Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = lean duplex steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19325 KiB  
Article
Corrosion Behaviour of S32101 (1.4162—X2CrMnNiN21-5-1) Stainless Steel in Pulping Liquors
by Banele Siyabonga Kheswa, David Whitefield, Herman Potgieter and Michael Bodunrin
Materials 2025, 18(9), 1921; https://doi.org/10.3390/ma18091921 - 24 Apr 2025
Viewed by 368
Abstract
The corrosion behaviour of lean duplex S32101 (1.4162—X2CrMnNiN21-5-1) stainless steel was assessed in various corrosive environments relevant to the pulp and paper industry. Electrochemical techniques, including open-circuit potential measurements and cyclic polarisation, were used to evaluate the corrosion resistance of S32101 stainless steel [...] Read more.
The corrosion behaviour of lean duplex S32101 (1.4162—X2CrMnNiN21-5-1) stainless steel was assessed in various corrosive environments relevant to the pulp and paper industry. Electrochemical techniques, including open-circuit potential measurements and cyclic polarisation, were used to evaluate the corrosion resistance of S32101 stainless steel in various acidic, saline, and industrial liquors such as black, green, and white liquors, as well as dissolved chlorine dioxide bleaching solutions. To evaluate the extent of damage and corrosion mechanisms, post-exposure surface analysis was conducted using scanning electron microscopy (SEM). The results showed that S32101 experienced pitting corrosion in chloride-containing solutions, particularly in salt and acidified-salt environments. Corrosion rates increased with rising temperatures across all solutions. The highest corrosion rate of 3.17 mm/yr was observed in the highly alkaline white liquor at 50 °C, whilst chlorine dioxide induced the least aggressive effects at all temperatures. The suitability of S32101 stainless steel in handling pulp and paper liquors is shown in its corrosion resistance against the bleaching medium and low-temperature saline solutions, but it is not recommended for prolonged exposure to high alkaline liquors or chloride-rich solutions. Full article
(This article belongs to the Special Issue Corrosion and Formation of Surface Films on Metals and Alloys)
Show Figures

Figure 1

12 pages, 3560 KiB  
Article
Environmentally Assisted Cracking of Duplex and Lean Duplex Stainless Steel Reinforcements in Alkaline Medium Contaminated with Chlorides
by Ulises Martin and David M. Bastidas
Crystals 2024, 14(7), 651; https://doi.org/10.3390/cryst14070651 - 16 Jul 2024
Cited by 1 | Viewed by 1260
Abstract
Herein, the corrosion performance of different stainless steel (SS) reinforcing bar grades in alkaline solution is presented, including UNS S32205 duplex stainless steel (DSS), UNS S32304 and UNS S32001 lean DDS (LDSS). The electrochemical dissolution kinetics were studied by potentiodynamic polarization and the [...] Read more.
Herein, the corrosion performance of different stainless steel (SS) reinforcing bar grades in alkaline solution is presented, including UNS S32205 duplex stainless steel (DSS), UNS S32304 and UNS S32001 lean DDS (LDSS). The electrochemical dissolution kinetics were studied by potentiodynamic polarization and the Tafel slope method. The environmentally assisted cracking (EAC) mechanisms of the different SS grades in the presence of Cl were revealed with the slow strain rate test (SSRT). The higher activation of the anodic branch and the loss of toughness were related to the austenite-to-ferrite phase ratio. UNS S32205 DSS presented the slowest anodic dissolution kinetics, mainly due to the higher austenite content compared to the other LDSS; however, it suffered a more severe EAC than the UNS S32304 LDSS. In the case of UNS S32001 LDSS, even while having the lowest Ni content (i.e., large ferrite α-phase ratio), it experienced the least decrease in elongation as well as low anodic dissolution kinetics for Cl contents up to 8 wt.%, where the Cl threshold was reached. Full article
(This article belongs to the Special Issue Corrosion Phenomena in Metals)
Show Figures

Figure 1

22 pages, 7229 KiB  
Article
Quantification of the Post-Fire Strength Retention Factors for Selected Standard Duplex and Lean Duplex Stainless Steel Grades
by Mariusz Maslak, Krzysztof Pancikiewicz, Michal Pazdanowski, Marek Stankiewicz, Piotr Wozniczka and Paulina Zajdel
Materials 2024, 17(2), 371; https://doi.org/10.3390/ma17020371 - 11 Jan 2024
Cited by 1 | Viewed by 1530
Abstract
The experimental quantification of retention factors related to the post-fire strength as well as the post-fire ductility of intentionally selected stainless steel grades applied in construction is the objective of the research presented here. These steel grades are characterized by a two-phase austenitic–ferritic [...] Read more.
The experimental quantification of retention factors related to the post-fire strength as well as the post-fire ductility of intentionally selected stainless steel grades applied in construction is the objective of the research presented here. These steel grades are characterized by a two-phase austenitic–ferritic microstructure of the duplex type. In this context, two mutually corresponding chromium–nickel–molybdenum steel grades are subjected to analysis, namely X2CrNiMoN22-5-3 steel belonging to the standard duplex group (DSS 22% Cr) and X2CrMnNiN21-5-1 steel belonging to the lean duplex group (LDSS). The similarities and differences in the mechanical properties exhibited by these steel grades after effective cooling, following more or less prolonged simulated fire action conforming to several development scenarios, are identified and indicated. The resistance of a given steel grade to permanent structural changes induced by the heating program proved to be the critical factor determining these properties and resulting in many cases in increased susceptibility to brittle fracture. The results obtained experimentally seem to confirm the quantitative estimates of post-fire retention factors forecast by Molkens and his team, specified for the steels exhibiting a duplex-type structure and tested by us. However, several of these estimates might be considered somewhat risky. Nevertheless, our results do not confirm the significant post-fire strengthening of steel grades belonging to the LDSS group following prior heating at a sufficiently high temperature, as reported earlier by Huang Yuner and B. Young. Full article
(This article belongs to the Special Issue Advances in Duplex Stainless Steels (Second Volume))
Show Figures

Figure 1

17 pages, 10720 KiB  
Article
Kinetics of Intermetallic Phase Precipitation in Manual Metal Arc Welded Duplex Stainless Steels
by Monika Orłowska, Krzysztof Pańcikiewicz, Aleksandra Świerczyńska and Michał Landowski
Materials 2023, 16(24), 7628; https://doi.org/10.3390/ma16247628 - 13 Dec 2023
Cited by 1 | Viewed by 2190
Abstract
The article presents the influence of heat treatment on the kinetics of transformations in lean duplex LDX2101 steel and a weld made of standard duplex 2209 material, which was welded by manual metal arc welding. Changes in the microstructure, hardness, and magnetic phase [...] Read more.
The article presents the influence of heat treatment on the kinetics of transformations in lean duplex LDX2101 steel and a weld made of standard duplex 2209 material, which was welded by manual metal arc welding. Changes in the microstructure, hardness, and magnetic phase content were analyzed after heat treatment was conducted at a temperature of 800 °C for a period ranging from 15 to 1440 min. Light and scanning microscopy, Vickers hardness measurements, and magnetic phase content measurements using a ferritoscope were used for the research. In the LDX2101 steel, the presence of δ-ferrite and γ austenite was identified and additional Cr2N nitrides were observed in the heat-affected zone. After heat treatment, the decomposition of δ ferrite into γ2 austenite and Cr2N nitrides was observed in both areas. In the case of weld made by the coated electrode in 2209 grade, a ferritic–austenitic microstructure with allotriomorphic austenite (γA), Widmanstätten austenite (γW), and idiomorphic austenite (γI) and δ-ferrite area with “bee swarms” of fine precipitations of chromium nitrides Cr2N and non-metallic inclusions (NMIs) of slag, formed during the welding process, are observed in the as-welded state. After heat treatment, the presence of the χ phase (after 15 min of annealing) and the σ phase (after 120 min of annealing) was additionally identified. The kinetics of intermetallic phase evolution in welds made from 2209 material were presented. The obtained results of hardness measurements and metallographic tests were correlated, which allowed for a quick check of the precipitation processes on the used element. Full article
Show Figures

Figure 1

13 pages, 15542 KiB  
Article
Effect of Heat Input on the Microstructure and Mechanical Properties of Local Dry Underwater Welded Duplex Stainless Steel
by Yu Hu, Yonghua Shi, Kai Wang and Jiqiang Huang
Materials 2023, 16(6), 2289; https://doi.org/10.3390/ma16062289 - 13 Mar 2023
Cited by 13 | Viewed by 2255
Abstract
Duplex stainless steel welded metals were underwater local dry prepared on S32101 lean duplex stainless steel trapezoidal groove plates with a self-made drain cover employing Supercore 2205P flux-cored filler wire. Different heat inputs were employed to investigate the effects on mechanical characteristics and [...] Read more.
Duplex stainless steel welded metals were underwater local dry prepared on S32101 lean duplex stainless steel trapezoidal groove plates with a self-made drain cover employing Supercore 2205P flux-cored filler wire. Different heat inputs were employed to investigate the effects on mechanical characteristics and the microstructure of welded metals. The results demonstrated that as the heat was applied, austenite concentrations in the weld metals increased. It was found that the austenite concentration and the fraction of Σ3-austenite twin-grain boundaries followed the same trends. With increasing heat input, the recrystallized ferrite and austenite grains initially decreased and subsequently increased, whereas the fraction of interphase boundaries between special ferrite and austenite exhibited the reverse trend. With a heat input of 1.4 kJ/mm, the toughness and plasticity of the weld metals were enhanced by an increase in austenite content, Σ3 recrystallized grains, and austenite twin-grain boundaries. The plasticity and tensile strength values of the welded metal changed more when the heat input was raised from 1.0 to 1.2 kJ/mm than when it was raised from 1.2 to 1.4 kJ/mm. Considering energy conservation, it is recommended to adopt 1.2 kJ/mm for welding heat input. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

10 pages, 14517 KiB  
Communication
Characterizing Oxide Inclusions in Welded Lean Duplex Stainless Steels and Their Influence on Impact Toughness
by Suphitcha Moonngam, Pranpreeya Wangjina, Ekkarut Viyanit and Chaiyasit Banjongprasert
Materials 2023, 16(5), 1921; https://doi.org/10.3390/ma16051921 - 25 Feb 2023
Cited by 5 | Viewed by 2255
Abstract
In newly developed 2101 lean duplex stainless steel, oxide inclusions have been detected on welded metal zones after subjecting them to flux-cored arc welding with an E2209T1-1 flux-cored filler metal. These oxide inclusions directly affect mechanical properties of the welded metal. Hence, a [...] Read more.
In newly developed 2101 lean duplex stainless steel, oxide inclusions have been detected on welded metal zones after subjecting them to flux-cored arc welding with an E2209T1-1 flux-cored filler metal. These oxide inclusions directly affect mechanical properties of the welded metal. Hence, a correlation requiring validation has been proposed between oxide inclusions and mechanical impact toughness. Accordingly, this study employed scanning electron and high-resolution transmission electron microscopy to assess the correlation between oxide inclusions and mechanical impact toughness. Investigations revealed that the spherical oxide inclusions comprised a mixture of oxides in the ferrite matrix phase and were close to intragranular austenite. The oxide inclusions observed were titanium- and silicon-rich oxides with amorphous structures, MnO with a cubic structure, and TiO2 with an orthorhombic/tetragonal structure, derived from the deoxidation of the filler metal/consumable electrodes. We also observed that the type of oxide inclusions had no strong effect on absorbed energy and no crack initiation occurred near them. Full article
(This article belongs to the Special Issue Welding and Processing in Alloy Manufacturing)
Show Figures

Figure 1

23 pages, 9095 KiB  
Review
Duplex Stainless Steels—Alloys for the 21st Century
by Roger Francis and Glenn Byrne
Metals 2021, 11(5), 836; https://doi.org/10.3390/met11050836 - 19 May 2021
Cited by 124 | Viewed by 20680
Abstract
Duplex stainless steels were first manufactured early in the 20th century, but it was the introduction in the 1970s of the argon-oxygen decarburisation (AOD) steel making process and the addition of nitrogen to these steels, that made the alloys stronger, more weldable and [...] Read more.
Duplex stainless steels were first manufactured early in the 20th century, but it was the introduction in the 1970s of the argon-oxygen decarburisation (AOD) steel making process and the addition of nitrogen to these steels, that made the alloys stronger, more weldable and more corrosion resistant. Today, duplex stainless steels can be categorised into four main groups, i.e., “lean”, “standard”, “super”, and “hyper” duplex types. These groups cover a range of compositions and properties, but they all have in common a microstructure consisting of roughly equal proportions of austenite and ferrite, high strength, good toughness and good corrosion resistance, especially to stress corrosion cracking (SCC) compared with similar austenitic stainless steels. Moreover, the development of a duplex stainless-steel microstructure requires lower levels of nickel in the composition than for a corresponding austenitic stainless steel with comparable pitting and crevice corrosion resistance, hence they cost less. This makes duplex stainless steels a very versatile and attractive group of alloys both commercially and technically. There are applications where duplex grades can be used as lower cost through-life options, in preference to coated carbon steels, a range of other stainless steels, and in some cases nickel alloys. This cost benefit is further emphasised if the design engineer can use the higher strength of duplex grades to construct vessels and pipework of lower wall thickness than would be the case if an austenitic grade or nickel alloy was being used. Hence, we find duplex stainless steels are widely used in many industries. In this paper their use in three industrial applications is reviewed, namely marine, heat exchangers, and the chemical and process industries. The corrosion resistance in the relevant fluids is discussed and some case histories highlight both successes and potential problems with duplex alloys in these industries. The paper shows how duplex stainless steels can provide cost-effective solutions in corrosive environments, and why they will be a standard corrosion resistant alloy (CRA) for many industries through the 21st century. Full article
(This article belongs to the Special Issue Corrosion and Protection of Stainless Steels)
Show Figures

Figure 1

13 pages, 8079 KiB  
Article
Finite Element Analysis on Block Shear Mechanism of Lean Duplex Stainless Steel Welded Connections
by YongHyun Cho, Dong-Keon Kim, JunSu Kim and TaeSoo Kim
Appl. Sci. 2021, 11(7), 3283; https://doi.org/10.3390/app11073283 - 6 Apr 2021
Cited by 4 | Viewed by 2699
Abstract
The block shear equations specified in the current AISC specification for structural steel buildings and North American cold-formed steel design specifications are based on research results of carbon steel bolted connections. These equations were found to be inapplicable for the welded connections in [...] Read more.
The block shear equations specified in the current AISC specification for structural steel buildings and North American cold-formed steel design specifications are based on research results of carbon steel bolted connections. These equations were found to be inapplicable for the welded connections in the literature. This issue is primarily associated with the use of the incorrect assumption on block shear failure mechanism. The present paper examines the accuracy of various block shear equations available in the design specifications and in the literature. The paper also examines the shear hardening capacity and the level of tensile stress over the critical net area with the results of finite element analysis, in which the fracture simulation is considered. It shows that the block shear capacities of lean duplex stainless steel welded connections can be predicted accurately using tensile stress equal to 1.25Fu, as proposed in the literature. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

30 pages, 13226 KiB  
Article
Numerical Prediction of Residual Stresses Distribution in Thin-Walled Press-Braked Stainless Steel Sections
by Ayad Mutafi, Noorfaizal Yidris, Seyed Saeid Rahimian Koloor and Michal Petrů
Materials 2020, 13(23), 5378; https://doi.org/10.3390/ma13235378 - 26 Nov 2020
Cited by 6 | Viewed by 3635
Abstract
Stainless steels are increasingly used in construction today, especially in harsh environments, in which steel corrosion commonly occurs. Cold-formed stainless steel structures are currently increasing in popularity because of its efficiency in load-bearing capacity and its appealing architectural appearance. Cold-rolling and press-braking are [...] Read more.
Stainless steels are increasingly used in construction today, especially in harsh environments, in which steel corrosion commonly occurs. Cold-formed stainless steel structures are currently increasing in popularity because of its efficiency in load-bearing capacity and its appealing architectural appearance. Cold-rolling and press-braking are the cold-working processes used in the forming of stainless steel sections. Press braking can produce large cross-sections from thin to thick-walled sections compared to cold-rolling. Cold-forming in press-braked sections significantly affect member behaviour and joints; therefore, they have attained great attention from many researchers to initiate investigations on those effects. This paper examines the behaviour of residual stress distribution of stainless steel press-braked sections by implementing three-dimensional finite element (3D-FE) technique. The study proposed a full finite element procedure to predict the residual stresses starting from coiling-uncoiling to press-braking. This work considered material anisotropy to examine its effect on the residual stress distribution. The technique adopted was compared with different finite element techniques in the literature. This study also provided a parametric study for three corner radius-to-thickness ratios looking at the through-thickness residual stress distribution of four stainless steels (i.e., ferritic, austenitic, duplex, lean duplex) in which have their own chemical composition. In conclusion, the comparison showed that the adopted technique provides a detailed prediction of residual stress distribution. The influence of geometrical aspects is more pronounced than the material properties. Neglecting the material anisotropy shows higher shifting in the neutral axis. The parametric study showed that all stainless steel types have the same stress through-thickness distribution. Moreover, R/t ratios’ effect is insignificant in all transverse residual stress distributions, but a slight change to R/t ratios can affect the longitudinal residual stress distribution. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

19 pages, 2503 KiB  
Article
Corrosion Fatigue Numerical Model for Austenitic and Lean-Duplex Stainless-Steel Rebars Exposed to Marine Environments
by Iñigo Calderón-Uríszar-Aldaca, Estibaliz Briz, Amaia Matanza, Ulises Martin and David M. Bastidas
Metals 2020, 10(9), 1217; https://doi.org/10.3390/met10091217 - 10 Sep 2020
Cited by 6 | Viewed by 3240
Abstract
Steel rebars of structures exposed to cyclic loadings and marine environments suffer an accelerated deterioration process by corrosion fatigue, causing catastrophic failure before service life ends. Hence, stainless steel rebars have been emerging as a way of mitigating pitting corrosion contribution to fatigue, [...] Read more.
Steel rebars of structures exposed to cyclic loadings and marine environments suffer an accelerated deterioration process by corrosion fatigue, causing catastrophic failure before service life ends. Hence, stainless steel rebars have been emerging as a way of mitigating pitting corrosion contribution to fatigue, despite the increased cost. The present study proposes a corrosion fatigue semiempirical model. Different samples of rebars made of carbon steel, 304L austenitic (ASS), 316L ASS, 2205 duplex (DSS), 2304 lean duplex stainless steels (LDSS), and 2001 LDSS have been embedded in concrete and exposed to a tidal marine environment for 6 months. Corrosion rates of each steel rebar have been obtained from direct measurement and, considering rebar standard requirements for fatigue and fracture mechanics, an iterative numerical model has been developed to derive the cycles to failure for each stress range level. The model resulted in a corrosion pushing factor for each material, able to be used as an accelerating coefficient for the Palmgren-Miner linear rule and as a performance indicator. Carbon steel showed the worst performance, while 2001 LDSS performed 1.5 times better with the best cost-performance ratio, and finally 2205 DSS performed 1.5 times better than 2001 LDSS. Full article
(This article belongs to the Special Issue Corrosion and Inhibition Processes)
Show Figures

Figure 1

14 pages, 5555 KiB  
Article
Initial Deformation Behaviors in Lean Duplex Stainless Steel
by Rosa Kim, Cheoljun Bae and Jongryoul Kim
Metals 2020, 10(7), 936; https://doi.org/10.3390/met10070936 - 11 Jul 2020
Cited by 5 | Viewed by 3174
Abstract
The deformation behaviors of the austenite phase in lean duplex stainless steels were investigated through uniaxial tension tests with different amounts of deformation. Microstructural analysis showed that in the initial deformation stage the deformation in austenite grains had a predominant effect on the [...] Read more.
The deformation behaviors of the austenite phase in lean duplex stainless steels were investigated through uniaxial tension tests with different amounts of deformation. Microstructural analysis showed that in the initial deformation stage the deformation in austenite grains had a predominant effect on the strain hardening behavior of the LDX-2101 steel. The initial deformation in the austenite grains was found to be mainly accommodated by the formation of stacking faults. As the deformation increased further, mechanical twins were generated by the initial stacking faults and sequentially interacted with dislocations to accommodate the strain. The analysis of dislocation behavior revealed that the deformation twinning process followed the three-layer twin formation mechanism. Full article
(This article belongs to the Special Issue Strengthening Mechanisms in Metallic Materials)
Show Figures

Figure 1

12 pages, 7209 KiB  
Article
Improvement of the Corrosion Resistance by Addition of Ni in Lean Duplex Stainless Steels
by Heon-Young Ha, Tae-Ho Lee, Sung-Dae Kim, Jae Hoon Jang and Joonoh Moon
Metals 2020, 10(7), 891; https://doi.org/10.3390/met10070891 - 4 Jul 2020
Cited by 11 | Viewed by 2825
Abstract
On newly developed Febalance-18Cr-7Mn-3Mo-3W-0.4N-(0.03, 0.57)Ni (in wt%) lean duplex stainless steels, the microstructure, element partitioning behavior, and resistance to pitting corrosion were investigated. After solution treatments, the two alloys were found to have similar microstructures in terms of phase fraction and [...] Read more.
On newly developed Febalance-18Cr-7Mn-3Mo-3W-0.4N-(0.03, 0.57)Ni (in wt%) lean duplex stainless steels, the microstructure, element partitioning behavior, and resistance to pitting corrosion were investigated. After solution treatments, the two alloys were found to have similar microstructures in terms of phase fraction and grain size, and have a precipitation-free matrix. The polarization tests revealed that the addition of Ni was beneficial to improve the resistance to pitting corrosion, which was confirmed by the rise in pitting and repassivation potentials. The uniform corrosion behavior and galvanic corrosion rate of the matrix were investigated to explain the improved pitting corrosion resistance of the Ni-added lean duplex stainless steel. As a result, it was found that the addition of Ni enhanced the resistance to uniform corrosion by reducing the galvanic corrosion rate between the ferrite and austenite phases in the lean duplex stainless steel; thus, the pit growth rate was decreased, leading to improvement of the resistance to pitting corrosion. Full article
(This article belongs to the Special Issue 10th Anniversary of Metals: Metallurgy and Metal Technology)
Show Figures

Figure 1

16 pages, 8629 KiB  
Article
Autogenous Fiber Laser Welding of 316L Austenitic and 2304 Lean Duplex Stainless Steels
by Michał Landowski, Aleksandra Świerczyńska, Grzegorz Rogalski and Dariusz Fydrych
Materials 2020, 13(13), 2930; https://doi.org/10.3390/ma13132930 - 30 Jun 2020
Cited by 78 | Viewed by 6118
Abstract
This study presents results of experimental tests on quality of dissimilar welded joints between 316L austenitic and 2304 lean duplex stainless steels, welded without ceramic backing. Fiber laser welded butt joints at a thickness of 8 mm were subjected to non-destructive testing (visual [...] Read more.
This study presents results of experimental tests on quality of dissimilar welded joints between 316L austenitic and 2304 lean duplex stainless steels, welded without ceramic backing. Fiber laser welded butt joints at a thickness of 8 mm were subjected to non-destructive testing (visual and penetrant), destructive testing (static tensile test, bending test, and microhardness measurements) and structure observations (macro- and microscopic examinations, SEM, element distribution characteristics, and ferrite content measurements). Non-destructive tests and metallographic examinations showed that the welded joints meet the acceptance criteria for B level in accordance with EN ISO 13919–1 standard. Also the results of the destructive tests confirmed the high quality of the joints: specimens were fractured in base material with lower strength—316L austenitic stainless steel and a 180° bending angle was obtained confirming the high plasticity of the joints. Microscopic examination, SEM and EDS analysis showed the distribution of alloying elements in joints. The microhardness of the autogenous weld metal was higher by about 20 HV0.2 than that of the lean duplex steel. Ferrite content in the root was about 37% higher than in the face of the weld. The Schaeffler phase diagram was used to predict the phase composition of the welded joints and sufficient compliance with the magnetic method was found. The presented procedure can be used for welding of 316L–2304 stainless steels dissimilar welded joints of 8 mm thickness without ceramic backing. Full article
(This article belongs to the Special Issue Development of Laser Welding and Surface Treatment of Metals)
Show Figures

Figure 1

14 pages, 7656 KiB  
Article
Microstructural Features and Ductile-Brittle Transition Behavior in Hot-Rolled Lean Duplex Stainless Steels
by O. Takahashi, Y. Shibui, P.G. Xu, S. Harjo, T. Suzuki and Y. Tomota
Quantum Beam Sci. 2020, 4(1), 16; https://doi.org/10.3390/qubs4010016 - 5 Mar 2020
Cited by 7 | Viewed by 5522
Abstract
The characteristics of texture and microstructure of lean duplex stainless steels with low Ni content produced through hot rolling followed by annealing were investigated locally with electron backscatter diffraction and globally with neutron diffraction. Then, the ductile–brittle transition (DBT) behavior was studied by [...] Read more.
The characteristics of texture and microstructure of lean duplex stainless steels with low Ni content produced through hot rolling followed by annealing were investigated locally with electron backscatter diffraction and globally with neutron diffraction. Then, the ductile–brittle transition (DBT) behavior was studied by Charpy impact test. It is found that the DBT temperature (DBTT) is strongly affected by the direction of crack propagation, depending on crystallographic texture and microstructural morphology; the DBTT becomes extremely low in the case of fracture accompanying delamination. A high Ni duplex stainless steel examined for comparison, shows a lower DBTT compared with the lean steel in the same crack propagating direction. The obtained results were also discussed through comparing with those of cast duplex stainless steels reported previously (Takahashi et al., Tetsu-to-Hagané, 100(2014), 1150). Full article
(This article belongs to the Special Issue Analysis of Strain, Stress and Texture with Quantum Beams)
Show Figures

Graphical abstract

19 pages, 6574 KiB  
Article
Influence of the Alkaline Reserve of Chloride-Contaminated Mortars on the 6-Year Corrosion Behavior of Corrugated UNS S32304 and S32001 Stainless Steels
by Asunción Bautista, Francisco Velasco and Manuel Torres-Carrasco
Metals 2019, 9(6), 686; https://doi.org/10.3390/met9060686 - 14 Jun 2019
Cited by 12 | Viewed by 3373
Abstract
The durability of two lean corrugated duplex stainless steel (UNS S32304 and S32001) bars manufactured for concrete reinforcement was studied in four different corrosive conditions. These duplex stainless steels are more economical than the most traditional, well-known duplex grade steels (UNS S32205). The [...] Read more.
The durability of two lean corrugated duplex stainless steel (UNS S32304 and S32001) bars manufactured for concrete reinforcement was studied in four different corrosive conditions. These duplex stainless steels are more economical than the most traditional, well-known duplex grade steels (UNS S32205). The research was carried out in mortar samples for six years. In half of the samples, the alkaline reserve had been previously decreased, and their pH was slightly below 12, while in the other half, the pH close to the bars remained as-manufactured. Moreover, there were samples with modified and non-modified alkaline reserve where chlorides had been previously added to the mortar which were exposed to high relative humidity. In other samples—which were partially immersed in 3.5% NaCl—the chlorides entered through the mortar by natural diffusion. The electrochemical behavior of the reinforcements in these conditions was periodically monitored through corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) measurements during the whole testing period. The samples were anodically polarized at the end of the exposure. The results prove that the decrease in the alkaline reserve of the mortars can affect the corrosion behavior of the studied lean duplex in environments with high chloride concentrations. The duplex microstructure of the reinforcements makes it so that the corrosion proceeds by selective attack of the phases. Full article
(This article belongs to the Special Issue Corrosion and Protection of Metals)
Show Figures

Figure 1

Back to TopTop