Assessment of Citrus Water Status Using Proximal Sensing: A Comparative Study of Spectral and Thermal Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics and Irrigation Treatments
2.2. Data Collection
2.3. Yield and Fruit Quality Traits
2.4. Data Analysis
2.5. Spectral Indices
2.6. Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. Plant Water Status Measurements
3.3. Proximal Sensing Evaluation
3.3.1. HSI Spectra Analysis
3.3.2. Reflectance Indices
3.3.3. Thermal Images
3.4. Fruit Qualitative Traits Variability
4. Discussion
4.1. Infrared Thermography Evaluation
4.2. Hyperspectral Images Evaluation
4.3. Spectral Indices Evaluation
4.4. Fruit Quality Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matese, A.; Baraldi, R.; Berton, A.; Cesaraccio, C.; Di Gennaro, S.F.; Duce, P.; Facini, O.; Mameli, M.G.; Piga, A.; Zaldei, A. Estimation of Water Stress in Grapevines Using Proximal and Remote Sensing Methods. Remote Sens. 2018, 10, 114. [Google Scholar] [CrossRef]
- Espinoza, C.Z.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines. Remote Sens. 2017, 9, 961. [Google Scholar] [CrossRef]
- Jarolmasjed, S.; Sankaran, S.; Kalcsits, L.; Khot, L.R. Proximal hyperspectral sensing of stomatal conductance to monitor the efficacy of exogenous abscisic acid applications in apple trees. Crop Prot. 2018, 109, 42–50. [Google Scholar] [CrossRef]
- Abbatantuono, F.; Lopriore, G.; Tallou, A.; Brillante, L.; Ali, S.A.; Camposeo, S.; Vivaldi, G.A. Recent progress on grapevine water status assessment through remote and proximal sensing: A review. Sci. Hortic. 2024, 338, 113658. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Yang, C.; de la Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal hyperspectral sensing of abiotic stresses in plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Parra, A.; Nortes, P.; Alarcón, J.J.; Ortuño, M.F. Searching for a deficit irrigation strategy to save water and improve fruit quality without compromising pomegranate production. Sci. Hortic. 2024, 324, 112631. [Google Scholar] [CrossRef]
- Carella, A.; Massenti, R.; Marra, F.P.; Catania, P.; Roma, E.; Lo Bianco, R. Combining proximal and remote sensing to assess ‘Calatina’ olive water status. Front. Plant Sci. 2024, 15, 1448656. [Google Scholar] [CrossRef]
- Romero, P.; García, J.; Botía, P. Cost-benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in Southeastern Spain. Irrig. Sci. 2006, 24, 175–184. [Google Scholar] [CrossRef]
- Dodd, I.C. Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signalling of abscisic acid. Funct. Plant Biol. 2007, 34, 439. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; de Neergaard, A.; Jensen, L.S.; Luxhøi, J.; Jensen, C.R. Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes. Plant Soil 2010, 337, 167–177. [Google Scholar] [CrossRef]
- Lamm, F.R.; Camp, C.R. Subsurface drip irrigation. Dev. Agric. Eng. 2007, 13, 473–551. [Google Scholar]
- Parra, M.; Hortelano, D.; García-Sánchez, F.; Intrigliolo, D.S.; Rubio-Asensio, J.S. Effects of Drip Irrigation Design on a Lemon and a Young Persimmon Orchard in Semi-Arid Conditions. Water 2021, 13, 1795. [Google Scholar] [CrossRef]
- Bazzi, C.L.; Schenatto, K.; Upadhyaya, S.D.; Rojo, S.; Kizer, E.; Ko-Madden, C.T. Optimal placement of proximal sensors for precision irrigation in tree crops. Precis. Agric. 2019, 20, 663–674. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. A review on the combination of deep learning techniques with proximal hyperspectral images in agriculture. Comput. Electron. Agric. 2023, 210, 107920. [Google Scholar] [CrossRef]
- Brugger, A.; Schramowski, P.; Paulus, S.; Steiner, U.; Kersting, K.; Mahlein, A.K. Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction. Plant Pathol. 2021, 70, 1572–1582. [Google Scholar] [CrossRef]
- Pineda, M.; Baron, M.; Perez-Bueno, M.L. Thermal imaging for plant stress detection and phenotyping. Remote Sens. 2021, 13, 68. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; Mathieu, V.; Martinez, S.; Labbé, S.; Delalande, M.; Regnard, J.L. Unravelling the responses of different apple varieties to water constraints by continuous field thermal monitoring. Sci. Hortic. 2022, 299, 111013. [Google Scholar] [CrossRef]
- Irik, H.A.; Ropelewska, E.; Cetin, N. Using spectral vegetation indices and machine learning models for predicting the yield of sugar beet (Beta vulgaris L.) under different irrigation treatments. Comput. Electron. Agric. 2024, 221, 109019. [Google Scholar] [CrossRef]
- Mertens, S.; Verbraeken, L.; Sprenger, H.; Demuynck, K.; Maleux, K.; Cannoot, B.; De Block, J.; Maere, S.; Nelissen, H.; Bonaventure, G.; et al. Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology. Front. Plant Sci. 2021, 12, 640914. [Google Scholar] [CrossRef]
- Modica, G.; Arcidiacono, F.; Puglisi, I.; Baglieri, A.; La Malfa, S.; Gentile, A.; Arbona, V.; Continella, A. Response to Water Stress of Eight Novel and Widely Spread Citrus Rootstocks. Plants 2025, 14, 773. [Google Scholar] [CrossRef] [PubMed]
- Aguado, A.; Frías, J.; García-Tejero, I.; Romero, F.; Muriel, J.L.; Capote, N. Towards the Improvement of Fruit-Quality Parameters in Citrus under Deficit Irrigation Strategies. ISRN Agron. 2012, 2012, 940896. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guide-lines for computing crop requirements. In Irrigation and Drainage; FAO: Rome, Italy, 1998; p. 56. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.H.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Baselga Yrisarry, J.; et al. A recommendation on standardized surface resistance for hourly calculation of reference EToby the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, I.; Nicolosi, E.; Vanella, D.; Lo Piero, A.R.; Stagno, F.; Saitta, D.; Roccuzzo, G.; Consoli, S.; Baglieri, A. Physiological and Biochemical Responses of Orange Trees to Different Deficit Irrigation Regimes. Plants 2019, 8, 423. [Google Scholar] [CrossRef]
- Stagno, F.; Intrigliolo, F.; Consoli, S.; Continella, A.; Roccuzzo, G. Response of Orange Trees to Deficit Irrigation Strategies: Effects on Plant Nutrition, Yield, and Fruit Quality. J. Irrig. Drain. Eng. 2015, 141, 04015014. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Antonucci, F.; Costa, C.; Talento, C.; Ciccoritti, R. An artificial class modelling approach to identify the most largely diffused cultivars of sweet cherry (Prunus avium L.) in Italy. Food Chem. 2020, 333, 127515. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciorba, R.; Ruggiero, G.; Amoriello, M.; Ciccoritti, R. A Performance Evaluation of Two Hyperspectral Imaging Systems for the Prediction of Strawberries’ Pomological Traits. Sensors 2024, 24, 174. [Google Scholar] [CrossRef]
- Castillo-Girones, S.; Munera, S.; Martinez-Sober, M.; Blasco, J.; Cubero, S.; Gomez-Sanchis, J. Artificial Neural Network in Agriculture, the core of artificial intelligence: What, When and Why. Comput. Electron. Agric. 2025, 230, 109938. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Ruggiero, G.; Ciorba, R.; Manetti, C.; Amoriello, M.; Amoriello, T. Shelf-life assessment of apricot fruit during cold storage by a portable visible and near-infrared hyperspectral imaging device. Eur. Food Res. Technol. 2025, 251, 545–558. [Google Scholar] [CrossRef]
- Elvanidi, A.; Katsoulas, N.; Ferentinos, K.P.; Bartzanas, T.; Kittas, C. Hyperspectral machine vision as a tool for water stress severity assessment in soilless tomato crop. Biosyst. Eng. 2018, 165, 25–35. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- García-Tejero, I.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L.; Martínez-García, G.; Jiménez-Bocanegra, J.A. Benefits of low-frequency irrigation in citrus orchards. Agron. Sustain. Dev. 2011, 31, 779–791. [Google Scholar] [CrossRef]
- García-Tejero, I.; Romero-Vicente, R.; Jiménez-Bocanegra, J.A.; Martínez-García, G.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agric. Water Manag. 2010, 97, 689–699. [Google Scholar] [CrossRef]
- Ballester, C.; Castel, J.; Testi, L.; Intrigliolo, D.S. Can heat-pulse sap flow measurements be used as continuous water stress indicators of citrus trees? Irrig. Sci. 2013, 31, 1053–1063. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Antunez-Quilobran, J.; Baffico-Hernandez, A.; Avila-Sanchez, C.; Ortega-Farías, S.; Espinoza, S.; Gajardo, J.; Mora, M.; Fuentes, S. Performance assessment of thermal infrared cameras of different resolutions to estimate tree water status from two cherry cultivars: An alternative to midday stem water potential and stomatal conductance. J. Sens. 2020, 20, 3596. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Zarco-Tejada, P.J. Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrig. Sci. 2015, 33, 81–93. [Google Scholar] [CrossRef]
- Nobel, P.S. Physiochemical and Environmental Plant Physiology, 4th ed.; Academic Press: Amsterdam, The Netherlands, 2009; 582p. [Google Scholar]
- Wen, T.; Li, J.H.; Wang, Q.; Gao, Y.Y.; Hao, G.F.; Song, B.A. Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. Sci. Total Environ. 2023, 899, 165626. [Google Scholar] [CrossRef]
- Velazquez-Chavez, L.J.; Daccache, A.; Mohamed, A.Z.; Centritto, M. Plant-based and remote sensing for water status monitoring of orchard crops: Systematic review and meta-analysis. Agric. Water Manag. 2024, 303, 109051. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection. Sens. Actuators A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Jamlos, M.F.; Omar, A.F.; Nordin, M.A.H.; Raypah, M.E.A.; Mamat, R.; Jamlos, M.A.; Muncan, J. Quantifying the impact of varied NPK fertilizer levels on oil palm plants during the nursery stage: A Vis-NIR spectral reflectance analysis. Smart Agric. Technol. 2025, 11, 100864. [Google Scholar] [CrossRef]
- Zhu, K.; Sun, Z.; Zhao, F.; Yang, T.; Tian, Z.; Lai, J.; Zhu, W.; Long, B. Relating hyperspectral vegetation indices with soil salinity at different depths for the diagnosis of winter wheat salt stress. Remote Sens. 2021, 13, 250. [Google Scholar] [CrossRef]
- Watt, M.; Leonardo, E.M.C.; Estarija, H.J.C.; Massam, P.; de Silva, D.; O’Neill, R.; Lane, R.; McDougal, R.; Buddenbaum, H.; Zarco-Tejada, P.J. Long-term effects of water stress on hyperspectral remote sensing indicators in young radiata pine. For. Ecol. Manag. 2021, 502, 119707. [Google Scholar] [CrossRef]
- Cogato, A.; Jewan, S.Y.Y.; Wu, L.; Marinello, F.; Meggio, F.; Sivilotti, P.; Sozzi, M.; Pagay, V. Water Stress Impacts on Grapevines (Vitis vinifera L.) in Hot Environments: Physiological and Spectral Responses. Agronomy 2022, 12, 1819. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gamon, J.A.; Solovchenko, A. Multiple drivers of seasonal change in PRI: Implications for photosynthesis 1. Leaf level. Remote Sens. Environ. 2017, 191, 110–116. [Google Scholar] [CrossRef]
- Cao, Z.; Yao, X.; Liu, H.; Liu, B.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Comparison of the abilities of vegetation indices and photosynthetic parameters to detect heat stress in wheat. Agric. For. Meteorol. 2019, 265, 121–136. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, X.; Qin, Q.; Li, J.; Zhang, T.; Sun, Y. Spectral characteristics of copper-stressed vegetation leaves and further understanding of the copper stress vegetation index. Int. J. Remote Sens. 2019, 40, 4473–4488. [Google Scholar] [CrossRef]
- Colovic, M.; Yu, K.; Todorovic, M.; Cantore, V.; Hamze, M.; Albrizio, R.; Stellacci, A.M. Hyperspectral Vegetation Indices to Assess Water and Nitrogen Status of Sweet Maize Crop. Agronomy 2022, 12, 2181. [Google Scholar] [CrossRef]
- Nagaz, K.; El Mokh, F.; Ben Hassen, N.; Masmoudi, M.M.; Ben Mechlia, N.; Baba Sy, M.O.; Belkheiri, O.; Ghiglieri, G. Impact of Deficit Irrigation on Yield and Fruit Quality of Orange Trees (Citrus sinensis, L. Osbeck, CV. Meski Maltaise) in Southern Tunisia. Irrig. Drain. 2017, 69, 186–193. [Google Scholar] [CrossRef]
- Kallsen, C.E.; Sanden, B.; Arpaia, M.L. Early navel orange fruit yield, quality, and maturity in response to late-season water stress. HortScience 2011, 46, 1163–1169. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, M.; Srivastava, A.K.; Mahmood, U.H.; Ishfaq, M.; Shi, X.; Zhang, F. Climate changes altered the citrus fruit quality: A 9-year case study in China. Sci. Total Environ. 2024, 923, 171406. [Google Scholar] [CrossRef] [PubMed]
- Dhungana, S.R.; Braun, D.M. Sugar transporters in grasses: Function and modulation in source and storage tissues. J. Plant Physiol. 2021, 266, 153541. [Google Scholar] [CrossRef]
- Dong, Z.H.; Srivastava, A.K.; Tan, Q.L.; Riaz, M.; Lv, X.L.; Liu, X.D.; Hu, C.X. Effect of different spring and summer fertilization proportions on fruit yield, quality, and nutrient use efficiency of Newhall orange (Citrus sinensis Osbeck) orchard in Ganzhou province. J. Plant Nutr. 2023, 46, 2144–2154. [Google Scholar] [CrossRef]
- Gao, G.; Yan, L.; Tong, K.; Yu, H.; Lu, M.; Wang, L.; Niu, Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. Sci. Total Environ. 2024, 912, 169618. [Google Scholar] [CrossRef]
- Silveira, L.K.; Pavão, G.C.; dos Santos Dias, C.T.; Quaggio, J.A.; de Matos Pires, R.C. Deficit irrigation effect on fruit yield, quality and water use efficiency: A long-term study on Pêra-IAC sweet orange. Agric. Water Manag. 2020, 231, 106019. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Sales, C.; Beltrán, J.; Gómez-Cadenas, A.; Arbona, V. Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front. Plant Sci. 2017, 7, 1954. [Google Scholar] [CrossRef]
- Fraser, C.M.; Chapple, C. The phenylpropanoid pathway in Arabidopsis. Arab. Book 2011, 9, e0152. [Google Scholar] [CrossRef]
Treatments | IA (mm) | |
---|---|---|
2023 | 2024 | |
SPR | 2500 | 2152 |
SDI | 2447 | 2609 |
SSDI | 1866 | 1936 |
PRD | 1489 | 1723 |
Sub-PRD | 1193 | 1298 |
Treatment | SPAD | gs mmol m2 s−1 | A 0–100 µmol m2 s−1 | SPAD | gs mmol m2 s−1 | A 0–100 µmol m−2 s−1 |
---|---|---|---|---|---|---|
2023 | 2024 | |||||
SPR | 66.8 ± 1.3 | 0.023 ± 0.002 | 1.34 ± 0.13 | 76.9 ± 1.5 | 0.031 ± 0.006 | 2.86 ± 0.47 |
SDI | 64.9 ± 1.5 | 0.023 ± 0.002 | 1.63 ± 0.16 | 75.7 ± 1.8 | 0.046 ± 0.005 | 3.03 ± 0.50 |
SSDI | 62.7 ± 1.5 | 0.028 ± 0.004 | 1.64 ± 0.16 | 75.0 ± 1.9 | 0.035 ± 0.002 | 3.51 ± 0.44 |
PRD | 62.7 ± 1.4 | 0.021 ± 0.001 | 1.31 ± 0.13 | 74.6 ± 1.7 | 0.039 ± 0.008 | 2.99 ± 0.47 |
Sub-PRD | 60.5 ± 1.3 | 0.027 ± 0.002 | 1.69 ± 0.17 | 77 ± 1.8 | 0.040 ± 0.004 | 2.91 ± 0.52 |
Treatment | NDVI | WI | PRI | TCARI | |
---|---|---|---|---|---|
June 2023 | Sub-PRD | 0.880 ± 0.004 b | 0.971 ± 0.019 a | −0.014 ± 0.003 a | 0.095 ± 0.025 a |
SSDI | 0.889 ± 0.013 ab | 0.949 ± 0.010 b | −0.012 ± 0.003 a | 0.090 ± 0.022 a | |
PRD | 0.875 ± 0.016 ab | 0.964 ± 0.009 ab | −0.014 ± 0.004 a | 0.082 ± 0.020 a | |
SDI | 0.874 ± 0.010 b | 0.963 ± 0.020 a | −0.014 ± 0.005 a | 0.077 ± 0.019 a | |
SPR | 0.897 ± 0.011 a | 0.944 ± 0.018 ab | −0.014 ± 0.004 a | 0.093 ± 0.021 a | |
July 2023 | Sub-PRD | 0.877 ± 0.005 b | 0.952 ± 0.011 ab | −0.035 ± 0.011 a | 0.202 ± 0.063 a |
SSDI | 0.894 ± 0.005 a | 0.957 ± 0.026 ab | −0.030 ± 0.011 a | 0.173 ± 0.028 a | |
PRD | 0.905 ± 0.023 a | 0.919 ± 0.024 b | −0.030 ± 0.007 a | 0.190 ± 0.031 a | |
SDI | 0.902 ± 0.002 a | 0.950 ± 0.004 a | −0.025 ± 0.007 a | 0.168 ± 0.030 a | |
SPR | 0.896 ± 0.027 ab | 0.922 ± 0.022 b | −0.021 ± 0.009 a | 0.240 ± 0.124 a | |
September 2023 | Sub-PRD | 0.891 ± 0.014 a | 0.979 ± 0.024 a | −0.024 ± 0.001 b | 0.127 ± 0.005 a |
SSDI | 0.894 ± 0.023 a | 0.979 ± 0.023 a | −0.012 ± 0.006 a | 0.117 ± 0.052 ab | |
PRD | 0.900 ± 0.012 a | 0.971 ± 0.006 a | −0.013 ± 0.010 a | 0.106 ± 0.030 ab | |
SDI | 0.908 ± 0.005 a | 0.979 ± 0.016 a | −0.012 ± 0.004 a | 0.100 ± 0.024 ab | |
SPR | 0.896 ± 0.017 a | 0.968 ± 0.015 a | −0.001 ± 0.010 a | 0.089 ± 0.021 b | |
June 2024 | Sub-PRD | 0.880 ± 0.003 b | 0.969 ± 0.023 a | −0.014 ± 0.003 a | 0.096 ± 0.029 a |
SSDI | 0.889 ± 0.014 ab | 0.949 ± 0.009 a | −0.011 ± 0.005 a | 0.091 ± 0.021 a | |
PRD | 0.876 ± 0.018 ab | 0.964 ± 0.011 a | −0.017 ± 0.004 a | 0.082 ± 0.016 a | |
SDI | 0.874 ± 0.014 ab | 0.963 ± 0.013 a | −0.015 ± 0.010 a | 0.078 ± 0.021 a | |
SPR | 0.897 ± 0.015 a | 0.944 ± 0.029 a | −0.014 ± 0.006 a | 0.094 ± 0.011 a | |
July 2024 | Sub-PRD | 0.828 ± 0.008 b | 0.958 ± 0.006 a | −0.020 ± 0.008 a | 0.085 ± 0.019 a |
SSDI | 0.865 ± 0.015 a | 0.945 ± 0.008 ab | −0.021 ± 0.005 a | 0.087 ± 0.022 a | |
PRD | 0.850 ± 0.030 ab | 0.948 ± 0.023 ab | −0.023 ± 0.013 a | 0.087 ± 0.062 a | |
SDI | 0.862 ± 0.030 ab | 0.929 ± 0.027 ab | −0.017 ± 0.015 a | 0.069 ± 0.034 a | |
SPR | 0.880 ± 0.005 a | 0.921 ± 0.020 b | −0.013 ± 0.008 a | 0.098 ± 0.035 a | |
September 2024 | Sub-PRD | 0.860 ± 0.007 b | 0.965 ± 0.016 a | −0.018 ± 0.002 a | 0.075 ± 0.015 a |
SSDI | 0.861 ± 0.016 ab | 0.959 ± 0.008 a | −0.026 ± 0.003 b | 0.086 ± 0.005 a | |
PRD | 0.844 ± 0.029 ab | 0.958 ± 0.005 a | −0.026 ± 0.003 b | 0.098 ± 0.022 a | |
SDI | 0.862 ± 0.017 ab | 0.945 ± 0.007 ab | −0.026 ± 0.004 b | 0.070 ± 0.017 a | |
SPR | 0.879 ± 0.009 a | 0.933 ± 0.007 b | −0.015 ± 0.004 a | 0.061 ± 0.019 a |
Sub-PRD | SSDI | PRD | SDI | SPR | ||
---|---|---|---|---|---|---|
Year 2023 | June | 26.6 ± 0.3 a | 27.0 ± 0.9 a | 25.7 ± 0.5 a | 26.4 ± 0.8 a | 26.8 ± 0.6 a |
July | 36.7 ± 0.5 b | 38.7 ± 0.6 a | 37.6 ± 0.2 b | 37.4 ± 08 b | 35.8 ± 0.3 c | |
September | 32.2 ± 0.5 a | 31.8 ± 0.9 a | 32.9 ± 0.7 a | 33.1 ± 0.5 a | 31.8 ± 0.3 a | |
Year 2024 | June | 35.9 ± 0.4 a | 35.8 ± 0.7 a | 36.7 ± 0.2 a | 36.4 ± 0.4 a | 36.5 ± 0.1 a |
July | 36.0 ± 0.1 b | 38.1 ± 0.6 a | 36.0 ± 0.5 b | 36.2 ± 0.5 b | 34.5 ± 0.3 c | |
September | 28.5 ± 1.1 a | 28.9 ± 1.4 a | 28.7 ± 1.1 a | 27.7 ± 0.5 a | 29.1 ± 0.8 a |
Sub-PRD | SSDI | PRD | SDI | SPR | |
---|---|---|---|---|---|
Season 2023 | |||||
WUE | 4.2 ± 0.6 b | 7.1 ± 0.6 a | 7.2 ± 1.1 a | 3.9 ± 1.0 b | 3.5 ± 0.4 b |
Weight (g) | 224 ± 28 a | 228 ± 12 a | 222 ± 21 a | 227 ± 8 a | 225 ± 9 a |
Yield (kg ha−1) | 5.0 ± 1.3 b | 13.3 ± 1.8 a | 10.8 ± 2.9 a | 9.6 ± 4.3 ab | 8.7 ± 1.5 a |
Season 2024 | |||||
WUE | 26.4 ± 2.4 a | 24.7 ± 6.0 a | 22.8 ± 5.9 a | 12.4 ± 4.0 b | 14.3 ± 2.1 b |
Weight (g) | 191 ± 18 ab | 182 ± 8 b | 184 ± 17 ab | 228 ± 58 a | 184 ± 10 ab |
Yield (kg ha−1) | 26.0 ± 2.4 ab | 36.9 ± 9.0 a | 30.1 ± 8.2 ab | 24.4 ± 7.9 b | 23.5 ± 3.5 b |
L* | a* | b* | CI | |||
---|---|---|---|---|---|---|
PEEL | Year 2023 | Sub-PRD | 77.33 ± 2.69 Aa | 30.79 ± 2.31 Aa | 77.99 ± 2.91 Aa | 5.14 ± 0.75 Bb |
SSDI | 77.66 ± 1.37 Aa | 32.11 ± 1.17 Aa | 77.91 ± 2.08 Aa | 5.32 ± 0.44 Bb | ||
PRD | 77.44 ± 1.55 Aa | 32.36 ± 0.77 Aa | 78.41 ± 2.27 Aa | 5.34 ± 0.38 Bb | ||
SDI | 77.87 ± 1.00 Aa | 32.76 ± 1.12 Aa | 78.88 ± 1.54 Aa | 5.34 ± 0.36 Bb | ||
SPR | 75.48 ± 0.97 Aa | 34.66 ± 0.95 Aa | 76.10 ± 1.48 Aa | 6.04 ± 0.30 Ba | ||
Year 2024 | Sub-PRD | 64.46 ± 2.07 Ba | 32.73 ± 2.56 Aa | 61.43 ± 3.71 Ba | 8.33 ± 1.31 Aa | |
SSDI | 65.25 ± 0.60 Ba | 33.42 ± 0.48 Aa | 63.23 ± 1.85 Ba | 8.11 ± 0.39 Aa | ||
PRD | 64.72 ± 1.30 Ba | 33.84 ± 0.99 Aa | 60.95 ± 3.72 Ba | 8.62 ± 0.81 Aa | ||
SDI | 64.25 ± 1.61 Ba | 32.19 ± 2.54 Aa | 61.20 ± 1.59 Ba | 8.26 ± 0.94 Aa | ||
SPR | 63.26 ± 1.85 Ba | 33.07 ± 1.65 Aa | 62.62 ± 2.31 Ba | 8.80 ± 0.96 Aa | ||
PULP | Year 2023 | Sub-PRD | 54.00 ± 4.61 Aa | 19.07 ± 0.88 Aa | 26.88 ± 6.26 Aa | 13.90 ± 2.34 ABab |
SSDI | 56.12 ± 7.11 Aa | 20.79 ± 2.18 Aa | 28.40 ± 7.31 Aa | 15.46 ± 8.57 ABab | ||
PRD | 58.13 ± 4.86 Aa | 20.41 ± 1.18 Aa | 25.07 ± 5.02 Aa | 16.27 ± 4.81 ABab | ||
SDI | 53.43 ± 1.97 Aa | 20.30 ± 0.74 Aa | 33.44 ± 4.58 Aa | 10.82 ± 1.99 Bb | ||
SPR | 48.21 ± 3.66 Aa | 19.98 ± 1.17 Aa | 30.95 ± 5.27 Aa | 12.07 ± 2.91 Bb | ||
Year 2024 | Sub-PRD | 55.21 ± 3.38 Aa | 15.42 ± 1.88 Ba | 26.59 ± 4.50 Aa | 10.95 ± 3.59 Bb | |
SSDI | 51.39 ± 1.98 Aa | 16.31 ± 1.60 Ba | 18.20 ± 2.80 Bb | 17.88 ± 2.18 Aa | ||
PRD | 49.91 ± 2.68 Aa | 17.05 ± 1.15 Ba | 18.43 ± 1.31 Bb | 18.54 ± 0.44 Aa | ||
SDI | 52.39 ± 1.67 Aa | 15.81 ± 1.77 Ba | 20.16 ± 1.40 Bb | 15.04 ± 3.18 ABab | ||
SPR | 52.93 ± 2.66 Aa | 16.58 ± 1.33 Ba | 20.31 ± 3.64 Bb | 16.00 ± 4.48 ABab |
TSS (g 100 g−1 FW) | TA (g L−1 FW) | TSS:TA | DM (g 100 g−1 FW) | ||
---|---|---|---|---|---|
Year 2023 | Sub-PRD | 14.0 ± 0.4 Aa | 1.6 ± 0.2 Aab | 8.8 ± 0.3 Bb | 17.8 ± 0.3 Aa |
SSDI | 13.4 ± 0.6 Aa | 1.5 ± 0.2 Aab | 9.0 ± 1.3 Aab | 18.0 ± 0.9 Aa | |
PRD | 14.1 ± 0.5 Aa | 1.7 ± 0.1 Aa | 8.5 ± 0.3 Bb | 17.8 ± 0.6 Aa | |
SDI | 15.0 ± 0.9 Aa | 1.5 ± 0.2 Aab | 10.4 ± 0.6 Aa | 17.4 ± 0.5 Aa | |
SPR | 12.2 ± 0.2 Ab | 1.4 ± 0.1 Ab | 9.3 ± 0.7 Bab | 16.3 ± 0.5 Ab | |
Year 2024 | Sub-PRD | 11.6 ± 0.7 Ba | 1.1 ± 0.1 Ba | 10.7 ± 0.9 Aa | 15.2 ± 0.9 Ba |
SSDI | 11.3 ± 0.4 Ba | 1.1 ± 0.1 Ba | 10.4 ± 0.9 Aa | 16.7 ± 0.8 Aa | |
PRD | 11.7 ± 0.3 Ba | 1.2 ± 0.1 Ba | 9.9 ± 0.3 Aa | 14.2 ± 0.4 Bb | |
SDI | 11.6 ± 0.2 Ba | 1.1 ± 0.1 Ba | 10.9 ± 0.9 Aa | 14.6 ± 0.6 Bb | |
SPR | 11.8 ± 0.4 Ba | 1.2 ± 0.1 Ba | 10.2 ± 0.3 Aa | 15.7 ± 0.9 ABab |
TPC (mg 100 g−1 GAE FW) | TMA (mg L−1 C3GE FW) | AAC (mg 100 g−1 AAE FW) | AA (mg 100 g−1 TE FW) | ||
---|---|---|---|---|---|
Year 2023 | Sub-PRD | 178 ± 4 Aa | 128 ± 7 Aa | 66 ± 4 Aa | 100 ± 20 Aa |
SSDI | 188 ± 15 Aa | 51 ± 11 Ac | 67 ± 4 Aa | 120 ± 20 Aa | |
PRD | 152 ± 10 Ab | 72 ± 8 Ab | 62 ± 5 Aa | 73 ± 10 Bb | |
SDI | 150 ± 6 Ab | 55 ± 4 Ac | 64 ± 4 Aa | 97 ± 16 Aa | |
SPR | 190 ± 20 Aa | 74 ± 6 Ab | 61 ± 5 Aa | 30 ± 10 Bc | |
Year 2024 | Sub-PRD | 92 ± 9 Bb | 17 ± 5 Bb | 59 ± 3 Aa | 62 ± 10 Bb |
SSDI | 108 ± 4 Ba | 36 ± 6 Ba | 64 ± 3 Aa | 59 ± 10 Bb | |
PRD | 98 ± 3 Bb | 31 ± 7 Ba | 61 ± 2 Aa | 50 ± 5 Bb | |
SDI | 119 ± 2 Ba | 16 ± 3 Bb | 62 ± 4 Aa | 136 ± 2 Aa | |
SPR | 109 ± 10 Ba | 29 ± 4 Ba | 62 ± 2 Aa | 40 ± 4 Bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stagno, F.; Randazzo, A.; Roccuzzo, G.; Ciorba, R.; Amoriello, T.; Ciccoritti, R. Assessment of Citrus Water Status Using Proximal Sensing: A Comparative Study of Spectral and Thermal Techniques. Land 2025, 14, 1222. https://doi.org/10.3390/land14061222
Stagno F, Randazzo A, Roccuzzo G, Ciorba R, Amoriello T, Ciccoritti R. Assessment of Citrus Water Status Using Proximal Sensing: A Comparative Study of Spectral and Thermal Techniques. Land. 2025; 14(6):1222. https://doi.org/10.3390/land14061222
Chicago/Turabian StyleStagno, Fiorella, Angela Randazzo, Giancarlo Roccuzzo, Roberto Ciorba, Tiziana Amoriello, and Roberto Ciccoritti. 2025. "Assessment of Citrus Water Status Using Proximal Sensing: A Comparative Study of Spectral and Thermal Techniques" Land 14, no. 6: 1222. https://doi.org/10.3390/land14061222
APA StyleStagno, F., Randazzo, A., Roccuzzo, G., Ciorba, R., Amoriello, T., & Ciccoritti, R. (2025). Assessment of Citrus Water Status Using Proximal Sensing: A Comparative Study of Spectral and Thermal Techniques. Land, 14(6), 1222. https://doi.org/10.3390/land14061222