J. Virol. Methods 2009, 157, 113–121. [Google Scholar] [CrossRef]
- Guo, L.; Wang, L.; Yang, R.; Feng, R.; Li, Z.; Zhou, X.; Dong, Z.; Ghartey-Kwansah, G.; Xu, M.M.; Nishi, M.; et al. Optimizing conditions for calcium phosphate mediated transient transfection. Saudi J. Biol. Sci. 2017, 24, 622–629. [Google Scholar] [CrossRef]
- Girard, P.; Porte, L.; Berta, T.; Jordan, M.; Wurm, F.M. Calcium phosphate transfection optimization for serum-free suspension culture. Cytotechnology 2001, 35, 175–180. [Google Scholar] [CrossRef]
- Fassati, A.; Takahara, Y.; Walsh, F.S.; Dickson, G. Production of high titre helper-free recombinant retroviral vectors by lipofection. Nucleic Acids Res. 1994, 22, 1117–1118. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, T.; Larcher, L.M.; Ma, L.; Veedu, R.N. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules 2018, 23, 2564. [Google Scholar] [CrossRef]
- Invitrogen. Improve Lentiviral Production Using Lipofectamine 3000 Reagent, Application Note, Invitrogen. 2015. Available online: https://www.thermofisher.com/content/dam/LifeTech/global/life-sciences/CellCultureandTransfection/pdfs/Lipofectamine3000-LentiVirus-AppNote-Global-FHR.pdf (accessed on 7 January 2021).
- Boussif, O.; LezoualC’H, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef]
- Tang, Y.; Garson, K.; Li, L.; Vanderhyden, B.C. Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Oncol. Lett. 2015, 9, 55–62. [Google Scholar] [CrossRef]
- Lesch, H.P.; Turpeinen, S.; Niskanen, E.A.; Mähönen, A.J.; Airenne, K.J.; Ylä-Herttuala, S. Generation of lentivirus vectors using recombinant baculoviruses. Gene Ther. 2008, 15, 1280–1286. [Google Scholar] [CrossRef]
- Lesch, H.P.; Laitinen, A.; Peixoto, C.; Vicente, T.; Makkonen, K.E.; Laitinen, L.; Pikkarainen, J.T.; Samaranayake, H.; Alves, P.M.; Carrondo, M.J.; et al. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Ther. 2011, 18, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Wheeler, J.X.; Thorpe, R.; Collins, M.; Takeuchi, Y.; Zhao, Y. Mass spectrometry analysis reveals differences in the host cell protein species found in pseudotyped lentiviral vectors. Biologicals 2018, 52, 59–66. [Google Scholar] [CrossRef]
- Tomás, H.A.; Rodrigues, A.F.; Carrondo, M.J.; Coroadinha, A.S. LentiPro26: Novel stable cell lines for constitutive lentiviral vector production. Sci. Rep. 2018, 8, 5271. [Google Scholar] [CrossRef]
- Stornaiuolo, A.; Piovani, B.M.; Bossi, S.; Zucchelli, E.; Corna, S.; Salvatori, F.; Mavilio, F.; Bordignon, C.; Rizzardi, G.P.; Bovolenta, C. RD2-MolPack- Chim3, a Packaging Cell Line for Stable Production of Lentiviral Vectors for Anti-HIV Gene Therapy. Hum. Gene Ther. Methods 2013, 24, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Marin, V.; Stornaiuolo, A.; Piovan, C.; Corna, S.; Bossi, S.; Pema, M.; Giuliani, E.; Scavullo, C.; Zucchelli, E.; Bordignon, C.; et al. RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope. Mol. Ther. Methods Clin. Dev. 2016, 3, 16033. [Google Scholar] [CrossRef] [PubMed]
- Throm, R.E.; Ouma, A.A.; Zhou, S.; Chandrasekaran, A.; Lockey, T.; Greene, M.; De Ravin, S.S.; Moayeri, M.; Malech, H.L.; Sorrentino, B.P.; et al. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 2009, 113, 5104–5110. [Google Scholar] [CrossRef] [PubMed]
- Wielgosz, M.M.; Kim, Y.S.; Carney, G.G.; Zhan, J.; Reddivari, M.; Coop, T.; Heath, R.J.; Brown, S.A.; Nienhuis, A.W. Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy. Mol. Ther. Methods Clin. Dev. 2015, 2, 14063. [Google Scholar] [CrossRef]
- Broussau, S.; Jabbour, N.; Lachapelle, G.; Durocher, Y.; Tom, R.; Transfiguracion, J.; Gilbert, R.; Massie, B. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol. Ther. 2008, 16, 500–507. [Google Scholar] [CrossRef]
- Schucht, R.; Coroadinha, A.S.; Zanta-Boussif, M.A.; Verhoeyen, E.; Carrondo, M.J.; Hauser, H.; Wirth, D. A New Generation of Retroviral Producer Cells: Predictable and Stable Virus Production by Flp-Mediated Site-Specific Integration of Retroviral Vectors. Mol. Ther. 2006, 14, 285–292. [Google Scholar] [CrossRef]
- Coroadinha, A.S.; Schucht, R.; Gama-Norton, L.; Wirth, D.; Hauser, H.; Carrondo, M.J. The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: Predictability and efficiency by transgene exchange. J. Biotechnol. 2006, 124, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Pallant, C.; Sampson, C.J.; Boiti, A.; Johnson, S.; Brazauskas, P.; Hardwicke, P.; Marongiu, M.; Marinova, V.M.; Carmo, M.; et al. Rapid Lentiviral Vector Producer Cell Line Generation Using a Single DNA Construct. Mol. Ther. Methods Clin. Dev. 2020, 19, 47–57. [Google Scholar] [CrossRef]
- Sabine, J.; Celeste, P.; Eirini, V.; Conrad, V. Stable Cell Lines For Retroviral Production. WIPO Patent WO2017/089308Al, 1 June 2017. [Google Scholar]
- Kara, B. Lentiviral Vector Manufacturing-Challenges and Solutions; Presentation: Cardiff, UK, 2017. [Google Scholar]
- Rodrigues, A.F.; Formas-Oliveira, A.S.; Guerreiro, M.R.; Tomás, H.A.; Alves, P.M.; Coroadinha, A.S. Single-step cloning-screening method: A new tool for developing and studying high-titer viral vector producer cells. Gene Ther. 2015, 22, 685–695. [Google Scholar] [CrossRef][Green Version]
- Nie, Z.; Bren, G.D.; Vlahakis, S.R.; Schimnich, A.A.; Brenchley, J.M.; Trushin, S.A.; Warren, S.; Schnepple, D.J.; Kovacs, C.M.; Loutfy, M.R.; et al. Human Immunodeficiency Virus Type 1 Protease Cleaves Procaspase 8 in vivo. J. Virol. 2007, 81, 6947–6956. [Google Scholar] [CrossRef]
- Maunder, H.E.; Wright, J.; Kolli, B.R.; Vieira, C.R.; Mkandawire, T.T.; Tatoris, S.; Kennedy, V.; Iqball, S.; Devarajan, G.; Ellis, S.; et al. Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Stewart, H.J.; Leroux-Carlucci, M.A.; Sion, C.J.M.; Mitrophanous, K.A.; Radcliffe, P.A. Development of inducible EIAV-based lentiviral vector packaging and producer cell lines. Gene Ther. 2009, 16, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Farson, D.; Witt, R.; McGuinness, R.; Dull, T.; Kelly, M.; Song, J.; Radeke, R.; Bukovsky, A.; Consiglio, A.; Naldini, L. A New-Generation Stable Inducible Packaging Cell Line for Lentiviral Vectors. Hum. Gene Ther. 2001, 12, 981–997. [Google Scholar] [CrossRef] [PubMed]
- Merten, O.W.; Cruz, P.E.; Rochette, C.; Geny-Fiamma, C.; Bouquet, C.; Gonçalves, D.; Danos, O.; Carrondo, M.J.T. Comparison of Different Bioreactor Systems for the Production of High Titer Retroviral Vectors. Biotechnol. Prog. 2001, 17, 326–335. [Google Scholar] [CrossRef]
- Kutner, R.H.; Puthli, S.; Marino, M.P.; Reiser, J. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography. BMC Biotechnol. 2009, 9, 10. [Google Scholar] [CrossRef]
- Tinch, S.; Szczur, K.; Swaney, W.; Reeves, L.; Witting, S.R. A scalable lentiviral vector production and purification method using mustang Q chromatography and tangential flow filtration. In Methods in Molecular Biology; Humana Press Inc.: Totoya, NJ, USA, 2019; Volume 1937, pp. 135–153. [Google Scholar] [CrossRef]
- Greene, M.R.; Lockey, T.; Mehta, P.K.; Kim, Y.S.S.; Eldridge, P.W.; Gray, J.T.; Sorrentino, B.P. Transduction of Human CD34 + Repopulating Cells with a Self-Inactivating Lentiviral Vector for SCID-X1 Produced at Clinical Scale by a Stable Cell Line. Hum. Gene Ther. Methods 2012, 23, 297–308. [Google Scholar] [CrossRef]
- Gándara, C.; Affleck, V.; Stoll, E.A. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice. Hum. Gene Ther. Methods 2018, 29, 1–15. [Google Scholar] [CrossRef]
- McCarron, A.; Donnelley, M.; McIntyre, C.; Parsons, D. Transient Lentiviral Vector Production Using a Packed-Bed Bioreactor System. Hum. Gene Ther. Methods 2019, 30, 93–101. [Google Scholar] [CrossRef]
- Lesch, H.P. Back to the future: Where are we taking lentiviral vector manufacturing? Cell Gene Ther. Insights 2018, 4, 1137–1150. [Google Scholar] [CrossRef]
- Valkama, A.J.; Leinonen, H.M.; Lipponen, E.M.; Turkki, V.; Malinen, J.; Heikura, T.; Ylä-Herttuala, S.; Lesch, H.P. Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Ther. 2018, 25, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Valkama, A.J.; Oruetxebarria, I.; Lipponen, E.M.; Leinonen, H.M.; Käyhty, P.; Hynynen, H.; Turkki, V.; Malinen, J.; Miinalainen, T.; Heikura, T.; et al. Development of Large-Scale Downstream Processing for Lentiviral Vectors. Mol. Ther. Methods Clin. Dev. 2020, 17, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Bollmann, F.; Riethmüller, D.; Johansson, E.; Tappe, A. Optimization of HEK293T Suspension Cultivation with a DoE-Approach in Ambr® 15 Microbioreactor. Advancing Manufacture of Cell and Gene Therapies VI, 2019. Available online: https://dc.engconfintl.org/cell_gene_therapies_vi/16 (accessed on 29 July 2020).
- Matet, A.; Kostic, C.; Bemelmans, A.P.; Moulin, A.; Rosolen, S.G.; Martin, S.; Mavilio, F.; Amirjanians, V.; Stieger, K.; Lorenz, B.; et al. Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Transl. Res. 2017, 188, 40–57.e4. [Google Scholar] [CrossRef]
- Rout-Pitt, N.; McCarron, A.; McIntyre, C.; Parsons, D.; Donnelley, M. Large-scale production of lentiviral vectors using multilayer cell factories. J. Biol. Methods 2018, 5, 90. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, H.M.; Lepola, S.; Lipponen, E.M.; Heikura, T.; Koponen, T.; Parker, N.; Ylä-Herttuala, S.; Lesch, H.P. Benchmarking of Scale-X Bioreactor System in Lentiviral and Adenoviral Vector Production. Hum. Gene Ther. 2020, 31, 376–384. [Google Scholar] [CrossRef]
- Wu, S.C.S.C.; Huang, G.L.G.Y.L.; Liu, J.H.J.H. Production of retrovirus and adenovirus vectors for gene therapy: A comparative study using microcarrier and stationary cell culture. Biotechnol. Prog. 2002, 18, 617–622. [Google Scholar] [CrossRef]
- Witting, S.R.; Jasti, A.; Dolan, S.; Cornetta, K. 46. Production of Lentivirus by Transient Transfection of HEK 293T Grown on Spherical, Polystyrene Microcarriers. Mol. Ther. 2009, 17, S19. [Google Scholar] [CrossRef]
- Yamaji, H.; Fukuda, H. Growth and death behaviour of anchorage-independent animal cells immobilized within porous support matrices. Appl. Microbiol. Biotechnol. 1992, 37, 244–251. [Google Scholar] [CrossRef]
- Lesch, H.P.; Heikkilä, K.M.; Lipponen, E.M.; Valonen, P.; Müller, A.; Räsänen, E.; Tuunanen, T.; Hassinen, M.M.; Parker, N.; Karhinen, M.; et al. Process Development of Adenoviral Vector Production in Fixed Bed Bioreactor: From Bench to Commercial Scale. Hum. Gene Ther. 2015, 26, 560–571. [Google Scholar] [CrossRef]
- Wang, X.; Olszewska, M.; Qu, J.; Wasielewska, T.; Bartido, S.; Hermetet, G.; Sadelain, M.; Rivière, I. Large-scale clinical-grade retroviral vector production in a fixed-bed bioreactor. J. Immunother. 2015, 38, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Baradez, M.O.; Churchwell, J.; Evie, I.; Dewhirst, O.; Thompson, S.; O’grady, C.; Williams, T.; Sanches, R.; Davies, L.; Nimmo, R.; et al. Process Analytical Technology Strategy For Lentiviral Manufacture Real-Time Monitoring of Lentiviral Manufacture; Technical Report; Cell and Gene Therapy Catapult: London, UK, 2020. [Google Scholar]
- Powers, A.D.; Drury, J.E.; Hoehamer, C.F.; Lockey, T.D.; Meagher, M.M. Lentiviral Vector Production from a Stable Packaging Cell Line Using a Packed Bed Bioreactor. Mol. Ther. Methods Clin. Dev. 2020, 19, 1–13. [Google Scholar] [CrossRef]
- Segura, M.M.; Garnier, A.; Durocher, Y.; Coelho, H.; Kamen, A. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol. Bioeng. 2007, 98, 789–799. [Google Scholar] [CrossRef] [PubMed]
- PALL. White-Paper USD3244. Choice of Upstream Bioreactor Technologies for Industrial Scale Viral Manufacturing; Technical Report; PALL: Port Washington, NY, USA, 2018. [Google Scholar]
- Barrett, T.A.; Wu, A.; Zhang, H.; Levy, M.S.; Lye, G.J. Microwell engineering characterization for mammalian cell culture process development. Biotechnol. Bioeng. 2010, 105, 260–275. [Google Scholar] [CrossRef]
- Bareither, R.; Pollard, D. A review of advanced small-scale parallel bioreactor technology for accelerated process development: Current state and future need. Biotechnol. Prog. 2011, 27, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Marceau, N.; Gasmi, M. Scalable Lentiviral Vector Production System Compatible with Industrial Pharmaceutical Applications. EP Patent 2012/073645, 26 November 2011. [Google Scholar]
- Manceur, A.P.; Kim, H.; Misic, V.; Andreev, N.; Dorion-Thibaudeau, J.; Lanthier, S.; Bernier, A.; Tremblay, S.; Gélinas, A.M.; Broussau, S.; et al. Scalable Lentiviral Vector Production Using Stable HEK293SF Producer Cell Lines. Hum. Gene Ther. Methods 2017, 28, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, D.M.; Rodenbrock, A.; Lanthier, S.; Burney, E.; Spanjaard, R.; Manceur, A. Continuous Perfusion with a Stable Producer HEK293 Cell Line for Scaling Up Lentiviral Vector Production, 2020. In Proceedings of the ASGCT 23rd, Poster Presentation. 12–15 May 2020. Available online: https://www.asgct.org/global/documents/asgct20_abstracts_may8?_zs=S2i4b&_zl=U9052 (accessed on 29 July 2020).
- Pollock, J.; Ho, S.V.; Farid, S.S. Fed-batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty. Biotechnol. Bioeng. 2013, 110, 206–219. [Google Scholar] [CrossRef]
- Andreadis, S.; Palsson, B.O. Coupled effects of polybrene and calf serum on the efficiency of retroviral transduction and the stability of retroviral vectors. Hum. Gene Ther. 1997, 8, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Carmo, M.; Alves, A.; Rodrigues, A.F.; Coroadinha, A.S.; Carrondo, M.J.T.; Alves, P.M.; Cruz, P.E. Stabilization of gammaretroviral and lentiviral vectors: From production to gene transfer. J. Gene Med. 2009, 11, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Mekkaoui, L.; Parekh, F.; Kotsopoulou, E.; Darling, D.; Dickson, G.; Cheung, G.W.; Chan, L.; MacLellan-Gibson, K.; Mattiuzzo, G.; Farzaneh, F.; et al. Lentiviral Vector Purification Using Genetically Encoded Biotin Mimic in Packaging Cell. Mol. Ther. Methods Clin. Dev. 2018, 11, 155–165. [Google Scholar] [CrossRef]
- Yu, X.; Li, M.; du Jeu, X.d.M. 462. Serum Free Clinical Grade Large Scale Lentiviral Production System for Gene Therapy Application. Mol. Ther. 2016, 24, S183. [Google Scholar] [CrossRef]
- Oberbek, A.; Matasci, M.; Hacker, D.L.; Wurm, F.M. Generation of stable, high-producing cho cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol. Bioeng. 2011, 108, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Do Minh, A.; Tran, M.Y.; Kamen, A.A. Lentiviral Vector Production in Suspension Culture Using Serum-Free Medium for the Transduction of CAR-T Cells. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2020; Volume 2086, pp. 77–83. [Google Scholar] [CrossRef]
- Sakoda, T.; Kasahara, N.; Hamamori, Y.; Kedes, L. A High-Titer Lentiviral Production System Mediates Efficient Transduction of Differentiated Cells Including Beating Cardiac Myocytes. J. Mol. Cell. Cardiol. 1999, 31, 2037–2047. [Google Scholar] [CrossRef]
- Laughlin, M.A.; Zeichner, S.; Kolson, D.; Alwine, J.C.; Seshamma, T.; Pomerantz, R.J.; Gonzalez-Scarano, F. Sodium Butyrate Treatment of Cells Latently Infected with HIV-1 Results in the Expression of Unspliced Viral RNA. Virology 1993, 196, 496–505. [Google Scholar] [CrossRef]
- Chen, Y.; Ott, C.J.; Townsend, K.; Subbaiah, P.; Aiyar, A.; Miller, W.M. Cholesterol supplementation during production increases the infectivity of retroviral and lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Biochem. Eng. J. 2009, 44, 199–207. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Hildreth, J.E.K. Evidence for Budding of Human Immunodeficiency Virus Type 1 Selectively from Glycolipid-Enriched Membrane Lipid Rafts. J. Virol. 2000, 74, 3264–3272. [Google Scholar] [CrossRef]
- van Til, N.P.; Heutinck, K.M.; van der Rijt, R.; Paulusma, C.C.; van Wijland, M.; Markusic, D.M.; Oude Elferink, R.P.; Seppen, J. Alteration of viral lipid composition by expression of the phospholipid floppase ABCB4 reduces HIV vector infectivity. Retrovirology 2008, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Gélinas, J.F.; Davies, L.A.; Gill, D.R.; Hyde, S.C. Assessment of selected media supplements to improve F/HN lentiviral vector production yields. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Ellis, B.L.; Potts, P.R.; Porteus, M.H. Creating higher titer lentivirus with caffeine. Hum. Gene Ther. 2011, 22, 93–100. [Google Scholar] [CrossRef]
- Holic, N.; Seye, A.K.; Majdoul, S.; Martin, S.; Merten, O.W.; Galy, A.; Fenard, D. Influence of mildly acidic pH conditions on the production of lentiviral and retroviral vectors. Hum. Gene Ther. Clin. Dev. 2014, 25, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.I.; Coroadinha, A.S.; Merten, O.W.; Alves, P.M. Improving retroviral vectors production: Role of carbon sources in lipid biosynthesis. J. Biotechnol. 2008, 138, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.S.; Cavaco, D.G.; Faria, T.Q.; Alves, P.M.; Carrondo, M.J.T.; Peixoto, C. Advances in Lentivirus Purification. Biotechnol. J. 2020, 2000019. [Google Scholar] [CrossRef] [PubMed]
- Olgun, H.B.; Tasyurek, H.M.; Sanlioglu, A.D.; Sanlioglu, S. High-Grade Purification of Third-Generation HIV-Based Lentiviral Vectors by Anion Exchange Chromatography for Experimental Gene and Stem Cell Therapy Applications. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2018; Volume 1879, pp. 347–365. [Google Scholar] [CrossRef]
- Reeves, L.; Cornetta, K. Clinical retroviral vector production: Step filtration using clinically approved filters improves titers. Gene Ther. 2000, 7. [Google Scholar] [CrossRef][Green Version]
- Raghavan, B.; Collins, M.; Walls, S.; Lambropoulos, A.; Bergheim-Pietza, S. Optimizing the clarification of industrial scale viral vector culture for gene therapy. Cell Gene Ther. Insights 2019, 5, 1311–1322. [Google Scholar] [CrossRef]
- Khanal, O.; Singh, N.; Traylor, S.J.; Xu, X.; Ghose, S.; Li, Z.J.; Lenhoff, A.M. Contributions of depth filter components to protein adsorption in bioprocessing. Biotechnol. Bioeng. 2018, 115, 1938–1948. [Google Scholar] [CrossRef] [PubMed]
- Yigzaw, Y.; Piper, R.; Tran, M.; Shukla, A.A. Exploitation of the Adsorptive Properties of Depth Filters for Host Cell Protein Removal during Monoclonal Antibody Purification. Biotechnol. Prog. 2006, 22, 288–296. [Google Scholar] [CrossRef]
- Labisch, J.J.; Bollmann, F.; Wolff, M.W.; Pflanz, K. A new simplified clarification approach for lentiviral vectors using diatomaceous earth improves throughput and safe handling. J. Biotechnol. 2021, 326, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Fedosyuk, S.; Merritt, T.; Peralta-Alvarez, M.P.; Morris, S.J.; Lam, A.; Laroudie, N.; Kangokar, A.; Wright, D.; Warimwe, G.M.; Angell-Manning, P.; et al. Simian adenovirus vector production for early-phase clinical trials: A simple method applicable to multiple serotypes and using entirely disposable product-contact components. Vaccine 2019, 37, 6951–6961. [Google Scholar] [CrossRef]
- Marques, J.; Dillingham, M.; Beckett, P.; Cherradi, Y.; Paun, A.; Boumlic, A.; Carter, P. Optimizing Viral Vector Manufacturing for Gene Therapy. Pharmaceutical Technology Biologics and Sterile Drug Manufacturing eBook; Pharmaceutical Technology: Cranbury, NJ, USA, 2020. [Google Scholar]
- De Las Mercedes Segura, M.; Kamen, A.; Garnier, A. Purification of retrovirus particles using heparin affinity chromatography. Methods Mol. Biol. 2008, 434, 1–11. [Google Scholar] [CrossRef]
- Bandeira, V.; Peixoto, C.; Rodrigues, A.F.; Cruz, P.E.; Alves, P.M.; Coroadinha, A.S.; Carrondo, M.J.T. Downstream Processing of Lentiviral Vectors: Releasing Bottlenecks. Hum. Gene Ther. Methods 2012, 23, 255–263. [Google Scholar] [CrossRef]
- Williams, T.; Goodyear, O.; Davies, L.; Knevelman, C.; Bransby, M.; Mitrophanous, K.; Miskin, J. Cell & Gene Therapy Insights Lentiviral vector manufacturing process enhancement utilizing TFDF™ technology. Cell Gene Ther. Insights 2020, 6, 455–467. [Google Scholar] [CrossRef]
- Cornetta, K.; Matheson, L.; Ballas, C. Retroviral vector production in the National Gene Vector Laboratory at Indiana University. Gene Ther. 2005, 12, S28–S35. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nina, F.; Clive, G.; Joseph, V.H.; Pratik, J.; Debbie, K.; John, M.; Alan, M.; Josefina, N.; Steve, P.; Steven, P.; et al. Key Considerations in Gene Therapy Manufacturing for Commercialization; Cell Culture Dish: Port Washington, NY, USA, 2018. [Google Scholar]
- Hermens, W.T.; Brake, O.T.; Dijkhuizen, P.A.; Sonnemans, M.A.; Grimm, D.; Kleinschmidt, J.A.; Verhaagen, J. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum. Gene Ther. 1999, 10, 1885–1891. [Google Scholar] [CrossRef]
- Ugai, H.; Yamasaki, T.; Hirose, M.; Inabe, K.; Kujime, Y.; Terashima, M.; Liu, B.; Tang, H.; Zhao, M.; Murata, T.; et al. Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration. Biochem. Biophys. Res. Commun. 2005, 331, 1053–1060. [Google Scholar] [CrossRef]
- Transfiguracion, J.; Ansorge, S.; Tran, R.; Kamen, A. 361. Purification of Lentivirus Vector by Iodixanol Self-Forming Density Gradient. Mol. Ther. 2010, 18, S140. [Google Scholar] [CrossRef]
- Doux, J.M.L.; Morgan, J.R.; Yarmush, M.L. Removal of proteoglycans increases efficiency of retroviral gene transfer. Biotechnol. Bioeng. 1998, 58, 23–34. [Google Scholar] [CrossRef]
- Bess, J.W.; Gorelick, R.J.; Bosche, W.J.; Henderson, L.E.; Arthur, L.O. Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology 1997, 230, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Seppen, J.; Barry, S.; Lam, G.M.; Ramesh, N.; Osborne, W.R. Retroviral preparations derived from PA317 packaging cells contain inhibitors that copurify with viral particles and are devoid of viral vector RNA. Hum. Gene Ther. 2000, 11, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Braas, G.; Searle, P.F.; Slater, N.K.; Lyddiatt, A. Strategies for the isolation and purification of retroviral vectors for gene therapy. Bioseparation 1996, 6, 211–228. [Google Scholar] [PubMed]
- Baekelandt, V.; Eggermont, K.; Michiels, M.; Nuttin, B.; Debyser, Z. Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther. 2003, 10, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.; Witte, O.; Pincus, T.; Weissman, I.L. Retrovirus purification: Method that conserves envelope glycoprotein and maximizes infectivity. J. Virol. 1978, 25. [Google Scholar] [CrossRef]
- Jiang, W.; Hua, R.; Wei, M.; Li, C.; Qiu, Z.; Yang, X.; Zhang, C. An optimized method for high-titer lentivirus preparations without ultracentrifugation. Sci. Rep. 2015, 5, 13875. [Google Scholar] [CrossRef]
- Kohno, T.; Mohan, S.; Goto, T.; Morita, C.; Nakano, T.; Hong, W.; Sangco, J.C.E.; Morimatsu, S.; Sano, K. A new improved method for the concentration of HIV-1 infective particles. J. Virol. Methods 2002, 106, 167–173. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, H.Q.; Cleghorn, G.; Gobe, G.; West, M.; Wei, M.Q. A highly efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors. Gene Ther. 2001, 8, 1745–1751. [Google Scholar] [CrossRef][Green Version]
- Lee, J.Y.; Lee, H.H. A new chemical complex can rapidly concentrate lentivirus and significantly enhance gene transduction. Cytotechnology 2018, 70, 193–201. [Google Scholar] [CrossRef] [PubMed]
- L, P.; H, Y.; FL, C.; SJ, R.; KW, P. Concentration of viral vectors by co-precipitation with calcium phosphate. J. Gene Med. 2001, 3. [Google Scholar] [CrossRef]
- WHO. WHO Requirements for the Use of Animal Cells asin vitroSubstrates for the Production of Biologicals (Requirements for Biological Susbstances No. 50). Biologicals 1998, 26, 175–193. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry-Characterization and Qualification of Cell Substrates and Other Biological Materials Used in the Production of Viral Vaccines for Infectious Disease Indications; Technical Report; FDA: Rockville, MD, USA, 2010. [Google Scholar]
- Konz, J.O.; Lee, A.L.; Lewis, J.A.; Sagar, S.L. Development of a purification process for adenovirus: Controlling virus aggregation to improve the clearance of host cell DNA. Biotechnol. Prog. 2005, 21, 466–472. [Google Scholar] [CrossRef]
- Oxford Biomedica. SecNuc for AAV, Lentiviral Vectors and Adenovirus; Oxford Biomedica: Oxford, UK, 2019. [Google Scholar]
- Nian, R.; Zhang, W.; Tan, L.; Lee, J.; Bi, X.; Yang, Y.; Gan, H.T.; Gagnon, P. Advance chromatin extraction improves capture performance of protein A affinity chromatography. J. Chromatogr. A 2016, 1431, 1–7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nian, R.; Gagnon, P. Advance chromatin extraction enhances performance and productivity of cation exchange chromatography-based capture of Immunoglobulin G monoclonal antibodies. J. Chromatogr. A 2016, 1453, 54–61. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Jia, P.; Sharif, R.; Li, Z.; Li, Y.; Chen, P. High-Level Production of DNA-Specific Endonuclease AsEndI with Synonymous Codon and its Potential Utilization for Removing DNA Contamination. Appl. Biochem. Biotechnol. 2018, 185, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Cheeks, M.C.; Kamal, N.; Sorrell, A.; Darling, D.; Farzaneh, F.; Slater, N.K. Immobilized metal affinity chromatography of histidine-tagged lentiviral vectors using monolithic adsorbents. J. Chromatogr. A 2009, 1216, 2705–2711. [Google Scholar] [CrossRef]
- Ruscic, J.; Perry, C.; Mukhopadhyay, T.; Takeuchi, Y.; Bracewell, D.G. Lentiviral Vector Purification Using Nanofiber Ion-Exchange Chromatography. Mol. Ther. Methods Clin. Dev. 2019, 15, 52–62. [Google Scholar] [CrossRef]
- Marino, M.P.; Panigaj, M.; Ou, W.; Manirarora, J.; Wei, C.H.; Reiser, J. A scalable method to concentrate lentiviral vectors pseudotyped with measles virus glycoproteins. Gene Ther. 2015, 22, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Jungbauer, A. Chromatographic media for bioseparation. J. Chromatogr. A 2005, 1065, 3–12. [Google Scholar] [CrossRef]
- Barut, M.; Podgornik, A.; Brne, P.; Štrancar, A. Convective Interaction Media short monolithic columns: Enabling chromatographic supports for the separation and purification of large biomolecules. J. Sep. Sci. 2005, 28, 1876–1892. [Google Scholar] [CrossRef]
- Trilisky, E.I.; Lenhoff, A.M. Sorption processes in ion-exchange chromatography of viruses. J. Chromatogr. A 2007, 1142, 2–12. [Google Scholar] [CrossRef]
- Krajacic, M.; Ravnikar, M.; Štrancar, A.; Gutiérrez-Aguirre, I. Application of monolithic chromatographic supports in virus research. Electrophoresis 2017, 38, 2827–2836. [Google Scholar] [CrossRef]
- Zimmermann, K.; Scheibe, O.; Kocourek, A.; Muelich, J.; Jurkiewicz, E.; Pfeifer, A. Highly efficient concentration of lenti- and retroviral vector preparations by membrane adsorbers and ultrafiltration. BMC Biotechnol. 2011, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- McNally, D.J.; Darling, D.; Farzaneh, F.; Levison, P.R.; Slater, N.K. Optimised concentration and purification of retroviruses using membrane chromatography. J. Chromatogr. A 2014, 1340, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Orr, V.; Zhong, L.; Moo-Young, M.; Chou, C.P. Recent advances in bioprocessing application of membrane chromatography. Biotechnol. Adv. 2013. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.; Wright, B.; Green, N.K.; Tarrant, R.; Roberts, I.; Hardick, O.; Bracewell, D.G. Adenovirus 5 recovery using nanofiber ion-exchange adsorbents. Biotechnol. Bioeng. 2019, 116, 1698–1709. [Google Scholar] [CrossRef]
- James, K.T.; Cooney, B.; Agopsowicz, K.; Trevors, M.A.; Mohamed, A.; Stoltz, D.; Hitt, M.; Shmulevitz, M. Novel High-throughput Approach for Purification of Infectious Virions. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Weigel, T.; Solomaier, T.; Peuker, A.; Pathapati, T.; Wolff, M.W.; Reichl, U. A flow-through chromatography process for influenza A and B virus purification. J. Virol. Methods 2014, 207, 45–53. [Google Scholar] [CrossRef]
- Rodrigues, T.; Alves, A.; Lopes, A.; Carrondo, M.J.; Alves, P.M.; Cruz, P.E. Removal of envelope protein-free retroviral vectors by anion-exchange chromatography to improve product quality. J. Sep. Sci. 2008, 31, 3509–3518. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; McCarty, D.M.; Madden, V.J.; Walsh, C.E. Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. BioTechniques 2003, 34, 1074–1080. [Google Scholar] [CrossRef]
- Chan, L.; Nesbeth, D.; MacKey, T.; Galea-Lauri, J.; Gäken, J.; Martin, F.; Collins, M.; Mufti, G.; Farzaneh, F.; Darling, D. Conjugation of Lentivirus to Paramagnetic Particles via Nonviral Proteins Allows Efficient Concentration and Infection of Primary Acute Myeloid Leukemia Cells. J. Virol. 2005, 79, 13190–13194. [Google Scholar] [CrossRef][Green Version]
- Nesbeth, D.; Williams, S.L.; Chan, L.; Brain, T.; Slater, N.K.; Farzaneh, F.; Darling, D. Metabolic biotinylation of lentiviral pseudotypes for scalable paramagnetic microparticle-dependent manipulation. Mol. Ther. 2006, 13, 814–822. [Google Scholar] [CrossRef]
- Stornaiuolo, A.; Stefano, C.; Sergio, B.; Claudio, B.; Paolo, R.G.; Chiara, B. 520. A New Strategy for Retroviral Vector Purification Based on LNGR-Ab Immunomagnetic Selection. Mol. Ther. 2013, 21, S201. [Google Scholar]
- Walker, S.J.; Pizzato, M.; Takeuchi, Y.; Devereux, S. Heparin Binds to Murine Leukemia Virus and Inhibits Env-Independent Attachment and Infection. J. Virol. 2002, 76, 6909–6918. [Google Scholar] [CrossRef] [PubMed]
- Guibinga, G.H.; Miyanohara, A.; Esko, J.D.; Friedmann, T. Cell surface heparan sulfate is a receptor for attachment of envelope protein-free retrovirus-like particles and VSV-G pseudotyped MLV-derived retrovirus vectors to target cells. Mol. Ther. 2002, 5, 538–546. [Google Scholar] [CrossRef]
- Arai, T.; Matsumoto, K.; Saitoh, K.; Ui, M.; Ito, T.; Murakami, M.; Kanegae, Y.; Saito, I.; Cosset, F.L.; Takeuchi, Y.; et al. A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines. J. Virol. 1998, 72, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Segura, M.D.L.M.; Kamen, A.; Trudel, P.; Garnier, A.; de las Mercedes Segura, M.; Kamen, A.; Trudel, P.; Garnier, A. A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnol. Bioeng. 2005, 90, 391–404. [Google Scholar] [CrossRef]
- Transfiguracion, J.; Jaalouk, D.E.; Ghani, K.; Galipeau, J.; Kamen, A. Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Hum. Gene Ther. 2003, 14, 1139–1153. [Google Scholar] [CrossRef] [PubMed]
- Marichal-Gallardo, P.; Pieler, M.M.; Wolff, M.W.; Reichl, U. Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol. J. Chromatogr. A 2017, 1483, 110–119. [Google Scholar] [CrossRef]
- Marichal-Gallardo, P.; Genzel, Y.; Börner, K.; Grimm, D.; Wolff, M.; Reichl, U. A Single-Use Chromatographic Purification Platform for Viral Gene Transfer Vectors & Viral Vaccines. Advancing Manufacture of Cell and Gene Therapies VI, 2019. In Proceedings of the Advancing Manufacture of Cell and Gene Therapies VI. Available online: https://dc.engconfintl.org/cell_gene_therapies_vi/92 (accessed on 29 July 2020).
- Paul, R.W.; Morris, D.; Hess, B.W.; Dunn, J.; Overell, R.W. Increased viral titer through concentration of viral harvests from retroviral packaging lines. Hum. Gene Ther. 1993, 4, 609–615. [Google Scholar] [CrossRef]
- Miller, D.L.; Meikle, P.J.; Anson, D.S. A rapid and efficient method for concentration of small volumes of retroviral supernatant. Nucleic Acids Res. 1996, 24. [Google Scholar] [CrossRef][Green Version]
- Cooper, A.R.; Patel, S.; Senadheera, S.; Plath, K.; Kohn, D.B.; Hollis, R.P. Highly efficient large-scale lentiviral vector concentration by tandem tangential flow filtration. J. Virol. Methods 2011, 177, 1–9. [Google Scholar] [CrossRef]
- Boudeffa, D.; Bertin, B.; Biek, A.; Mormin, M.; Leseigneur, F.; Galy, A.; Merten, O.W. Toward a Scalable Purification Protocol of GaLV-TR-Pseudotyped Lentiviral Vectors. Hum. Gene Ther. Methods 2019, 30, 153–171. [Google Scholar] [CrossRef]
- Soldi, M.; Sergi Sergi, L.; Unali, G.; Kerzel, T.; Cuccovillo, I.; Capasso, P.; Annoni, A.; Biffi, M.; Rancoita, P.M.V.; Cantore, A.; et al. Laboratory-Scale Lentiviral Vector Production and Purification for Enhanced Ex Vivo and In Vivo Genetic Engineering. Mol. Ther. Methods Clin. Dev. 2020, 19, 411–425. [Google Scholar] [CrossRef]
- Geraerts, M.; Michiels, M.; Baekelandt, V.; Debyser, Z.; Gijsbers, R. Upscaling of lentiviral vector production by tangential flow filtration. J. Gene Med. 2005, 7, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Marino, K.; Levison, P. Achieving Process Intensification with Single-Pass TFF. Proceedings of the Advancing Manufacture of Cell and Gene Therapies VI. 2017. Available online: https://www.genengnews.com/magazine/299/achieving-process-intensification-with-single-pass-tff/ (accessed on 30 July 2020).
- Dizon-Maspat, J.; Bourret, J.; D’Agostini, A.; Li, F. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Biotechnol. Bioeng. 2012, 109, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Casey, C.; Gallos, T.; Alekseev, Y.; Ayturk, E.; Pearl, S. Protein concentration with single-pass tangential flow filtration (SPTFF). J. Membr. Sci. 2011, 384, 82–88. [Google Scholar] [CrossRef]
- Makino, M.; Ishikawa, G.; Yamaguchi, K.; Okada, Y.; Watanabe, K.; Sasaki-Iwaki, Y.; Manabe, S.; Honda, M.; Komuro, K. Concentration of live retrovirus with a regenerated cellulose hollow fiber, BMM. Arch. Virol. 1994, 139, 87–96. [Google Scholar] [CrossRef]
- Fan, J.; Jiang, L.; Zhou, Z. Recombinant Lentiviral Vector Formulation. Patent EP2829285A1, 2017. Available online: https://patents.google.com/patent/EP2829285A1/en (accessed on 10 August 2020).
- Delacroix, N.; Ouengue Mbele, G.; Deroyer, J.; Deplaine, G.; Bauche, C. 671. Development of a Successful Lyophilization Process for Lentiviral Vector Clinical Batches. Mol. Ther. 2015, 23, S267. [Google Scholar] [CrossRef][Green Version]
- Mather, S.T.; Wright, E.; Scott, S.D.; Temperton, N.J. Lyophilisation of influenza, rabies and Marburg lentiviral pseudotype viruses for the development and distribution of a neutralisation -assay-based diagnostic kit. J. Virol. Methods 2014, 210, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Driss, B.; Otto-Wilhelm, M.; David, F. Method for Purifying Enveloped Viruses or Viral Vectors. U.S. Patent US20170002332A1, 5 January 2015. [Google Scholar]
- Blaha, B.A.F.; Toufexi, A.; Berger, G.; Hassan, E.; Gaddum, N.R. Increasing Lentiviral Transduction Efficiency: Towards Cost-Effective T Cell Therapy Manufacturing. Mol. Therapy 2019. [Google Scholar] [CrossRef]
- Zhao, Y.; Stepto, H.; Schneider, C.K. Development of the First World Health Organization Lentiviral Vector Standard: Toward the Production Control and Standardization of Lentivirus-Based Gene Therapy Products. Hum. Gene Ther. Methods 2017, 28, 205–214. [Google Scholar] [CrossRef]
- Chen, J.; Reeves, L.; Sanburn, N.; Croop, J.; Williams, D.A.; Cornetta, K. Packaging cell line DNA contamination of vector supernatants: Implication for laboratory and clinical research. Virology 2001, 282, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bergelson, S.; Feschenko, M. Determination of lentiviral infectious titer by a novel droplet digital PCR method. Hum. Gene Ther. Methods 2018, 29, 96–103. [Google Scholar] [CrossRef]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Cerbo, V.D.; Bagnati, M.; Santeramo, I.; Bagnati, M. Single Cell Analysis of Lentiviral Transduction to Support Ex-Vivo Gene-Modified Cell Therapies; Technical Report; Cell and Gene Therapy Catapult: London, UK, 2020. [Google Scholar]
- Briggs, J.A.G.; Simon, M.N.; Gross, I.; Kräusslich, H.G.; Fuller, S.D.; Vogt, V.M.; Johnson, M.C. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 2004, 11, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Pizzato, M.; Erlwein, O.; Bonsall, D.; Kaye, S.; Muir, D.; McClure, M.O. A one-step SYBR Green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants. J. Virol. Methods 2009, 156, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, J.; Naessens, E.; Vanderstraeten, H.; Landi, A.; Iannucci, V.; van Nuffel, A.; Taghon, T.; Pizzato, M.; Verhasselt, B. Quantification of Reverse Transcriptase Activity by Real-Time PCR as a Fast and Accurate Method for Titration of HIV, Lenti- and Retroviral Vectors. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Naiim, M.; Boualem, A.; Ferre, C.; Jabloun, M.; Jalocha, A.; Ravier, P. Multiangle dynamic light scattering for the improvement of multimodal particle size distribution measurements. Soft Matter 2015, 11, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Austin, J.; Minelli, C.; Hamilton, D.; Wywijas, M.; Jones, H.J. Nanoparticle number concentration measurements by multi-angle dynamic light scattering. J. Nanopart. Res. 2020, 22, 1–15. [Google Scholar] [CrossRef]
- Heider, S.; Muzard, J.; Zaruba, M.; Metzner, C. Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing. Mol. Biotechnol. 2017, 59, 251–259. [Google Scholar] [CrossRef]
- Turkki, V.; Lesch, H.P.; Ryner, M.; Nilsson, J. Viral Vector Particle Integrity and Purity Analyses in Early Process Development. BioProcess Int. 2017, 15, 9. [Google Scholar]
- Transfiguracion, J.; Tran, M.Y.; Lanthier, S.; Tremblay, S.; Coulombe, N.; Acchione, M.; Kamen, A.A. Rapid in-process monitoring of lentiviral vector particles by high performance liquid chromatography. Mol. Therapy Methods Clin. Dev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Merten, O.W.; Schweizer, M.; Chahal, P.; Kamen, A. Manufacturing of viral vectors: Part II. Downstream processing and safety aspects. Pharm. Bioprocess. 2014, 2, 237–251. [Google Scholar] [CrossRef]
- Truran, R.; Buckley, R.; Radcliffe, P.; Miskin, J.; Mitrophanous, K. Virus Purification. U.S. Patent US9169491B2, 2009. Available online: https://patents.google.com/patent/US9169491B2/en (accessed on 16 August 2020).
- McCarron, A.; Donnelley, M.; McIntyre, C.; Parsons, D. Challenges of up-scaling lentivirus production and processing. J. Biotechnol. 2016, 240, 23–30. [Google Scholar] [CrossRef]
- Fernandez-Cerezo, L.; Rayat, A.C.M.E.; Chatel, A.; Pollard, J.M.; Lye, G.J.; Hoare, M. An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration using ultrafiltration membranes. Biotechnol. Bioeng. 2019, 116, 581–590. [Google Scholar] [CrossRef]
- Rayat, A.C.; Chatel, A.; Hoare, M.; Lye, G.J. Ultra scale-down approaches to enhance the creation of bioprocesses at scale: Impacts of process shear stress and early recovery stages. Curr. Opin. Chem. Eng. 2016, 14, 150–157. [Google Scholar] [CrossRef]
- Fernandez-Cerezo, L.; Rayat, A.C.; Chatel, A.; Pollard, J.M.; Lye, G.J.; Hoare, M. The prediction of the operating conditions on the permeate flux and on protein aggregation during membrane processing of monoclonal antibodies. J. Membr. Sci. 2020, 596, 117606. [Google Scholar] [CrossRef]
- Vrba, S.M.; Kirk, N.M.; Brisse, M.E.; Liang, Y.; Ly, H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines 2020, 8, 680. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).