Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = lentil seed traits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6040 KB  
Article
Exploring Phenological and Agronomic Parameters of Greek Lentil Landraces for Developing Climate-Resilient Cultivars Adapted to Mediterranean Conditions
by Iakovina Bakoulopoulou, Ioannis Roussis, Ioanna Kakabouki, Evangelia Tigka, Panteleimon Stavropoulos, Antonios Mavroeidis, Stella Karydogianni, Dimitrios Bilalis and Panayiota Papastylianou
Crops 2025, 5(6), 91; https://doi.org/10.3390/crops5060091 - 17 Dec 2025
Viewed by 369
Abstract
Lentil (Lens culinaris Medik. subsp. culinaris) is a Mediterranean legume crop of high value due to nutritional quality and adaptability; however, its cultivation is increasingly threatened due to climate uncertainty and reduction in genetic diversity in modern cultivars. The present research [...] Read more.
Lentil (Lens culinaris Medik. subsp. culinaris) is a Mediterranean legume crop of high value due to nutritional quality and adaptability; however, its cultivation is increasingly threatened due to climate uncertainty and reduction in genetic diversity in modern cultivars. The present research study evaluated 31 Greek lentil accessions (twenty-two landraces and nine commercial cultivars of both small and large seed types) in a semi-arid environment of Central Greece, over two cropping seasons, focusing on phenological, morphological, yield, and quality traits. The great diversity observed at the morpho-phenological and qualitative levels implies the high genotypic diversity of these genetic resources. Small-seeded landraces performed better in seed and biological yield, harvest index, and protein content, having greater phenological stability and tolerance to the Mediterranean environments. In particular, the highest seed yield was observed in LAX small-seeded landrace (1930 kg ha−1), followed by TSO (1559 kg ha−1), DIG (1449 kg ha−1), and EGL (1437 kg ha−1) small-seeded landraces. As for the regression analysis, seed yield was positively correlated with days to flowering (TF: r = 0.076, p < 0.01), plant height (PH: r = 0.143, p < 0.05), number of pods per plant (NPP: r = 0.941, p < 0.001), number of seeds per pod (NPP: r = 0.432, p < 0.001), number of branches (NPB: r = 0.234, p < 0.01), biological yield (BY: r = 0.683, p < 0.001), and harvest index (HI: r = 0.650, p < 0.001). Principal component analysis (PCA) distinguished small-seeded landraces associated with adaptive and yield traits from large-seeded cultivars associated with seed size. Greek lentil landraces, especially the small-seeded genotypes (e.g., LAX and DIG), have great potential for use in the development of climate-tolerant and high-yielding lentil varieties adapted for sustainable Mediterranean production. Breeding programs can target the crossing of landraces with large-seeded cultivars (e.g., IKAm and THEm) to develop varieties that combine stress tolerance, adaptation, and high productivity with adaptation to different seed sizes. Subsequent studies on drought tolerance and heat resistance are still important for continued improvement in lentil productivity in a changing climate. Full article
Show Figures

Figure 1

24 pages, 4564 KB  
Article
Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses
by Hasnae Choukri, Khawla Aloui, Noureddine El Haddad, Kamal Hejjaoui, Abdelaziz Smouni and Shiv Kumar
Plants 2025, 14(13), 2019; https://doi.org/10.3390/plants14132019 - 1 Jul 2025
Cited by 1 | Viewed by 984
Abstract
Lentil (Lens culinaris Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat [...] Read more.
Lentil (Lens culinaris Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat stress, and combined heat and drought stresses. Significant effects of genotype, environment, and their interactions were observed on seed yield, seed size, cooking time, and nutritional quality. Heat and drought stresses caused substantial reductions in seed yield (up to 40% under combined stress), protein content, iron, and zinc concentration, and increased phytic acid levels, which negatively impacted iron and zinc bioavailability. Cooking time significantly decreased under stress conditions, with up to 54% reduction under combined heat and drought stresses at Annoceur research station. Correlation analysis revealed complex trade-offs among yield, nutritional quality, and cooking traits under stress conditions. Principal component analysis and GGE biplot analyses identified genotypes with superior yield, micronutrient concentration, and cooking time stability across environments. Genotypes such as G32, G3, and G36 combined high iron and zinc levels; G13 and G30 showed low phytic acid, while G 15 exhibited the shortest cooking time. These genotypes also demonstrated adaptability across the tested environment. This study highlights the potential of selecting climate-resilient, nutrient-dense lentil genotypes to support breeding efforts aimed at improving food security in the face of global climate variability. These genotypes can be suggested as elite climate-resilient parental lines to support breeders in enhancing lentil yield, nutritional quality, and stability under multiple stress conditions. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

20 pages, 3504 KB  
Article
Integrating Multi-Trait Selection Indices for Climate-Resilient Lentils: A Three-Year Evaluation of Earliness and Yield Stability Under Semi-Arid Conditions
by Mustafa Ceritoglu, Fatih Çığ, Murat Erman and Figen Ceritoglu
Agronomy 2025, 15(7), 1554; https://doi.org/10.3390/agronomy15071554 - 26 Jun 2025
Cited by 2 | Viewed by 1117
Abstract
This research assessed 42 lentil genotypes developed by ICARDA along with a local variety over three growing seasons (2019–2022) in Southeastern Türkiye. Phenological, morphological, and yield attributes were determined to observe earliness, yield stability, and adaptation properties. Genotype G3771 showed outstanding performance in [...] Read more.
This research assessed 42 lentil genotypes developed by ICARDA along with a local variety over three growing seasons (2019–2022) in Southeastern Türkiye. Phenological, morphological, and yield attributes were determined to observe earliness, yield stability, and adaptation properties. Genotype G3771 showed outstanding performance in grain yield (2579 kg ha−1), 1000-seed weight (54.9 g), and harvest index (37.3%), although it had lower stability under more severe drought conditions. Early-maturing genotypes like G3744, G3715, and G3716 consistently flowered and matured sooner, making them better suited for escaping terminal drought stress areas. The highest yields were recorded during the 2019–2020 season, which experienced favorable rainfall and soil nutrient levels, while the lowest yields occurred due to changing climatic conditions in the 2020–2021 season, highlighting the crop’s sensitivity to climate. Principal component analysis, hierarchical clustering, the Modified Multi-Trait Stability Index (MTSI), and the Multi-Trait Genotype-Ideotype Distance Index (MGIDI) aided in effective genotype classification. Although G3771 was the most productive, genotypes G3687, G3715, and G3689 proved to be the most stable and early maturing based on MGIDI scores. Strong relationships between grain yield, biological yield, and seed size identified these as key selection criteria. This study underscores the value of multi-trait selection tools like MGIDI and MTSI in consistently pinpointing lentil genotypes that balance earliness, productivity, and adaptability, laying a strong foundation for developing climate-resilient varieties suited to semi-arid climates. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

18 pages, 3659 KB  
Article
Longer Internode with Same Cell Length: LcSOC1-b2 Gene Involved in Height to First Pod but Not Flowering in Lentil (Lens culinaris Medik.)
by Marzhan Kuzbakova, Gulmira Khassanova, Satyvaldy Jatayev, Nurgul Daniyeva, Crystal Sweetman, Colin L. D. Jenkins, Kathleen L. Soole and Yuri Shavrukov
Plants 2025, 14(8), 1157; https://doi.org/10.3390/plants14081157 - 8 Apr 2025
Cited by 1 | Viewed by 1013
Abstract
Stem internode length determines height to first pod (HFP), an important trait for mechanical harvesting in legume crops. In the present study, this trait in lentil was (Lens culinaris Medik.) examined using scanning electron microscopy (SEM) of epidermal cells in stem internodes [...] Read more.
Stem internode length determines height to first pod (HFP), an important trait for mechanical harvesting in legume crops. In the present study, this trait in lentil was (Lens culinaris Medik.) examined using scanning electron microscopy (SEM) of epidermal cells in stem internodes of two parents, Flip92-36L and ILL-1552, with long and short HFP, respectively. No significant differences in cell length, but differences in cell width were seen. This indicates that HFP was determined by cell number rather than cell length. The candidate gene family for HFP, Suppressor of Overexpression of Constans 1 (SOC1), a member of the MADS-box transcription factor family, controls both flowering time (FT) and HFP traits. Six LcSOC1 genes were identified in this study, and their expression was analysed. Most of the genes studied showed constitutive expression during vegetative growth, flowering, and seed development stages. Expression of LcSOC1-a seems to be involved in the transition to flowering and FT, whereas expression of LcSOC1-b2 was strongly associated with HFP but not FT. Two haplotypes with two SNP each were identified in LcSOC1-b2 among eight sequenced lentil accessions, and an SNP-based ASQ marker was developed and used for genotyping of a lentil germplasm collection. Significant association between LcSOC1-b2 haplotypes and HFP was found in this study, indicating a primary role for this gene in internode length, potentially by regulating cell number. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

25 pages, 4371 KB  
Article
Insights from Lentil Germplasm Resources Leading to Crop Improvement Under Changing Climatic Conditions
by Muhammad Muddassir Sardar, Ayesha T. Tahir, Sabir Ali, Javeria Ayub, Jaffer Ali, Farzana Kausar, Tayyaba Yasmin, Zahra Jabeen and Muhammad Kashif Ilyas
Life 2025, 15(4), 561; https://doi.org/10.3390/life15040561 - 31 Mar 2025
Cited by 2 | Viewed by 1772
Abstract
Lentil is an important legume crop globally with an annual production of around 6.3 million tons. Pakistan stands at the 49th position producing 4668 tons of lentil from 7428 hectares with an average yield of 570 kg/ha. A lack of high-yielding varieties is [...] Read more.
Lentil is an important legume crop globally with an annual production of around 6.3 million tons. Pakistan stands at the 49th position producing 4668 tons of lentil from 7428 hectares with an average yield of 570 kg/ha. A lack of high-yielding varieties is one of the major reasons for low yield, resulting in an approx. 31% decrease in the cultivation area. In the present study, 649 accessions of lentil representing Pakistan, USA, and Syria were studied for yield and yield-contributing traits for three consecutive years. Accession 5930 performed best in all three years, having a seed yield (SY) of 192.84 ± 9.05 g/m2 and a biological yield (BY) of 534.20 ± 25.79 g/m2. Overall, SY has a significant positive association with BY, pods per plant (NP), pod weight (PW), harvest index (HI), and plant height (PH). PCA, heritability, and genetic advance also suggested these traits as effective selection indicators. A K-mean cluster analysis based on Wilks lambda highlighted that accessions with a higher SY, BY, NP, PW, and NB were grouped in Clusters III, V, and II during the first, second, and third years, respectively. During all three years, genotypes in the HI range 10.1–15% had the highest biological yield, while the HI range of >35% represented early maturing accessions with high seed yields, providing a strong basis for future selection. Fluctuation in mean temperature (22.5, 22.4 and 24.7 °C) and rainfall (518, 644.6 and 287.7 mm) during the three cropping seasons (October–April) under study had a significant impact on performance of the accessions. The better average yield was observed in the third year, which might be attributed to aforementioned temperature and rainfall differences. Despite the weather impact, 10 accessions, viz., 5930, 6057, 5865, 34709, 5542, 5884, 17794, 34693, 5888, and 5944 exhibited high yield potential in all three years and are therefore recommended for lentil improvement programs in the future. Full article
(This article belongs to the Special Issue Recent Advances in Crop Genetics and Breeding)
Show Figures

Figure 1

14 pages, 800 KB  
Article
Evaluation of the Effects of Cultivar and Location on the Interaction of Lentil Seed Characteristics with Optimal Cooking Time
by Dimitrios Sarakatsianos, Dimitra Polyzou, Athanasios Mavromatis, Dimitrios N. Vlachostergios and Dimitrios Gerasopoulos
Seeds 2024, 3(4), 575-588; https://doi.org/10.3390/seeds3040039 - 30 Oct 2024
Viewed by 1384
Abstract
The most important product of the lentil crop (Lens culinaris Medik) is the seeds. The main seed characteristics are their size, color, and the cooking time required to make them edible. Cultivar, location of cultivation, and their interaction are the primary factors [...] Read more.
The most important product of the lentil crop (Lens culinaris Medik) is the seeds. The main seed characteristics are their size, color, and the cooking time required to make them edible. Cultivar, location of cultivation, and their interaction are the primary factors of raw or cooked seed characteristics. The study examined the impact of five different lentil cultivars (Dimitra, Elpida, Thessalia, Samos, and 03-24L), as influenced by the cultivation environment in four different zones or nine different locations in Central-Northern Greece, on cooking time. The optimal cooking time (OCT) was calculated by cooking the seeds for 0–60 min to determine the percentage of cooked seeds using the penetration test. OCT was associated with the characteristics of both raw (mass of 1000 seeds, external color, and the percentage of mature/immature seeds) and cooked (color and organoleptic characteristics of the cooking media as well as mass increase and hardness and organoleptic characteristics of the seeds) seeds for 30 min. Depending on location, each cultivar had a different mass of 1000 seeds; Elpida had the highest mass (63.9 g), and Dimitra had the lowest (33.1 g). This was linked to OCT, which was among the highest (57.5 min) for Elpida, lowest (49 min) for Dimitra, and intermediate for Thessalia, Samos, or 03-24L. The average OCT was 55.9 min for all samples. The seed from the five locations with the shortest OCT was considered appropriate for human consumption. Two locations yielded seeds with intermediate OCT, while the other two produced the highest OCT; these were recommended for processing or propagation. In this study, the cultivar factor had a greater effect on raw seed characteristics, while the location factor had a greater effect on cooked seed characteristics and OCT than either the location, the cultivar factor, or the cultivar x location interaction. Full article
Show Figures

Figure 1

18 pages, 4292 KB  
Article
An Explanatory Model of Red Lentil Seed Coat Colour to Manage Degradation in Quality during Storage
by Bhawana Bhattarai, James G. Nuttall, Cassandra K. Walker, Ashley J. Wallace, Glenn J. Fitzgerald and Garry J. O’Leary
Agronomy 2024, 14(2), 373; https://doi.org/10.3390/agronomy14020373 - 15 Feb 2024
Cited by 2 | Viewed by 2162
Abstract
This study presents an explanatory biophysical model developed and validated to simulate seed coat colour traits including CIE L*, a*, and b* changes over time for stored lentil cultivars PBA Hallmark, PBA Hurricane, PBA Bolt, and PBA Jumbo2 under diverse storage [...] Read more.
This study presents an explanatory biophysical model developed and validated to simulate seed coat colour traits including CIE L*, a*, and b* changes over time for stored lentil cultivars PBA Hallmark, PBA Hurricane, PBA Bolt, and PBA Jumbo2 under diverse storage conditions. The model showed robust performance for all cultivars, with R2 values ≥ 0.89 and RMSE values ≤ 0.0019 for all seed coat colour traits. Laboratory validation at 35 °C demonstrated a high agreement (Lin’s Concordance Correlation Coefficient, CCC ≥ 0.82) between simulated and observed values of all colour traits for PBA Jumbo2 and strong agreement (CCC ≥ 0.81) for PBA Hallmark in brightness (CIE L*) and redness (CIE a*), but not in yellowness (CIE b*). At 15 °C, both cultivars exhibited moderate to weak agreement between simulated and observed values of all colour traits (CCC ≤ 0.47), as very little change was recorded in the observed values over the 360 days of storage. Bulk storage system validation for PBA Hallmark showed moderate performance (CCC ≥ 0.46) between simulated and observed values of all colour traits. Modelling to simulate changes in seed coat colour traits of lentils over time will equip growers and traders to make informed managerial decisions when storing lentils for long periods. Full article
(This article belongs to the Special Issue Advances in Data, Models, and Their Applications in Agriculture)
Show Figures

Figure 1

20 pages, 3931 KB  
Article
Agronomic Performances and Seed Yield Components of Lentil (Lens culinaris Medikus) Germplasm in a Semi-Arid Environment
by Giovanni Preiti, Antonio Calvi, Giuseppe Badagliacca, Emilio Lo Presti, Michele Monti and Monica Bacchi
Agronomy 2024, 14(2), 303; https://doi.org/10.3390/agronomy14020303 - 30 Jan 2024
Cited by 4 | Viewed by 3857
Abstract
Lentil (Lens culinaris Medik.) is widely known among grain legumes for its high nutritional quality, playing an important role in enhancing Mediterranean farming systems as a sustainable crop. Field experiments comparing 121 lentil accessions (microsperma and macrosperma types from different countries) [...] Read more.
Lentil (Lens culinaris Medik.) is widely known among grain legumes for its high nutritional quality, playing an important role in enhancing Mediterranean farming systems as a sustainable crop. Field experiments comparing 121 lentil accessions (microsperma and macrosperma types from different countries) were conducted in a semi-arid environment of south Italy over two growing seasons (2016/2017 and 2017/2018). Their agronomic performance was determined, focusing on phenological, morphological, productive, and qualitative variability. Changes in rainfall and temperatures affected the agronomic traits, especially yield components. In both years, the average grain yield (GY) (2.31 and 2.22 t ha−1, respectively) was above the threshold of 2 t ha−1. Consistent yield exceeding the field average in both growing seasons revealed the superiority of accessions from Egypt, Cyprus, Algeria, Nepal, and Tunisia. Moreover, microsperma yielded more (+0.31 and +0.41 t ha−1 in the first and second year, respectively) than macrosperma accessions. Flowering (DASF—days after sowing to flowering) and thousand seed weight (TSW) appeared to be the most important traits related to grain yield. Flowering earliness seems to act as a mechanism for overcoming abiotic stresses. The analysis of yield components revealed a different productive determinism within the two subspecies. As also highlighted by the Principal Component Analysis, microsperma accessions presented on average a significantly higher number of pods per plant (PP) and seeds per pod (SP), despite the considerable variability among countries of origin. The results showed phenological and morphological variability among genotypes, which should be taken into account in view of future selection programs focused on obtaining lentil ideotypes suitable for the Mediterranean environment. Full article
Show Figures

Figure 1

19 pages, 3233 KB  
Article
Storage Temperature and Grain Moisture Effects on Market and End Use Properties of Red Lentil
by Bhawana Bhattarai, Cassandra K. Walker, Ashley J. Wallace, James G. Nuttall, Graham Hepworth, Joe F. Panozzo, Debra L. Partington and Glenn J. Fitzgerald
Agronomy 2023, 13(9), 2261; https://doi.org/10.3390/agronomy13092261 - 28 Aug 2023
Cited by 3 | Viewed by 3936
Abstract
Storing lentil is a strategy used by growers to manage price volatility. However, studies investigating the impact of storage conditions on the market and end use properties of lentil are limited. This study examined the effects of storage temperature (4, 15, 25, and [...] Read more.
Storing lentil is a strategy used by growers to manage price volatility. However, studies investigating the impact of storage conditions on the market and end use properties of lentil are limited. This study examined the effects of storage temperature (4, 15, 25, and 35 °C) and grain moisture (10 and 14%, w/w) on traits related to market (seed coat colour), viability (germination capacity), and end use properties (hydration capacity, milling efficiency, and cooking quality) in four red lentil cultivars (PBA Bolt, PBA Hallmark, PBA Hurricane, PBA Jumbo2) over 360 days. Storing lentil at 14% moisture content and 35 °C significantly (p = 0.05) darkened seed coat after 30 days, caused complete loss of viability within 180 days and reduced cooking quality (cooked firmness) after 120 days across all tested cultivars. Storing lentil at 10% moisture content and 35 °C reduced hydration capacity after 30 days, and milling efficiency after 120 days across all cultivars tested. PBA Jumbo2 exhibited a higher rate of degradation in hydration capacity and cooking quality, and a lower rate of degradation in the other traits studied. Storing lentil at ≤15 °C prevented degradation of all quality traits. These findings will support improved lentil storage protocols to maintain quality and improve economic outcomes for the pulse industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

11 pages, 2063 KB  
Article
Modified Storage Atmosphere Prevents the Degradation of Key Grain Quality Traits in Lentil
by Bhawana Bhattarai, Cassandra K. Walker, Ashley J. Wallace, James G. Nuttall, Graham Hepworth, Joe F. Panozzo, Debra L. Partington and Glenn J. Fitzgerald
Agronomy 2023, 13(8), 2160; https://doi.org/10.3390/agronomy13082160 - 17 Aug 2023
Cited by 5 | Viewed by 3501
Abstract
Lentil seed coat colour influences market value, whilst germination is associated with crop establishment and hydration capacity with optimal processing outcomes. Storing lentil grain assists growers in managing price fluctuations; however, exposure to oxygen at higher temperatures during extended storage degrades seed coat [...] Read more.
Lentil seed coat colour influences market value, whilst germination is associated with crop establishment and hydration capacity with optimal processing outcomes. Storing lentil grain assists growers in managing price fluctuations; however, exposure to oxygen at higher temperatures during extended storage degrades seed coat colour, germination, and hydration capacity. Depleting oxygen prevents such degradation in other crops; however, studies in lentil are limited. This study examined the effects of oxygen-depleted modified atmospheres and temperatures on seed coat colour, germination, and hydration capacity in two red lentil cultivars, PBA Hallmark and PBA Jumbo2, stored for 360 days. Small volumes of lentil grain were placed in aluminium laminated bags filled with nitrogen (N2), carbon dioxide (CO2), or air and stored at either 15 or 35 °C. At 35 °C in an air atmosphere, the lentil’s seed coat significantly (p = 0.05) darkened after 30 days of storage, whereas germination and hydration capacities decreased after 60 days regardless of cultivar. In contrast, N2 and CO2 atmospheres maintained initial seed coat colour, germination, and hydration capacities in both cultivars throughout the study period regardless of temperature. Storing lentil grain in an oxygen-depleted modified atmosphere may assist to maximise returns to grower and maintain key quality traits. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

28 pages, 2901 KB  
Article
Integrating BLUP, AMMI, and GGE Models to Explore GE Interactions for Adaptability and Stability of Winter Lentils (Lens culinaris Medik.)
by Md. Amir Hossain, Umakanta Sarker, Md. Golam Azam, Md. Shahriar Kobir, Rajib Roychowdhury, Sezai Ercisli, Daoud Ali, Shinya Oba and Kirill S. Golokhvast
Plants 2023, 12(11), 2079; https://doi.org/10.3390/plants12112079 - 23 May 2023
Cited by 40 | Viewed by 5099
Abstract
Lentil yield is a complicated quantitative trait; it is significantly influenced by the environment. It is crucial for improving human health and nutritional security in the country as well as for a sustainable agricultural system. The study was laid out to determine the [...] Read more.
Lentil yield is a complicated quantitative trait; it is significantly influenced by the environment. It is crucial for improving human health and nutritional security in the country as well as for a sustainable agricultural system. The study was laid out to determine the stable genotype through the collaboration of G × E by AMMI and GGE biplot and to identify the superior genotypes using 33 parametric and non-parametric stability statistics of 10 genotypes across four different conditions. The total G × E effect was divided into two primary components by the AMMI model. For days to flowering, days to maturity, plant height, pods per plant, and hundred seed weight, IPCA1 was significant and accounted for 83%, 75%, 100%, and 62%, respectively. Both IPCA1 and IPCA2 were non-significant for yield per plant and accounted for 62% of the overall G × E interaction. An estimated set of eight stability parameters showed strong positive correlations with mean seed yield, and these measurements can be utilized to choose stable genotypes. The productivity of lentils has varied greatly in the environment, ranging from 786 kg per ha in the MYM environment to 1658 kg per ha in the ISD environment, according to the AMMI biplot. Three genotypes (G8, G7, and G2) were shown to be the most stable based on non-parametric stability scores for grain yield. G8, G7, G2, and G5 were determined as the top lentil genotypes based on grain production using numerical stability metrics such as Francis’s coefficient of variation, Shukla stability value (σi2), and Wrick’s ecovalence (Wi). Genotypes G7, G10, and G4 were the most stable with the highest yield, according to BLUP-based simultaneous selection stability characteristics. The findings of graphic stability methods such as AMMI and GGE for identifying the high-yielding and stable lentil genotypes were very similar. While the GGE biplot indicated G2, G10, and G7 as the most stable and high-producing genotypes, AMMI analysis identified G2, G9, G10, and G7. These selected genotypes would be used to release a new variety. Considering all the stability models, such as Eberhart and Russell’s regression and deviation from regression, additive main effects, multiplicative interactions (AMMI) analysis, and GGE, the genotypes G2, G9, and G7 could be used as well-adapted genotypes with moderate grain yield in all tested environments. Full article
(This article belongs to the Special Issue Advances in Genetics and Breeding of Grain Crops)
Show Figures

Figure 1

11 pages, 3675 KB  
Article
Large Field Screening for Resistance to Broomrape (Orobanche crenata Forsk.) in a Global Lentil Diversity Panel (GLDP) (Lens culinaris Medik.)
by Youness En-nahli, Kamal Hejjaoui, Rachid Mentag, Nour Eddine Es-safi and Moez Amri
Plants 2023, 12(10), 2064; https://doi.org/10.3390/plants12102064 - 22 May 2023
Cited by 6 | Viewed by 2805
Abstract
Broomrape (Orobanche crenata Forsk.) is a serious problem causing important losses to lentil (Lens culinaris Medik.) production and productivity in Mediterranean countries. Despite intensive breeding activities, no resistance sources against O. crenata have been identified so far. In this study, a [...] Read more.
Broomrape (Orobanche crenata Forsk.) is a serious problem causing important losses to lentil (Lens culinaris Medik.) production and productivity in Mediterranean countries. Despite intensive breeding activities, no resistance sources against O. crenata have been identified so far. In this study, a Global Lentil Diversity Panel (GLDP) of 1315 genotypes including local populations, landraces, accessions, improved lines and released varieties were evaluated for their resistance to O. crenata under highly infested field conditions at ICARDA Marchouch research station, Morocco. The trial was conducted according to an augmented design with repeated susceptible checks. The best-performing genotypes were selected based on the correlations between Orobanche infestation parameters and agronomic performance. Results showed significant variation (p < 0.005) among the studied genotypes and between the tested genotypes and checks for BY, D2F, D2M, PH, EODW and NEO. Out of the 1315 tested genotypes, only (1%) showed high to moderate resistance levels to O. crenata. Most of these genotypes are improved lines originating from different breeding programs. the PCA analysis clustered all the tested genotypes into four different groups. Good resistance levels were recorded for the genotypes ILL7723, ILL 7982, ILL 6912, ILL 6415, ILL 9850, ILL 605, ILL 7915, ILL 1861 and ILL 9888 showing a parasitism index and grain yield ranging from 1.69 to 5.99 and 10.97 to 60.19 g m−2, respectively. Person’s correlation showed significant negative correlations between agronomic traits and infestation parameters. Both the path and spatial analysis showed that the D2F, NEO, D2OE, SEV and parasitism index (PI) were the strongest driver traits that influenced the seed yield (SY). Full article
(This article belongs to the Special Issue Breeding of Crop Disease-Resistant Cultivars)
Show Figures

Figure 1

35 pages, 835 KB  
Review
Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies
by Gustavo Ribeiro Xavier, Ederson da Conceição Jesus, Anelise Dias, Marcia Reed Rodrigues Coelho, Yulimar Castro Molina and Norma Gouvêa Rumjanek
Plants 2023, 12(4), 954; https://doi.org/10.3390/plants12040954 - 20 Feb 2023
Cited by 26 | Viewed by 7269
Abstract
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity [...] Read more.
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems. Full article
(This article belongs to the Special Issue Interactions between Plants and Soil Microorganisms)
Show Figures

Figure 1

18 pages, 3229 KB  
Article
Assessing the Stability of Herbicide-Tolerant Lentil Accessions (Lens culinaris Medik.) under Diverse Environments
by Rind Balech, Fouad Maalouf, Somanagouda B. Patil, Karthika Rajendran, Lynn Abou Khater, Diego Rubiales and Shiv Kumar
Plants 2023, 12(4), 854; https://doi.org/10.3390/plants12040854 - 14 Feb 2023
Cited by 5 | Viewed by 3445
Abstract
Assessing the adaptability and stability of herbicide-tolerant lentil accessions to two broad-spectrum post-emergence herbicides in multi-environment trials has become a must in a breeding program to improve its selection. The adaptability and stability of 42 herbicide-tolerant lentil accessions were investigated using five stability [...] Read more.
Assessing the adaptability and stability of herbicide-tolerant lentil accessions to two broad-spectrum post-emergence herbicides in multi-environment trials has become a must in a breeding program to improve its selection. The adaptability and stability of 42 herbicide-tolerant lentil accessions were investigated using five stability parameters under eight different environments. Significant Genotype–Environment (GE) interaction was found for days to flowering (DFLR), days to maturity (DMAT), and seed yield per plant (SY). The analyzed stability parameters such as Cultivar superiority, Finlay–Wilkinson, Shukla, Static Stability, and Wricke’s Ecovalence ranked the tested accessions differently, confirming the importance of using a combination of stability parameters when evaluating the performance of a group of accessions. GGE biplot of the SY trait accounted for 60.79% of sums of squares of the GE interaction and showed that cool and high rainfall environments are ideal for testing the agronomic performance of tolerant accessions. The GGE biplot of SY showed that IG4605(19), IG195(6), and IG156635(12) were specifically adapted to one mega environment, whereas IG70056(38) was identified as a superior line having a high and stable yield. These lines should be included in lentil crossing programs to develop herbicide-tolerant cultivars adapted to diverse environments. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

16 pages, 786 KB  
Article
Effect of Sowing Date and Environment on Phenology, Growth and Yield of Lentil (Lens culinaris Medikus.) Genotypes
by Lancelot Maphosa, Aaron Preston and Mark F. Richards
Plants 2023, 12(3), 474; https://doi.org/10.3390/plants12030474 - 19 Jan 2023
Cited by 15 | Viewed by 3287
Abstract
Lentil, an important pulse crop in Australia, is sown soon after the onset of autumn rains and grows mainly under rainfed conditions. This study examined lentil phenological development, growth and grain yield under different sowing dates and environments in New South Wales (NSW). [...] Read more.
Lentil, an important pulse crop in Australia, is sown soon after the onset of autumn rains and grows mainly under rainfed conditions. This study examined lentil phenological development, growth and grain yield under different sowing dates and environments in New South Wales (NSW). Eight lentil varieties were phenotyped over two years and four sowing times in southern NSW (Leeton, Wagga Wagga and Yanco (one year)) and central western NSW (Trangie). Time of sowing affected important agronomic traits, with a delay in sowing decreasing time to flowering and podding, biomass accumulation, plant height and position of bottom pod. Sowing earlier or later than optimum decreased grain yield. Yield was mainly determined by the number of pods and seeds per plant, with minimal impact from seed weight. Overall, yields were higher in favorable environments such Leeton experiment which received more water compared to the other sites which received less water. Averaged across sowing dates, the slower maturing PBA Greenfield was lower yielding whilst fast maturing varieties such as PBA Bolt and PBA Blitz yielded higher. PBA Jumbo2 is less sensitive to environmental interaction and thus broadly adapted to the diverse environments. Optimum sowing time was identified as the end of April to mid-May. Full article
(This article belongs to the Special Issue The Impacts of Abiotic Stresses on Plant Development 2.0)
Show Figures

Figure 1

Back to TopTop