Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (235)

Search Parameters:
Keywords = leaf hyperspectral images

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2736 KB  
Article
Exploring the Hyperspectral Response of Quercetin in Anoectochilus roxburghii (Wall.) Lindl. Using Standard Fingerprints and Band-Specific Feature Analysis
by Ziyuan Liu, Haoyuan Ding, Sijia Zhao, Hongzhen Wang and Yiqing Xu
Plants 2025, 14(20), 3141; https://doi.org/10.3390/plants14203141 (registering DOI) - 11 Oct 2025
Abstract
Quercetin, a key flavonoid in Anoectochilus roxburghii (Wall.) Lindl., plays an important role in determining the pharmacological value of this medicinal herb. However, traditional methods for quercetin quantification are destructive and time-consuming, limiting their application in real-time quality monitoring. This study investigates the [...] Read more.
Quercetin, a key flavonoid in Anoectochilus roxburghii (Wall.) Lindl., plays an important role in determining the pharmacological value of this medicinal herb. However, traditional methods for quercetin quantification are destructive and time-consuming, limiting their application in real-time quality monitoring. This study investigates the hyperspectral response characteristics of quercetin using near-infrared hyperspectral imaging and establishes a feature-based model to explore its detectability in A. roxburghii leaves. We scanned standard quercetin solutions of known concentration under the same imaging conditions as the leaves to produce a dilution series. Feature-selection methods used included the successive projections algorithm (SPA), Pearson correlation, and competitive adaptive reweighted sampling (CARS). A 1D convolutional neural network (1D-CNN) trained on SPA-selected wavelengths yielded the best prediction performance. These key wavelengths—particularly the 923 nm band—showed strong theoretical and statistical relevance to quercetin’s molecular absorption. When applied to plant leaf spectra, the standard-trained model produced continuous predicted quercetin values that effectively distinguished cultivars with varying flavonoid contents. PCA visualization and ROC-based classification confirmed spectral transferability and potential for functional evaluation. This study demonstrates a non-destructive, spatially resolved, and biochemically interpretable strategy for identifying bioactive markers in plant tissues, offering a methodological basis for future hyperspectral inversion studies and intelligent quality assessment in herbal medicine. Full article
Show Figures

Figure 1

21 pages, 1768 KB  
Review
Evolution of Deep Learning Approaches in UAV-Based Crop Leaf Disease Detection: A Web of Science Review
by Dorijan Radočaj, Petra Radočaj, Ivan Plaščak and Mladen Jurišić
Appl. Sci. 2025, 15(19), 10778; https://doi.org/10.3390/app151910778 - 7 Oct 2025
Viewed by 326
Abstract
The integration of unmanned aerial vehicles (UAVs) and deep learning (DL) has significantly advanced crop disease detection by enabling scalable, high-resolution, and near real-time monitoring within precision agriculture. This systematic review analyzes peer-reviewed literature indexed in the Web of Science Core Collection as [...] Read more.
The integration of unmanned aerial vehicles (UAVs) and deep learning (DL) has significantly advanced crop disease detection by enabling scalable, high-resolution, and near real-time monitoring within precision agriculture. This systematic review analyzes peer-reviewed literature indexed in the Web of Science Core Collection as articles or proceeding papers through 2024. The main selection criterion was combining “unmanned aerial vehicle*” OR “UAV” OR “drone” with “deep learning”, “agriculture” and “leaf disease” OR “crop disease”. Results show a marked surge in publications after 2019, with China, the United States, and India leading research contributions. Multirotor UAVs equipped with RGB sensors are predominantly used due to their affordability and spatial resolution, while hyperspectral imaging is gaining traction for its enhanced spectral diagnostic capability. Convolutional neural networks (CNNs), along with emerging transformer-based and hybrid models, demonstrate high detection performance, often achieving F1-scores above 95%. However, critical challenges persist, including limited annotated datasets for rare diseases, high computational costs of hyperspectral data processing, and the absence of standardized evaluation frameworks. Addressing these issues will require the development of lightweight DL architectures optimized for edge computing, improved multimodal data fusion techniques, and the creation of publicly available, annotated benchmark datasets. Advancements in these areas are vital for translating current research into practical, scalable solutions that support sustainable and data-driven agricultural practices worldwide. Full article
Show Figures

Figure 1

21 pages, 2807 KB  
Article
Discrimination of Multiple Foliar Diseases in Wheat Using Novel Feature Selection and Machine Learning
by Sen Zhuang, Yujuan Huang, Jie Zhu, Qingluo Yang, Wei Li, Yangyang Gu, Tongjie Li, Hengbiao Zheng, Chongya Jiang, Tao Cheng, Yongchao Tian, Yan Zhu, Weixing Cao and Xia Yao
Remote Sens. 2025, 17(19), 3304; https://doi.org/10.3390/rs17193304 - 26 Sep 2025
Viewed by 293
Abstract
Wheat, a globally vital food crop, faces severe threats from numerous foliar diseases, which often infect agricultural fields, significantly compromising yield and quality. Rapid and accurate identification of the specific disease is crucial for ensuring food security. Although progress has been made in [...] Read more.
Wheat, a globally vital food crop, faces severe threats from numerous foliar diseases, which often infect agricultural fields, significantly compromising yield and quality. Rapid and accurate identification of the specific disease is crucial for ensuring food security. Although progress has been made in wheat foliar disease detection using RGB imaging and spectroscopy, most prior studies have focused on identifying the presence of a single disease, without considering the need to operationalize such methods, and it will be necessary to differentiate between multiple diseases. In this study, we systematically investigate the differentiation of three wheat foliar diseases (e.g., powdery mildew, stripe rust, and leaf rust) and evaluate feature selection strategies and machine learning models for disease identification. Based on field experiments conducted from 2017 to 2024 employing artificial inoculation, we established a standardized hyperspectral database of wheat foliar diseases classified by disease severity. Four feature selection methods were employed to extract spectral features prior to classification: continuous wavelet projection algorithm (CWPA), continuous wavelet analysis (CWA), successive projections algorithm (SPA), and Relief-F. The selected features (which are derived by CWPA, CWA, SPA, and Relief-F algorithm) were then used as predictors for three disease-identification machine learning models: random forest (RF), k-nearest neighbors (KNN), and naïve Bayes (BAYES). Results showed that CWPA outperformed other feature selection methods. The combination of CWPA and KNN for discriminating disease-infected (powdery mildew, stripe rust, leaf rust) and healthy leaves by using only two key features (i.e., 668 nm at wavelet scale 5 and 894 nm at wavelet scale 7), achieved an overall accuracy (OA) of 77% and a map-level image classification efficacy (MICE) of 0.63. This combination of feature selection and machine learning model provides an efficient and precise procedure for discriminating between multiple foliar diseases in agricultural fields, thus offering technical support for precision agriculture. Full article
Show Figures

Figure 1

31 pages, 8218 KB  
Article
Growth Stage-Specific Modeling of Chlorophyll Content in Korla Pear Leaves by Integrating Spectra and Vegetation Indices
by Mingyang Yu, Weifan Fan, Junkai Zeng, Yang Li, Lanfei Wang, Hao Wang and Jianping Bao
Agronomy 2025, 15(9), 2218; https://doi.org/10.3390/agronomy15092218 - 19 Sep 2025
Viewed by 299
Abstract
This study, leveraging near-infrared spectroscopy technology and integrating vegetation index analysis, aims to develop a hyperspectral imaging-based non-destructive inspection technique for swift monitoring of crop chlorophyll content by rapidly predicting leaf SPAD. To this end, a high-precision spectral prediction model was first established [...] Read more.
This study, leveraging near-infrared spectroscopy technology and integrating vegetation index analysis, aims to develop a hyperspectral imaging-based non-destructive inspection technique for swift monitoring of crop chlorophyll content by rapidly predicting leaf SPAD. To this end, a high-precision spectral prediction model was first established under laboratory conditions using ex situ lyophilized Leaf samples. This model provides a core algorithmic foundation for future non-destructive field applications. A systematic study was conducted to develop prediction models for leaf SPAD values of Korla fragrant pear at different growth stages (fruit-setting period, fruit swelling period and Maturity period). This involved comparing various spectral preprocessing algorithms (AirPLS, Savitzky–Golay, Multiplicative Scatter Correction, FD, etc.) and CARS Feature Selection methods for the screening of optimal spectral feature band. Subsequently, models were constructed using BP Neural Network and Support Vector Regression algorithms. The results showed that leaf samples at different growth stages exhibited significant differences in their spectral features within the 5000–7000 cm−1 (effective features for predicting chlorophyll (SPAD)) and 7000–8000 cm−1 (moisture absorption valley) bands. The Savitzky–Golay+FD (Savitzky–Golay smoothing combined with first-order derivative (FD)) preprocessing algorithm performed optimally in feature extraction. Growth period specificity models significantly outperformed whole growth period models, with the optimal models for the fruit-setting period and fruit swelling period being FD-CARS-BP (Coefficient of determination (R2) > 0.86), and the optimal model for the Maturity period being Savitzky–Golay-FD+Savitzky–Golay-CARS-BP (Coefficient_of_determination (R2) = 0.862). Furthermore, joint modeling of characteristic spectra and vegetation indices further improved prediction performance (Coefficient of determination (R2) > 0.85, Root Mean Square Error (RMSE) 2.5). This study presents a reliable method for non-destructive monitoring of chlorophyll content in Korla fragrant pears, offering significant value for nutrient management and stress early warning in precision agriculture. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 2726 KB  
Article
Genome-Wide Association Study of Chlorophyll Fluorescence and Hyperspectral Indices in Drought-Stressed Young Plants in Maize
by Lovro Vukadinović, Vlatko Galić, Maja Mazur, Antun Jambrović and Domagoj Šimić
Genes 2025, 16(9), 1068; https://doi.org/10.3390/genes16091068 - 11 Sep 2025
Viewed by 457
Abstract
Background/Objectives: Global maize production is considerably affected by drought aggravated by climate change. No genome-wide association study (GWAS) or candidate gene analysis has been performed using chlorophyll fluorescence (ChlF) and hyperspectral (HS) indices measured in young plants challenged by a water deficit. Our [...] Read more.
Background/Objectives: Global maize production is considerably affected by drought aggravated by climate change. No genome-wide association study (GWAS) or candidate gene analysis has been performed using chlorophyll fluorescence (ChlF) and hyperspectral (HS) indices measured in young plants challenged by a water deficit. Our objective was to conduct a GWAS of nine ChlF and HS indices measured in a diversity panel of drought-stressed young plants grown in a controlled environment using a maize single nucleotide polymorphism (SNP) 50k chip. Methods: A total of 165 inbred lines were genotyped using the Infinium Maize50K SNP array and association mapping was carried out using a mixed linear model. Results: The GWAS detected 37 respective SNP markers significantly associated with the maximum quantum yield of the primary photochemistry of a dark-adapted leaf (Phi_Po), the probability that a trapped exciton moves an electron into the electron transport chain further than QA (Psi_o), the normalized difference vegetation index (NDVI), the Zarco–Tejada and Miller Index (ZMI), greenness, modified chlorophyll absorption in reflectance (MCARI), modified chlorophyll absorption in reflectance 1 (MCARI1), and Gitelson and Merzlyak indices 1 and 2 (GM1 and GM2). Conclusions: Our results contribute to a better understanding of the genetic dissection of the ChlF and HS indices, which is directly or indirectly related to physiological processes in maize, supporting the use of HS imaging in the context of maize breeding. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics of Plant Drought Resistance)
Show Figures

Figure 1

30 pages, 19154 KB  
Article
Mapping of Leaf Pigments in Lettuce via Hyperspectral Imaging and Machine Learning
by João Vitor Ferreira Gonçalves, Renan Falcioni, Thiago Rutz, Andre Luiz Biscaia Ribeiro da Silva, Renato Herrig Furlanetto, Luís Guilherme Teixeira Crusiol, Karym Mayara de Oliveira, Caio Almeida de Oliveira, Nicole Ghinzelli Vedana, José Alexandre Melo Demattê and Marcos Rafael Nanni
Horticulturae 2025, 11(9), 1077; https://doi.org/10.3390/horticulturae11091077 - 5 Sep 2025
Viewed by 677
Abstract
The nutritional and commercial value of lettuce (Lactuca sativa L.) is determined by its foliar pigment and phenolic composition, which varies among cultivars. This study aimed to assess the capacity of hyperspectral and applied multispectral imaging, combined with machine learning algorithms, to [...] Read more.
The nutritional and commercial value of lettuce (Lactuca sativa L.) is determined by its foliar pigment and phenolic composition, which varies among cultivars. This study aimed to assess the capacity of hyperspectral and applied multispectral imaging, combined with machine learning algorithms, to predict and map key biochemical traits, such as chloroplastidic pigments (chlorophylls and carotenoids) and extrachloroplastidic pigments (anthocyanins, flavonoids, and phenolic compounds). Eleven cultivars exhibiting contrasting pigmentation profiles were grown under controlled greenhouse conditions, and their chlorophyll a and b, carotenoid, anthocyanin, flavonoid, and total phenolic contents were evaluated. Spectral reflectance data were acquired via a Headwall hyperspectral sensor and a MicaSense multispectral sensor, and the pigment contents were quantified via solvent extraction and a UV microplate reader. We developed predictive models via seven machine learning approaches, with partial least squares regression (PLSR) and random forest (RF) emerging as the most robust algorithms for pigment estimation. Chlorophyll a and b are highly and positively correlated (r > 0.9), which is consistent with their hyperspectral reflectance imaging results. The hyperspectral data consistently outperformed the multispectral data in terms of predictive accuracy (e.g., R2 = 0.91 and 0.76 for anthocyanins and flavonoids via RF) and phenolic compounds with R2 = 0.79, capturing subtle spectral features linked to biochemical variation. Spatial maps revealed strong genotype-dependent heterogeneity in pigment and phenolic distributions, supporting the potential of this approach for cultivar discrimination and pigment phenotyping. These findings demonstrate that hyperspectral imaging integrated with data-driven modelling offers a powerful, nondestructive framework for the biochemical monitoring of leafy vegetables, supporting breeding, precision agriculture, and food quality assessment. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

18 pages, 2596 KB  
Article
Integrating RGB Image Processing and Random Forest Algorithm to Estimate Stripe Rust Disease Severity in Wheat
by Andrzej Wójtowicz, Jan Piekarczyk, Marek Wójtowicz, Sławomir Królewicz, Ilona Świerczyńska, Katarzyna Pieczul, Jarosław Jasiewicz and Jakub Ceglarek
Remote Sens. 2025, 17(17), 2981; https://doi.org/10.3390/rs17172981 - 27 Aug 2025
Cited by 1 | Viewed by 659
Abstract
Accurate and timely assessment of crop disease severity is crucial for effective management strategies and ensuring sustainable agricultural production. Traditional visual disease scoring methods are subjective and labor-intensive, highlighting the need for automated, objective alternatives. This study evaluates the effectiveness of a model [...] Read more.
Accurate and timely assessment of crop disease severity is crucial for effective management strategies and ensuring sustainable agricultural production. Traditional visual disease scoring methods are subjective and labor-intensive, highlighting the need for automated, objective alternatives. This study evaluates the effectiveness of a model for field-based identification and quantification of stripe rust severity in wheat using red, green, blue RGB imaging. Based on crop reflectance hyperspectra (CRHS) acquired using a FieldSpec ASD spectroradiometer, two complementary approaches were developed. In the first approach, we estimate single leaf disease severity (LDS) under laboratory conditions, while in the second approach, we assess crop disease severity (CDS) from field-based RGB images. The high accuracy of both methods enabled the development of a predictive model for estimating LDS from CDS, offering a scalable solution for precision disease monitoring in wheat cultivation. The experiment was conducted on four winter wheat plots subjected to varying fungicide treatments to induce different levels of stripe rust severity for model calibration, with treatment regimes ranging from no application to three applications during the growing season. RGB images were acquired in both laboratory conditions (individual leaves) and field conditions (nadir and oblique perspectives), complemented by hyperspectral measurements in the 350–2500 nm range. To achieve automated and objective assessment of disease severity, we developed custom image-processing scripts and applied Random Forest classification and regression models. The models demonstrated high predictive performance, with the combined use of nadir and oblique RGB imagery achieving the highest classification accuracy (97.87%), sensitivity (100%), and specificity (95.83%). Oblique images were more sensitive to early-stage infection, while nadir images offered greater specificity. Spectral feature selection revealed that wavelengths in the visible (e.g., 508–563 nm and 621–703 nm) and red-edge/SWIR regions (around 1556–1767 nm) were particularly informative for disease detection. In classification models, shorter wavelengths from the visible range proved to be more useful, while in regression models, longer wavelengths were more effective. The integration of RGB-based image analysis with the Random Forest algorithm provides a robust, scalable, and cost-effective solution for monitoring stripe rust severity under field conditions. This approach holds significant potential for enhancing precision agriculture strategies by enabling early intervention and optimized fungicide application. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

20 pages, 3459 KB  
Article
Diagnosis of Potassium Content in Rubber Leaves Based on Spatial–Spectral Feature Fusion at the Leaf Scale
by Xiaochuan Luo, Rongnian Tang, Chuang Li and Cheng Qian
Remote Sens. 2025, 17(17), 2977; https://doi.org/10.3390/rs17172977 - 27 Aug 2025
Viewed by 652
Abstract
Hyperspectral imaging (HSI) technology has attracted extensive attention in the field of nutrient diagnosis for rubber leaves. However, the mainstream method of extracting leaf average spectra ignores the leaf spatial information in hyperspectral imaging and dilutes the response characteristics exhibited by nutrient-sensitive local [...] Read more.
Hyperspectral imaging (HSI) technology has attracted extensive attention in the field of nutrient diagnosis for rubber leaves. However, the mainstream method of extracting leaf average spectra ignores the leaf spatial information in hyperspectral imaging and dilutes the response characteristics exhibited by nutrient-sensitive local areas of leaves, thereby limiting the accuracy of modeling. This study proposes a spatial–spectral feature fusion method based on leaf-scale sub-region segmentation. It introduces a clustering algorithm to divide leaf pixel spectra into several subclasses, and segments sub-regions on the leaf surface based on clustering results. By optimizing the modeling contribution weights of leaf sub-regions, it improves the modeling and generalization accuracy of potassium diagnosis for rubber leaves. Experiments have been carried out to verify the proposed method, which is based on spatial–spectral feature fusion to outperform those of average spectral modeling. Specifically, after pixel-level MSC preprocessing, when the spectra of rubber leaf pixel regions were clustered into nine subsets, the diagnostic accuracy of potassium content in rubber leaves reached 0.97, which is better than the 0.87 achieved by average spectral modeling. Additionally, precision, macro-F1, and macro-recall all reached 0.97, which is superior to the results of average spectral modeling. Moreover, the proposed method is also superior to the spatial–spectral feature fusion method that integrates texture features. The visualization results of leaf sub-region weights showed that strengthening the modeling contribution of leaf edge regions is conducive to improving the diagnostic accuracy of potassium in rubber leaves, which is consistent with the response pattern of leaves to potassium. Full article
(This article belongs to the Special Issue Artificial Intelligence in Hyperspectral Remote Sensing Data Analysis)
Show Figures

Figure 1

23 pages, 4597 KB  
Article
High-Throughput UAV Hyperspectral Remote Sensing Pinpoints Bacterial Leaf Streak Resistance in Wheat
by Alireza Sanaeifar, Ruth Dill-Macky, Rebecca D. Curland, Susan Reynolds, Matthew N. Rouse, Shahryar Kianian and Ce Yang
Remote Sens. 2025, 17(16), 2799; https://doi.org/10.3390/rs17162799 - 13 Aug 2025
Viewed by 922
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become an intermittent yet economically significant disease of wheat in the Upper Midwest during the last decade. Because chemical and cultural controls remain ineffective, breeders rely on developing resistant varieties, yet [...] Read more.
Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become an intermittent yet economically significant disease of wheat in the Upper Midwest during the last decade. Because chemical and cultural controls remain ineffective, breeders rely on developing resistant varieties, yet visual ratings in inoculated nurseries are labor-intensive, subjective, and time-consuming. To accelerate this process, we combined unmanned-aerial-vehicle hyperspectral imaging (UAV-HSI) with a carefully tuned chemometric workflow that delivers rapid, objective estimates of disease severity. Principal component analysis cleanly separated BLS, leaf rust, and Fusarium head blight, with the first component explaining 97.76% of the spectral variance, demonstrating in-field pathogen discrimination. Pre-processing of the hyperspectral cubes, followed by robust Partial Least Squares (RPLS) regression, improved model reliability by managing outliers and heteroscedastic noise. Four variable-selection strategies—Variable Importance in Projection (VIP), Interval PLS (iPLS), Recursive Weighted PLS (rPLS), and Genetic Algorithm (GA)—were evaluated; rPLS provided the best balance between parsimony and accuracy, trimming the predictor set from 244 to 29 bands. Informative wavelengths clustered in the near-infrared and red-edge regions, which are linked to chlorophyll loss and canopy water stress. The best model, RPLS with optimal preprocessing and variable selection based on the rPLS method, showed high predictive accuracy, achieving a cross-validated R2 of 0.823 and cross-validated RMSE of 7.452, demonstrating its effectiveness for detecting and quantifying BLS. We also explored the spectral overlap with Sentinel-2 bands, showing how UAV-derived maps can nest within satellite mosaics to link plot-level scouting to landscape-scale surveillance. Together, these results lay a practical foundation for breeders to speed the selection of resistant lines and for agronomists to monitor BLS dynamics across multiple spatial scales. Full article
Show Figures

Figure 1

22 pages, 2809 KB  
Article
Evaluation of Baby Leaf Products Using Hyperspectral Imaging Techniques
by Antonietta Eliana Barrasso, Claudio Perone and Roberto Romaniello
Appl. Sci. 2025, 15(15), 8532; https://doi.org/10.3390/app15158532 - 31 Jul 2025
Viewed by 349
Abstract
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method [...] Read more.
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method to analyze the different hydration levels in baby-leaf products. The species being researched was spinach, harvested at the baby leaf stage. Utilizing a large dataset of 261 wavelengths from the hyperspectral imaging system, the feature selection minimum redundancy maximum relevance (FS-MRMR) algorithm was applied, leading to the development of a neural network-based prediction model. Finally, a mathematical classification model K-NN (k-nearest neighbors type) was developed in order to identify a transfer function capable of discriminating the hyperspectral data based on a threshold value of absolute leaf humidity. Five significant wavelengths were identified for estimating the moisture content of baby leaves. The resulting model demonstrated a high generalization capability and excellent correlation between predicted and measured data, further confirmed by the successful training, validation, and testing of a K-NN-based statistical classifier. The construction phase of the statistical classifier involved the use of the experimental dataset and the critical humidity threshold value of 0.83 (83% of leaf humidity) was considered, below which the baby-leaf crop requires the irrigation intervention. High percentages of correct classification were achieved for data within two humidity classes. Specifically, the statistical classifier demonstrated excellent performance, with 81.3% correct classification for samples below the threshold and 99.4% for those above it. The application of advanced spectral analysis and artificial intelligence methods has led to significant progress in leaf moisture analysis and prediction, yielding substantial implications for both agriculture and biological research. Full article
(This article belongs to the Special Issue Advances in Automation and Controls of Agri-Food Systems)
Show Figures

Figure 1

20 pages, 1916 KB  
Article
Pre-Symptomatic Detection of Nicosulfuron Phytotoxicity in Vegetable Soybeans via Hyperspectral Imaging and ResNet-18
by Yun Xiang, Tian Liang, Yuanpeng Bu, Shiqiang Cai, Jingjie Guo, Zhongjing Su, Jinxuan Hu, Chang Cai, Bin Wang, Zhijuan Feng, Guwen Zhang, Na Liu and Yaming Gong
Agronomy 2025, 15(7), 1691; https://doi.org/10.3390/agronomy15071691 - 12 Jul 2025
Viewed by 572
Abstract
Herbicide phytotoxicity represented a critical constraint on crop safety in soybean–corn intercropping systems, where early detection of herbicide stress is essential for implementing timely mitigation strategies to preserve yield potential. Current methodologies lack rapid, non-invasive approaches for early-stage prediction of herbicide-induced stress. To [...] Read more.
Herbicide phytotoxicity represented a critical constraint on crop safety in soybean–corn intercropping systems, where early detection of herbicide stress is essential for implementing timely mitigation strategies to preserve yield potential. Current methodologies lack rapid, non-invasive approaches for early-stage prediction of herbicide-induced stress. To develop and validate a spectral-feature-based prediction model for herbicide concentration classification, we conducted a controlled experiment exposing three-leaf-stage vegetable soybean (Glycine max L.) seedlings to aqueous solutions containing three concentrations of nicosulfuron herbicide (0.5, 1, and 2 mL/L) alongside a water control. Hyperspectral imaging of randomly selected seedling leaves was systematically performed at 1, 3, 5, and 7 days post-treatment. We developed predictive models for herbicide phytotoxicity through advanced machine learning and deep learning frameworks. Key findings revealed that the ResNet-18 deep learning model achieved exceptional classification performance when analyzing the 386–1004 nm spectral range at day 7 post-treatment: 100% accuracy in binary classification (herbicide-treated vs. water control), 93.02% accuracy in three-class differentiation (water control, low/high concentration), and 86.53% accuracy in four-class discrimination across specific concentration gradients (0, 0.5, 1, 2 mL/L). Spectral analysis identified significant reflectance alterations between 518 and 690 nm through normalized reflectance and first-derivative transformations. Subsequent model optimization using this diagnostic spectral subrange maintained 100% binary classification accuracy while achieving 94.12% and 82.11% accuracy for three- and four-class recognition tasks, respectively. This investigation demonstrated the synergistic potential of hyperspectral imaging and deep learning for early herbicide stress detection in vegetable soybeans. Our findings established a novel methodological framework for pre-symptomatic stress diagnostics while demonstrating the technical feasibility of employing targeted spectral regions (518–690 nm) in field-ready real-time crop surveillance systems. Furthermore, these innovations offer significant potential for advancing precision agriculture in intercropping systems, specifically through refined herbicide application protocols and yield preservation via early-stage phytotoxicity mitigation. Full article
Show Figures

Figure 1

13 pages, 1109 KB  
Technical Note
Detection of Bacterial Leaf Spot Disease in Sesame (Sesamum indicum L.) Using a U-Net Autoencoder
by Minju Lee, Jeseok Lee, Amit Ghimire, Yegyeong Bae, Tae-An Kang, Youngnam Yoon, In-Jung Lee, Choon-Wook Park, Byungwon Kim and Yoonha Kim
Remote Sens. 2025, 17(13), 2230; https://doi.org/10.3390/rs17132230 - 29 Jun 2025
Viewed by 618
Abstract
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. [...] Read more.
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. In this study, we extend this framework to a binary classification by employing a U-Net based deterministic autoencoder augmented with attention blocks to analyze HSI data of sesame plants inoculated with Pseudomonas syringae pv. sesami. Single-band grayscale images across the full spectral range were used to train the model on healthy samples, while the presence of disease was classified by assessing the reconstruction error, which we refer to as the anomaly score. The average classification accuracy in the visible region spectrum (430–689 nm) exceeded 0.8, with peaks at 641 nm and 689 nm. In comparison, the near-infrared region (>700 nm) attained an accuracy of approximately 0.6. Several visible bands demonstrated potential for early disease detection. Some lesion samples showed a gradual increase in anomaly scores over time, and notably, Band 23 (689 nm) exhibited exceeded anomaly scores even at early stages before visible symptoms appeared. This supports the potential of this wavelength for the early-stage detection of bacterial leaf spots in sesame. Full article
Show Figures

Graphical abstract

24 pages, 3464 KB  
Article
Assessment of Citrus Water Status Using Proximal Sensing: A Comparative Study of Spectral and Thermal Techniques
by Fiorella Stagno, Angela Randazzo, Giancarlo Roccuzzo, Roberto Ciorba, Tiziana Amoriello and Roberto Ciccoritti
Land 2025, 14(6), 1222; https://doi.org/10.3390/land14061222 - 6 Jun 2025
Viewed by 882
Abstract
Early detection of plant water status is crucial for efficient crop management. In this research, proximal sensing tools (i.e., hyperspectral imaging HSI and thermal IR camera) were used to monitor changes in spectral and thermal profiles of a citrus orchard in Sicily (Italy), [...] Read more.
Early detection of plant water status is crucial for efficient crop management. In this research, proximal sensing tools (i.e., hyperspectral imaging HSI and thermal IR camera) were used to monitor changes in spectral and thermal profiles of a citrus orchard in Sicily (Italy), managed under five irrigation systems. The irrigation systems differ in the amount of water distribution and allow four different strategies of deficit irrigation to be obtained. The physiological traits, stem water potential, net photosynthetic rate, stomatal conductance and the amount of leaf chlorophyll were measured over the crop’s growing season for each treatment. The proximal sensing data consisted of thermal and hyperspectral imagery acquired in June–September during the irrigation seasons 2023–2024 and 2024–2025. Significant variation in physiological traits was observed in relation to the different irrigation strategies, highlighting the highest plant water stress in July, in particular for the partial root-zone drying irrigation system. The water-use efficiency (WUE) values in subsurface drip irrigation were similar to the moderate deficit irrigation treatment and more efficient (up to 50%) as compared to control. Proximal sensing measures confirmed a different plant water status in relation to the five different irrigations strategies. Moreover, four spectral indices (Normalized Difference Vegetation Index NDVI; Water Index WI; Photochemical Reflectance Index PRI; Transformed Chlorophyll Absorption Ratio Index TCARI), calculated from HSI spectra, highlighted strong correlations with physiological traits, especially with stem water potential and the amount of leaf chlorophyll (coefficient of correlation ranged between −0.4 and −0.5). This study demonstrated the effectiveness of using proximal sensing tools in precision agriculture and ecosystem monitoring, helping to ensure optimal plant health and water use efficiency. Full article
Show Figures

Figure 1

26 pages, 18550 KB  
Article
Imaging of Leaf Water Patterns of Vitis vinifera Genotypes Infected by Plasmopara viticola
by Erich-Christian Oerke and Ulrike Steiner
Remote Sens. 2025, 17(10), 1788; https://doi.org/10.3390/rs17101788 - 20 May 2025
Viewed by 599
Abstract
The water status of plants is affected by abiotic and biotic environmental factors and influences the growth and yield formation of crops. Assessment of the leaf water content (LWC) of grapevine using hyperspectral imaging (1000–2500 nm) was investigated under controlled conditions for its [...] Read more.
The water status of plants is affected by abiotic and biotic environmental factors and influences the growth and yield formation of crops. Assessment of the leaf water content (LWC) of grapevine using hyperspectral imaging (1000–2500 nm) was investigated under controlled conditions for its potential to study the effects of the downy mildew pathogen Plasmopara viticola on LWC of host tissue in compatible and incompatible interactions. A calibration curve was established for the relationship between LWC and the Normalized Difference Leaf Water Index (NDLWI1937) that uses spectral information from the water absorption band and NIR for normalization. LWC was significantly lower for abaxial than for adaxial leaf sides, irrespective of grapevine genotype and health status. Reflecting details of leaf anatomy, vascular tissue exhibited effects reverse to intercostal areas. Effects of P. viticola on LWC coincided with the appearance of first sporangia on the abaxial side and increased during further pathogenesis. Continuous water loss ultimately resulted in tissue death, which progressed from the margins into central leaf areas. Tiny spots of brown leaf tissue related to the reaction of partial resistant cultivars could be monitored only at the sensor’s highest spatial resolution. Proximal sensing enabled an unprecedented spatial resolution of leaf water content in host–pathogen interactions and confirmed that resistance reactions may produce a combination of dead and still-living cells that enable the development of biotrophic P. viticola. Full article
Show Figures

Figure 1

20 pages, 3013 KB  
Article
Data-Driven Prediction of Grape Leaf Chlorophyll Content Using Hyperspectral Imaging and Convolutional Neural Networks
by Minglu Zeng, Xinghui Zhu, Ling Wan, Jian Xu and Luming Shen
Appl. Sci. 2025, 15(10), 5696; https://doi.org/10.3390/app15105696 - 20 May 2025
Cited by 2 | Viewed by 745
Abstract
Grapes, highly nutritious and flavorful fruits, require adequate chlorophyll to ensure normal growth and development. Consequently, the rapid, accurate, and efficient detection of chlorophyll content is essential. This study develops a data-driven integrated framework that combines hyperspectral imaging (HSI) and convolutional neural networks [...] Read more.
Grapes, highly nutritious and flavorful fruits, require adequate chlorophyll to ensure normal growth and development. Consequently, the rapid, accurate, and efficient detection of chlorophyll content is essential. This study develops a data-driven integrated framework that combines hyperspectral imaging (HSI) and convolutional neural networks (CNNs) to predict the chlorophyll content in grape leaves, employing hyperspectral images and chlorophyll a + b content data. Initially, the VGG16-U-Net model was employed to segment the hyperspectral images of grape leaves for leaf area extraction. Subsequently, the study discussed 15 different spectral preprocessing methods, selecting fast Fourier transform (FFT) as the optimal approach. Twelve one-dimensional CNN models were subsequently developed. Experimental results revealed that the VGG16-U-Net-FFT-CNN1-1 framework developed in this study exhibited outstanding performance, achieving an R2 of 0.925 and an RMSE of 2.172, surpassing those of traditional regression models. The t-test and F-test results further confirm the statistical robustness of the VGG16-U-Net-FFT-CNN1-1 framework. This provides a basis for estimating chlorophyll content in grape leaves using HSI technology. Full article
Show Figures

Figure 1

Back to TopTop