Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = leaf hair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1946 KiB  
Article
Geographic Influence and Metabolomics-Driven Discovery of 5-Alpha Reductase Inhibitors in Tectona grandis L.f. (Teak) Leaves
by Nutchaninad Tanuphol, Corine Girard, Prapapan Temkitthawon, Nungruthai Suphrom, Nitra Nuengchamnong, Tongchai Saesong, Kamonlak Insumrong, Abdulaziz Wadeng, Wiyada Khangkhachit, Andy Zedet, Ratchadaree Intayot, Siriporn Jungsuttiwong, Anuchit Plubrukarn, Francois Senejoux and Kornkanok Ingkaninan
Molecules 2025, 30(14), 2895; https://doi.org/10.3390/molecules30142895 - 8 Jul 2025
Viewed by 403
Abstract
The inhibition of steroid 5-alpha reductase (S5AR), a key mechanism for managing dihydrotestosterone-dependent conditions, has been demonstrated in teak (Tectona grandis L.f.) leaf extracts. Our recent clinical study confirmed the effectiveness of a hair growth formulation containing teak leaf extract in males [...] Read more.
The inhibition of steroid 5-alpha reductase (S5AR), a key mechanism for managing dihydrotestosterone-dependent conditions, has been demonstrated in teak (Tectona grandis L.f.) leaf extracts. Our recent clinical study confirmed the effectiveness of a hair growth formulation containing teak leaf extract in males with androgenic alopecia. However, significant variability in S5AR inhibitory activity among teak leaf samples from different regions underscores the need for quality control of raw materials. This study applied a metabolomics approach to investigate the influence of leaf age, harvesting period, and geographic origin on chemical composition and S5AR inhibitory activity, as well as to identify active S5AR inhibitors. Geographic origin emerged as the primary determinant of variations in chemical profiles and S5AR inhibitory activity. Using orthogonal partial least squares analysis, six diterpenoid S5AR inhibitors were identified, including four compounds reported for the first time as S5AR inhibitors: rhinocerotinoic acid, 7-oxo-8-labden-15-oic acid, 8-hydroxy-labd-13-en-15-oic acid, and a novel diterpene, 7-hydroxy-labd-8,13-dien-15-oic acid. These findings highlight the potential of metabolomics as a powerful tool for discovering bioactive compounds and optimizing raw material selection. By prioritizing proven geographic sources, consistent bioactivity can be achieved, supporting the therapeutic potential of teak leaves in managing S5AR-related conditions. Full article
Show Figures

Figure 1

18 pages, 11789 KiB  
Article
Effects of 1-N-Naphthylphthalamic Acid on Root and Leaf Development of Muscari armeniacum and the Related Metabolic and Physiological Features
by Agnieszka Marasek-Ciołakowska, Aleksandra Machlańska, Wiesław Wiczkowski, Dorota Szawara-Nowak, Lesław B. Lahuta, Justyna Góraj-Koniarska, Kensuke Miyamoto, Junichi Ueda, Marian Saniewski and Marcin Horbowicz
Int. J. Mol. Sci. 2025, 26(13), 6431; https://doi.org/10.3390/ijms26136431 - 3 Jul 2025
Viewed by 365
Abstract
The effects of 1-N-naphthylphthalamic acid (NPA) applied as an aqueous solution on uncooled grape hyacinth (Muscari armeniacum) bulbs were investigated, focusing on histological measurements and the determination of various metabolites in developing roots. M. armeniacum bulbs were kept for [...] Read more.
The effects of 1-N-naphthylphthalamic acid (NPA) applied as an aqueous solution on uncooled grape hyacinth (Muscari armeniacum) bulbs were investigated, focusing on histological measurements and the determination of various metabolites in developing roots. M. armeniacum bulbs were kept for a defined number of days in distilled water (control) or aqueous NPA solutions, and then 2 cm sections of root tips were taken for histological measurements. Longitudinal and cross sections were taken in these root pieces, followed by measurements of their basic parts and microscopic images. Determinations of polar compounds by GC/MS and phenolic metabolites by HPLC/MS/MS were carried out in freeze-dried root samples. NPA inhibited the growth of the roots and caused swelling of their elongation parts, as well as changes in the dimensions of other parts of the roots and disruption of the gravitropic direction of their growth. However, NPA did not affect leaf growth and the amino acid, organic acid, and major carbohydrate content in the roots, but increased the level of unknown saccharides, probably oligofructans. The decrease in the contents of many phenolic compounds observed in our study under the influence of NPA may indicate that this could be one of the symptoms/causes of root growth disorders. In turn, the reduction in polyphenol levels may have been related to an increase in the number and length of root hairs. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 4405 KiB  
Article
Meloside A Protects Dermal Papilla Cells from DHT-Induced Damage via Androgen Receptor Modulation
by Hyun Jun Park, Bong Geun Song, Ji Hoon Song, Seung Hee Park, Da Hye Wang, Ho Kyun Kwon and Ji-Ean Lee
Curr. Issues Mol. Biol. 2025, 47(6), 436; https://doi.org/10.3390/cimb47060436 - 9 Jun 2025
Viewed by 827
Abstract
Androgenetic alopecia (AGA) is associated with dihydrotestosterone (DHT)-induced apoptosis in human dermal papilla cells (HDPCs) via androgen receptor (AR) upregulation. This study aimed to evaluate the potential of Cucumis melo var. makuwa leaf extract (CLE) to attenuate these DHT-mediated effects in HDPCs. HDPCs [...] Read more.
Androgenetic alopecia (AGA) is associated with dihydrotestosterone (DHT)-induced apoptosis in human dermal papilla cells (HDPCs) via androgen receptor (AR) upregulation. This study aimed to evaluate the potential of Cucumis melo var. makuwa leaf extract (CLE) to attenuate these DHT-mediated effects in HDPCs. HDPCs were treated with CLE, and DHT-induced apoptosis and AR expression were assessed. High-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC–ESI–MS) identified Meloside A as the principal bioactive constituent within CLE. CLE significantly attenuated DHT-induced apoptosis in HDPCs, demonstrating a 57.74% reduction at 1000 ppm. Mechanistically, Meloside A inhibited DHT-stimulated AR nuclear translocation and reduced AR protein expression. Furthermore, Meloside A decreased the expression of downstream target genes at 100 ppm, showing a 16.27% reduction in IL-6, a 26.55% reduction in TGF-β1, and a 35.38% reduction in DKK-1. Additionally, Meloside A significantly inhibited ROS generation within DHT-stimulated HDPCs by 45.45% at 100 ppm. These findings suggest that Meloside A, isolated from CLE, exerts anti-AGA effects by modulating AR nuclear translocation and gene expression. This highlights its potential as a therapeutic agent for AGA and provides a basis for developing novel therapeutic strategies for hair loss. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

11 pages, 1367 KiB  
Article
In Vitro Skin Penetration of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extracts
by Kamonlak Insumrong, Neti Waranuch, Kornkanok Ingkaninan, Nutchaninad Tanuphol, Abhay Prakash Mishra, Wudtichai Wisuitiprot, Eakkaluk Wongwad, Ngamrayu Ngamdokmai and Nungruthai Suphrom
Molecules 2025, 30(5), 1151; https://doi.org/10.3390/molecules30051151 - 4 Mar 2025
Cited by 1 | Viewed by 1091
Abstract
The leaf extract of Tectona grandis L.f. has shown potential as a 5α-reductase inhibitor, with two bioactive markers, namely (+)-eperua-8,13-dien-15-oic acid (1) and (+)-eperua-7,13-dien-15-oic acid (2), used for extract standardization. The purpose of this research was to investigate the [...] Read more.
The leaf extract of Tectona grandis L.f. has shown potential as a 5α-reductase inhibitor, with two bioactive markers, namely (+)-eperua-8,13-dien-15-oic acid (1) and (+)-eperua-7,13-dien-15-oic acid (2), used for extract standardization. The purpose of this research was to investigate the in vitro skin penetration behavior of 1 and 2 in T. grandis leaf ethanolic extract solution and ready-to-use extract in propylene glycol (PG), and secondly, to determine their physicochemical properties, including partition coefficients and solubility. The appropriate vehicle for the in vitro skin penetration study was evaluated using the shake-flask method. The in vitro skin penetration study was conducted using the Franz diffusion cell model, and the amounts of the two active compounds in the extracts were analyzed using the HPLC method. Compounds 1 and 2 showed poor solubility in distilled water, whereas their solubility in HEPES buffer with 2% w/v of Tween 20 was significantly greater. The partition coefficient (log Po/w) value for 1 was 5.77 ± 0.07, and for 2, it was 5.66 ± 0.02, indicating that both compounds are hydrophobic. After 24 h of an in vitro skin penetration study, 1 in both extracts showed significantly higher cumulative amounts (%) compared to 2. These findings suggest that 1 is more hydrophobic and readily penetrates the stratum corneum. When a PG enhancer was added, high cumulative amount trends of 1 and 2 in the ethanolic extract and extract in PG in the receiver compartment were detected after 24 h. These studies provide important insights that will guide the further development of products with T. grandis extracts for treating hair loss. Full article
Show Figures

Graphical abstract

24 pages, 1077 KiB  
Article
Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation
by F. Sezer Senol Deniz, Ozlem Oyardı, Cagla Bozkurt Guzel, Tahir Emre Yalcın, Serkan Yiğitkan, Yuksel Kan, Nurver Ulger Toprak and Ilkay Erdogan Orhan
Pharmaceutics 2025, 17(3), 317; https://doi.org/10.3390/pharmaceutics17030317 - 1 Mar 2025
Viewed by 1611
Abstract
Background: Acne is a prevalent dermatological condition characterized by the blockage of hair follicles and sebaceous glands, leading to the formation of acne. The anaerobe pathogen Cutibacterium acnes (formerly known as Propionibacterium acnes) plays an essential role in the pathogenesis of [...] Read more.
Background: Acne is a prevalent dermatological condition characterized by the blockage of hair follicles and sebaceous glands, leading to the formation of acne. The anaerobe pathogen Cutibacterium acnes (formerly known as Propionibacterium acnes) plays an essential role in the pathogenesis of acne, for which generally antimicrobial treatment is required. Acne is a substantial health concern, and continuing research is being conducted to discover novel and efficacious remedies. The antimicrobial activity of plants has been demonstrated in numerous studies, and they are still targeted organisms in drug development. Studies showing that plants are effective against acne pathogens have also been reported. Methods: The antimicrobial activity of the hydroethanolic extracts prepared from 30 plant species was determined against C. acnes standard strains (C. acnes Scholz and Kilian ATCC 11827 and ATCC 11828) and 30 clinical isolates in our preliminary screening. Since acne is an inflammatory skin disease, the anti-inflammatory effect of six active extracts against C. acnes was determined through the in vitro inhibition of collagenase, lipoxygenase (LOX), hyaluronidase and xanthine oxidase (XO) enzymes. Results: Cotinus coggygria Scop. leaf extract displayed the highest hyaluronidase and collagenase inhibition (79.75% and 52.52%, respectively), while the extract from the aerial parts of Helichrysum arenarium (L.) Moench demonstrated a potent XO inhibitory effect (82.51%). Therefore, these two extracts have been chosen for further studies, and LC/MS-MS was used to determine the phenolic profiles of these extracts. Conclusions: Subsequently, nanoemulgels were formulated with the active extracts to develop a prototype herbal anti-acne product, and characterization studies of the formulations were conducted. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

39 pages, 9959 KiB  
Article
Utilization of Non-Composted Human Hair Hydrolysate as a Natural and Nutrient-Rich Liquid Fertilizer for Sustainable Agro-Applications and Bio-Waste Management
by Kaan Yetilmezsoy, Fatih Ilhan and Emel Kıyan
Sustainability 2025, 17(4), 1641; https://doi.org/10.3390/su17041641 - 16 Feb 2025
Viewed by 2604
Abstract
Human hair, commonly considered a discarded organic waste, is a keratin-rich material with remarkable potential for sustainable agriculture as an innovative resource. This study systematically explored the potential of non-composted human hair hydrolysates as eco-friendly and nutrient-rich liquid fertilizers, emphasizing their ability to [...] Read more.
Human hair, commonly considered a discarded organic waste, is a keratin-rich material with remarkable potential for sustainable agriculture as an innovative resource. This study systematically explored the potential of non-composted human hair hydrolysates as eco-friendly and nutrient-rich liquid fertilizers, emphasizing their ability to enhance agricultural sustainability and mitigate organic waste accumulation. Eight distinct hydrolysates prepared with alkaline solutions were evaluated for their effects on plant growth using red-hot chili pepper (Capsicum frutescens) as the primary model under greenhouse conditions. The present study introduces a novel approach by employing an advanced digital image analysis technique to quantitatively assess 37 distinct plant growth parameters, providing an unprecedented depth of understanding regarding the impact of liquid human hair hydrolysates on plant development. Additionally, the integration of pilot-scale field trials and multi-species evaluations highlights the broader applicability and scalability of these hydrolysates as sustainable fertilizers. Collectively, these features establish this research as a pioneering contribution to sustainable agriculture and bio-waste management. The top-performing hydrolysates (KCaMgN, KMgN, KCaN) demonstrated significant enhancements in plant growth metrics, with fresh weight reaching up to 3210 mg, projected leaf area of approximately 132 cm2, and crown diameter of 20.91 cm for the best-performing formulations, outperforming a commercial organomineral fertilizer by 20–46% in overall growth performance. Furthermore, observational studies on various species (such as bird of paradise flower (Strelitzia reginae), avocado (Persea americana), lemon (Citrus limon L.), Mazafati date (Phoenix dactylifera L.), and red mini conical hot pepper (Capsicum annuum var. conoides) and field trials on long sweet green peppers (Capsicum annuum) confirmed the broad applicability of these hydrolysates. Toxicity assessments using shortfin molly fish (Poecilia sphenops) validated the environmental safety of plants cultivated with hydrolysates. These findings highlight that human hair hydrolysates offer a sustainable alternative to synthetic fertilizers, contributing to waste management efforts while enhancing agricultural productivity. Full article
Show Figures

Figure 1

18 pages, 24576 KiB  
Article
Screening of Anti-Hair Loss Plant Raw Materials Based on Reverse Network Pharmacology and Experimental Validation
by Jiajia Xu, Congfen He and Rui Tian
Curr. Issues Mol. Biol. 2025, 47(1), 68; https://doi.org/10.3390/cimb47010068 - 20 Jan 2025
Viewed by 2013
Abstract
Hair loss is one of the skin conditions that can affect people’s mental health. Plant raw material extracts are of great interest due to their safety. In this study, we utilize reverse network pharmacology to screen for key targets of the Wnt/β-catenin signaling [...] Read more.
Hair loss is one of the skin conditions that can affect people’s mental health. Plant raw material extracts are of great interest due to their safety. In this study, we utilize reverse network pharmacology to screen for key targets of the Wnt/β-catenin signaling pathway and the TGFβ/BMP signaling pathway, as well as key differential lipids, for plant raw materials selection. The aim is to identify plant raw materials that may have anti-hair loss properties and to validate these findings through cell experiments. Licorice, salvia miltiorrhiza, mulberry leaf, ephedra and curcumae radix were found that may possess anti-hair loss effects. Licorice water extract (LWE), salvia miltiorrhiza water extract (SMWE), mulberry leaf water extract (MLWE), ephedra water extract (EWE) and curcumae radix water extract (CRWE) did not exhibit cytotoxicity on human dermal papilla cells (HDPCs). Through ALP staining, it was found that the expression of ALP in HDPCs treated with LWE, SMWE, MLWE, EWE and CRWE was enhanced. In addition, LWE, SMWE, MLWE, EWE and CRWE have reduced the expression of hair growth inhibitory factor TGF-β1 and inflammatory factor IL-6. Additionally, various water extracts can enhance the secretion of VEGF, with high concentrations of SMWE, EWE and CRWE exhibiting better efficacy. Furthermore, β-catenin, a key factor of the Wnt/β-catenin signaling pathway, was enhanced by LWE, SMWE, MLWE, EWE and CRWE treatment in cultured HDPCs. In conclusion, all five plant raw materials showed some anti-hair loss potential, providing theoretical support for their application in anti-hair loss products. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

26 pages, 19399 KiB  
Article
The Status of Wild Grapevine (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) Populations in Georgia (South Caucasus)
by Gabriele Cola, Gabriella De Lorenzis, Osvaldo Failla, Nikoloz Kvaliashvili, Shengeli Kikilashvili, Maia Kikvadze, Londa Mamasakhlisashvili, Irma Mdinaradze, Ramaz Chipashvili and David Maghradze
Plants 2025, 14(2), 232; https://doi.org/10.3390/plants14020232 - 15 Jan 2025
Cited by 1 | Viewed by 1452
Abstract
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) across 127 different sites, with 45% of these sites containing only a single vine [...] Read more.
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) across 127 different sites, with 45% of these sites containing only a single vine and only 7% more than 9 vines. A total of 70 accessions were propagated in a germplasm collection, 41 of them were descripted from the ampelographic point of view and 32 from the phenological one. The geographical and ecological analysis confirmed that wild grapevines primarily grow in humid environments with warm and fully humid climates, often near rivers. They favor deep, fertile, and evolved soils, mainly alluvial and cinnamonic types (80%), with a marginal presence on strongly eroded soils. Their main natural vegetations are forests and open woodlands, with some individuals in the Southeast found in steppes. The altitudinal range spans from 0 to 1200 m, with 80% of vines distributed between 400 and 900 m. The phenological analysis revealed significant differences among the accessions but no difference among populations, with only a slight variation in bud-break timing, indicating a high level of synchronicity overall. Flowering timing proved to be the most uniform stage, suggesting minimal environmental pressure on genetic adaptation. The mature leaf morphology exhibited significant polymorphism, though leaves were generally three- or five-lobed, weak-wrinkling, and -blistering, with a low density of hairs. Bunch and berry morphology were more uniform. Bunches were consistently very small, cylindrical, and never dense or winged. Berries were also very small, mostly globular, always blue-black in color, and non-aromatic. A striking feature was the frequency of red flesh coloration, which ranged from weak to strong, with uncolored flesh being rare. The Georgian population of wild grapevines was found to be fragmented, often consisting of scattered single individuals or small groups. Therefore, we believe it is urgent for Georgia to implement specific protection measures to preserve this vital genetic resource. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

14 pages, 2564 KiB  
Article
Leveraging Zero-Shot Detection Mechanisms to Accelerate Image Annotation for Machine Learning in Wild Blueberry (Vaccinium angustifolium Ait.)
by Connor C. Mullins, Travis J. Esau, Qamar U. Zaman, Chloe L. Toombs and Patrick J. Hennessy
Agronomy 2024, 14(12), 2830; https://doi.org/10.3390/agronomy14122830 - 28 Nov 2024
Cited by 4 | Viewed by 1842
Abstract
This study conducted an analysis of zero-shot detection capabilities using two frameworks, YOLO-World and Grounding DINO, on a selection of images in the wild blueberry (Vaccinium angustifolium Ait.) cropping system. The datasets included ripe wild blueberries, hair fescue (Festuca filiformis Pourr.), [...] Read more.
This study conducted an analysis of zero-shot detection capabilities using two frameworks, YOLO-World and Grounding DINO, on a selection of images in the wild blueberry (Vaccinium angustifolium Ait.) cropping system. The datasets included ripe wild blueberries, hair fescue (Festuca filiformis Pourr.), blueberry buds, and red leaf disease (Exobasidium vaccinii). Key performance metrics such as Intersection over Union (IoU), precision, recall, and F1 score were utilized for model comparison. Grounding DINO consistently achieved superior performance across all metrics and datasets, achieving significantly higher mean IoUs on berries, red leaf, hair fescue, and buds (0.642, 0.921, 0.735, and 0.629, respectively) compared to YOLO-World (0.516, 0.567, 0.232, and 0.408, respectively). Evidenced by their high recall rates relative to precision, the models displayed a preference for identifying true positives at the cost of increasing false positives. Grounding DINO’s higher precision (overall mean of 0.672), despite the tendency to over-detect, indicated a better balance in minimizing false positives than YOLO-World (overall mean of 0.501). These findings contrast with the foundational study of YOLO-World where it demonstrated superior performance on standard datasets, highlighting the importance of dataset characteristics and optimization processes in model performance. The practical implications of this study include providing a solution for accelerated object detection image annotation in the wild blueberry cropping system. This work, representing a significant advancement in facilitating accurate and efficient annotation of wild blueberry datasets, guides future research in the application of zero-shot detection models to agricultural datasets. Full article
Show Figures

Figure 1

13 pages, 3017 KiB  
Article
Platycladus orientalis Leaf Extract Promotes Hair Growth via Non-Receptor Tyrosine Kinase ACK1 Activation
by Jaeyoon Kim, Jang Ho Joo, Juhyun Kim, Heena Rim, Jae young Shin, Yun-Ho Choi, Kyoungin Min, So Young Lee, Seung-Hyun Jun and Nae-Gyu Kang
Curr. Issues Mol. Biol. 2024, 46(10), 11207-11219; https://doi.org/10.3390/cimb46100665 - 5 Oct 2024
Cited by 3 | Viewed by 2598
Abstract
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. [...] Read more.
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. In this study, we investigated the hair-growth-promoting effect of PO in cultured human dermal papilla cells (hDPCs). Platycladus orientalis leaf extract (POLE) was found to stimulate the proliferation of hDPCs. POLE with higher quercitrin concentration, especially, showed a high level of cellular viability. In the context of cellular senescence, POLE decreased the expression of p16 (CDKN2A) and p21(CDKN1A), which resulted in enhanced proliferation. In addition, growth factor receptors, FGFR1 and VEGFR2/3, and non-receptor tyrosine kinases, ACK1 and HCK, were significantly activated. In addition, LEF1, a transcription factor of Wnt/β-catenin signaling, was enhanced, but DKK1, an inhibitor of Wnt/β-catenin signaling, was downregulated by POLE treatment in cultured hDPCs. As a consequence, the expression of growth factors such as bFGF, KGF, and VEGF were also increased by POLE. We further investigated the hair-growth-promoting effect of topically administered POLE over a 12-week period. Our data suggest that POLE could support terminal hair growth by stimulating proliferation of DPCs and that enhanced production of growth factors, especially KGF, occurred as a result of tyrosine kinase ACK1 activation. Full article
Show Figures

Figure 1

17 pages, 3465 KiB  
Article
Hair Growth-Promoting Effect of Hydrangea serrata (Thunb.) Ser. Extract and Its Active Component Hydrangenol: In Vitro and In Vivo Study
by Soyoon Park, Hyunjae Kim, Hye Shin Ahn, Changseon Na and Yu-Kyong Shin
Int. J. Mol. Sci. 2024, 25(19), 10370; https://doi.org/10.3390/ijms251910370 - 26 Sep 2024
Cited by 1 | Viewed by 3356
Abstract
With the escalating prevalence of hair loss, the demand for effective hair loss treatment has surged. This study evaluated the effects of hot water extract of Hydrangea serrata (Thunb.) Ser. leaf (WHS) on hair growth, employing cell cultures, mice, and human skin organoid [...] Read more.
With the escalating prevalence of hair loss, the demand for effective hair loss treatment has surged. This study evaluated the effects of hot water extract of Hydrangea serrata (Thunb.) Ser. leaf (WHS) on hair growth, employing cell cultures, mice, and human skin organoid models. Both WHS and hydrangenol were found to enhance 5α-reductase inhibitory activity. WHS and hydrangenol have been shown to stimulate dermal papilla cell (DPC) growth, potentially through factors like keratinocyte growth factor (KGF), fibroblast growth factor 10 (FGF10), and transforming growth factor-β1 (TGF-β1). They also elevated the expression levels of keratin genes (K31 and K85) and the ceramide synthase (CerS3) gene, crucial clinical indicators of hair health. Furthermore, they exhibited notable anti-inflammatory and anti-androgenic properties by reducing the levels of tumor necrosis factor-α (TNF-α) and androgen signaling molecules, including androgen receptor (AR) and dickkopf-1 (DKK-1) gene expression. Oral administration of WHS to C57BL/6 mice for 3 weeks confirmed its hair growth-promoting effects, improving hair growth parameters and gene expression without significant changes in hair weight. Additionally, in a human skin organoid model, WHS was found to stimulate hair formation and augment the expression of follicle markers. These findings position WHS as a promising nutraceutical for promoting hair health, as evidenced by its efficacy in both in vitro and in vivo models. Full article
Show Figures

Figure 1

12 pages, 2508 KiB  
Article
Cotton Pectate Lyase GhPEL48_Dt Promotes Fiber Initiation Mediated by Histone Acetylation
by Anlin Zhong, Xianyan Zou, Zhenzhen Wei, Lei Gan, Jun Peng, Yonghui Li, Zhi Wang and Yuanyuan Liu
Plants 2024, 13(17), 2356; https://doi.org/10.3390/plants13172356 - 23 Aug 2024
Cited by 1 | Viewed by 1123
Abstract
GhPEL48_Dt, a Pectate lyase (PEL, EC4.2.2.2), is a crucial enzyme involved in cell-wall modification and pectin degradation. Studies have shown that the GhPEL48_Dt also plays a significant role in cotton-fiber development; however, the specific function and regulatory mechanism of GhPEL48_Dt in cotton-fiber [...] Read more.
GhPEL48_Dt, a Pectate lyase (PEL, EC4.2.2.2), is a crucial enzyme involved in cell-wall modification and pectin degradation. Studies have shown that the GhPEL48_Dt also plays a significant role in cotton-fiber development; however, the specific function and regulatory mechanism of GhPEL48_Dt in cotton-fiber development are still not fully understood. Here, we found that the histone deacetylase inhibitor-Trichostatin A significantly reduces the transcript levels of GhPEL48_Dt and its enzyme activity. Further, silencing of GhPEL48_Dt significantly inhibits the initiation and elongation of cotton fibers by promoting pectin degradation, and the heterologous expression of GhPEL48_Dt promotes the development of trichomes and root hairs in Arabidopsis, which suggests that GhPEL48_Dt plays a positive and conserved role in single cell i.e., fiber, root hair, and leaf trichome development. Collectively, this paper provides a comprehensive analysis of the fundamental characteristics and functions of GhPEL48_Dt in fiber development, including the regulatory role of histone acetylation on GhPEL48_Dt, which contributes to the understanding of pectin degradation pathways and establishes a theoretical foundation for elucidating its regulatory mechanism. Full article
(This article belongs to the Special Issue Molecular Insights into Cotton Fiber Gene Regulation)
Show Figures

Figure 1

22 pages, 4247 KiB  
Article
First Peek into the Transcriptomic Response in Heat-Stressed Tomato Inoculated with Septoglomus constrictum
by Viktor Szentpéteri, Eszter Virág, Zoltán Mayer, Nguyen Hong Duc, Géza Hegedűs and Katalin Posta
Plants 2024, 13(16), 2266; https://doi.org/10.3390/plants13162266 - 15 Aug 2024
Cited by 1 | Viewed by 1601
Abstract
In this study, we report the interaction between an arbuscular mycorrhizal fungus, Septoglomus constrictum, and tomato plants under heat stress. For the first time, this interaction was studied by Illumina RNA-seq, followed by a comprehensive bioinformatic analysis that investigated root and leaf [...] Read more.
In this study, we report the interaction between an arbuscular mycorrhizal fungus, Septoglomus constrictum, and tomato plants under heat stress. For the first time, this interaction was studied by Illumina RNA-seq, followed by a comprehensive bioinformatic analysis that investigated root and leaf tissue samples. The genome-wide transcriptional profiling displayed fewer transcriptomic changes in the root under heat-stress conditions caused by S. constrictum. The top 50 DEGs suggested significant changes in the expression of genes encoding heat-shock proteins, transporter proteins, and genes of phytohormone metabolism involving jasmonic acid signalling. S. constrictum induced the upregulation of genes associated with pathways such as ‘drought-responsive’ and the ‘development of root hair’ in the root, as well as ‘glycolipid desaturation’, ‘intracellular auxin transport’, and ‘ethylene biosynthesis’ in the leaf. The pathways ‘biotin biosynthesis’ and ‘threonine degradation’ were found in both investigated tissue types. Expression analysis of transcription factors showed 2 and 11 upregulated transcription factors in heat-stressed root and leaf tissues, respectively. However, we did not find shared transcription factors. Heat-stressed arbuscular mycorrhizal plants suffered less oxidative stress when exposed to high temperatures. Colorimetric tests demonstrated less accumulation of H2O2 and MDA in heat-stressed mycorrhizal plants. This phenomenon was accompanied by the higher expression of six stress genes that encode peroxidases, glutathione S-transferase and ubiquitin carboxyl-terminal hydrolase in roots and leaves. Our findings provide a new perspective on elucidating the functional metabolic processes of tomato plants under mycorrhizal-heat stressed conditions. Full article
(This article belongs to the Special Issue Adaptive Mechanisms of Plants to Biotic or Abiotic Stresses)
Show Figures

Figure 1

16 pages, 3838 KiB  
Article
Characterization and Theoretical Analysis of the Venus Flytrap Trigger Hair
by Yanhao Qian, Siyuan Chen, Zihao Zhang, Guanyu Bao, Mingchen Ma, Kejun Wang, Chao Liu and Qian Wang
Appl. Sci. 2024, 14(13), 5937; https://doi.org/10.3390/app14135937 - 8 Jul 2024
Viewed by 2021
Abstract
The Venus flytrap, which possesses a number of mechano-sensitive trigger hairs, is a typical carnivorous plant that effectively senses and catches insects to survive in nutrient-poor habitats. When insects touch the trigger hairs on a leaf, once they reach the threshold, the Venus [...] Read more.
The Venus flytrap, which possesses a number of mechano-sensitive trigger hairs, is a typical carnivorous plant that effectively senses and catches insects to survive in nutrient-poor habitats. When insects touch the trigger hairs on a leaf, once they reach the threshold, the Venus flytrap induces an action potential and sharply closes to capture the prey. In this paper, the trigger hairs obtain a special cantilever beam structure with a stiff hair lever and a flexible basal podium, and there is a noticeable notched structure at the basal podium, which differs from a common homogeneous hair. Based on the characteristics of the Venus flytrap trigger hairs, we established a three-dimensional model and conducted theoretical and finite element analysis. The results show that the unique hollow heterogeneous cantilever structure of the Venus flytrap trigger hair can achieve high sensitivity and optimal tactile perception. Overall, the morphology, structure and mechanical characteristics of Venus flytrap trigger hairs were characterized in detail, which may provide a deeper understanding of the trigger hairs’ tactile perception mechanism. And the mechanical simulation and optimization analysis of Venus flytrap trigger hairs had an important theoretical basis and parameter support for the further design of state-of-the-art tactile sensors with high sensitivity inspired by Venus flytrap trigger hairs. Full article
Show Figures

Figure 1

12 pages, 5557 KiB  
Article
Advancing Methodologies for Investigating PM2.5 Removal Using Green Wall System
by Claudia Falzone, Hugues Jupsin, Moussa El Jarroudi and Anne-Claude Romain
Plants 2024, 13(12), 1633; https://doi.org/10.3390/plants13121633 - 13 Jun 2024
Cited by 2 | Viewed by 1675
Abstract
Combustion processes are the primary source of fine particulate matter in indoor air. Since the 1970s, plants have been extensively studied for their potential to reduce indoor air pollution. Leaves can retain particles on their surfaces, influenced by factors such as wax content [...] Read more.
Combustion processes are the primary source of fine particulate matter in indoor air. Since the 1970s, plants have been extensively studied for their potential to reduce indoor air pollution. Leaves can retain particles on their surfaces, influenced by factors such as wax content and the presence of hairs. This study introduces an innovative experimental approach using metal oxide particles in an office-like environment to evaluate the depolluting effect of plant walls. Two plant walls were installed in a controlled room, housing three plant species: Aglaonema commutatum ‘Silver Bay’, Dracaena fragrans, and Epipremnum aureum. Metal oxide particles were introduced via a compressed air blower positioned between the two walls. The concentration of these particles was monitored using PM2.5 sensors, and the deposition of iron (Fe) on the leaves was quantified through Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This novel methodology effectively demonstrated the utility of both real-time sensors and ICP-MS in quantifying airborne particle concentrations and leaf deposition, respectively. The results revealed that Dracaena fragrans had a 44% higher Fe particle retention rate compared to the control (wallpaper). However, further validation through methodological replication is necessary to confirm the reproducibility of these findings. Full article
(This article belongs to the Special Issue Urban Plants and Their Role in Sustainable Cities)
Show Figures

Figure 1

Back to TopTop