Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,225)

Search Parameters:
Keywords = lateral scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 851 KiB  
Article
Evaluating Accuracy of Smartphone Facial Scanning System with Cone-Beam Computed Tomography Images
by Konstantinos Megkousidis, Elie Amm and Melih Motro
Bioengineering 2025, 12(8), 792; https://doi.org/10.3390/bioengineering12080792 - 23 Jul 2025
Abstract
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study [...] Read more.
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study compares smartphone scans with cone-beam computed tomography (CBCT) images. Materials and Methods: Three-dimensional images of 23 screened patients were captured with the camera of an iPhone 13 Pro Max and processed with the Scandy Pro application; CBCT scans were also taken as a standard of care. After establishing unique image pairs of the same patient, linear and angular measurements were compared between the images to assess the scanner’s two-dimensional trueness. Following the co-registration of the virtual models, a heat map was generated, and root mean square (RMS) deviations were calculated for quantitative assessment of 3D trueness. Precision was determined by comparing consecutive 3D facial scans of five participants, while intraobserver reliability was assessed by repeating measurements on five subjects after a two-week interval. Results: This study found no significant difference in soft tissue measurements between smartphone and CBCT images (p > 0.05). The mean absolute difference was 1.43 mm for the linear and 3.16° for the angular measurements. The mean RMS value was 1.47 mm. Intraobserver reliability and scanner precision were assessed, and the Intraclass Correlation Coefficients were found to be excellent. Conclusions: Smartphone facial scanners offer an accurate and reliable alternative to stereophotogrammetry systems, though clinicians should exercise caution when examining the lateral sections of those images due to inherent inaccuracies. Full article
(This article belongs to the Special Issue Orthodontic Biomechanics)
Show Figures

Figure 1

15 pages, 6193 KiB  
Article
Microscopy Study of (Ti,Nb)(C,N) Precipitation in Microalloyed Steels Under Continuous Casting Conditions
by Fangyong Xu, Daoyao Liu, Wei Wang, Brian G. Thomas, Tianxu Wu, Kun Xu and Zhan Zhang
Materials 2025, 18(15), 3445; https://doi.org/10.3390/ma18153445 - 23 Jul 2025
Abstract
The continuous casting of Ti-Nb microalloyed steel was simulated with high temperature confocal laser scanning microscopy (HTCLSM). Evolution of the sample surface morphology was observed in-situ, during cooling conditions chosen to represent different locations in a cast slab. Calculations with a thermodynamics model [...] Read more.
The continuous casting of Ti-Nb microalloyed steel was simulated with high temperature confocal laser scanning microscopy (HTCLSM). Evolution of the sample surface morphology was observed in-situ, during cooling conditions chosen to represent different locations in a cast slab. Calculations with a thermodynamics model of carbonitride precipitate formation agreed with the transmission electron microscopy (TEM) analysis that fine reliefs observed on the sample surface were actually caused by interior precipitation of (Ti,Nb)(C,N). Precipitation and the resulting reliefs changed with location beneath the slab surface, simulated casting speed, and steel composition. With the same casting speed and steel composition, reliefs in the simulated slab surface sample appeared earlier and were larger than in the slab center. With increased casting speed, reliefs were observed later and decreased in size. With increased titanium or niobium content, reliefs appeared earlier and increased in number. TEM measurement showed that the precipitate diameters were mainly smaller than 4 nm, with a few between 4 and 8 nm. The property of surface reliefs observed via HTCLSM correlated qualitatively with the number and size of internal precipitates measured with TEM, showing this to be an effective tool for indirectly characterizing nanoscale secondary phase precipitation inside the sample. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

10 pages, 997 KiB  
Article
Does Malpositioning of Pedicle Screws Affect Biomechanical Stability in a Novel Quasistatic Test Setup?
by Stefan Schleifenbaum, Florian Metzner, Janine Schultze, Sascha Kurz, Christoph-Eckhard Heyde and Philipp Pieroh
Bioengineering 2025, 12(7), 781; https://doi.org/10.3390/bioengineering12070781 - 18 Jul 2025
Viewed by 226
Abstract
Pedicle screw fixation is a common spinal surgery technique, but concerns remain about stability when screws are malpositioned. Traditional in vitro pull-out tests assess anchorage but lack physiological accuracy. This study examined the stability of correctly placed and intentionally malpositioned pedicle screws on [...] Read more.
Pedicle screw fixation is a common spinal surgery technique, but concerns remain about stability when screws are malpositioned. Traditional in vitro pull-out tests assess anchorage but lack physiological accuracy. This study examined the stability of correctly placed and intentionally malpositioned pedicle screws on forty vertebrae from five cadavers. Optimal screw paths were planned via CT scans and applied using 3D-printed guides. Four malposition types—medial, lateral, superior, and superior-lateral—were created by shifting the original trajectory. A custom setup applied three consecutive cycles of tensile and compressive load from 50 N to 200 N. Screw inclination under load was measured with a 3D optical system. The results showed increasing screw inclination with higher forces, reaching about 1° at 50 N and 2° at 100 N, similar in both load directions. Significant differences in inclination were only found at 100 N tensile load, where malpositioned screws showed a lower inclination. Overall, malpositioning had no major effect on screw loosening. These findings suggest that minor deviations in screw placement do not significantly compromise mechanical stability. Clinically, the main concern with malpositioning lies in the potential for injury to nearby structures rather than reduced screw fixation strength. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

22 pages, 3538 KiB  
Article
Evaluating the Effectiveness of Coxal Bone Measurements for Sex Estimation via Machine Learning
by Diana Toneva, Silviya Nikolova, Gennady Agre, Nevena Fileva, Georgi Milenov and Dora Zlatareva
Biology 2025, 14(7), 866; https://doi.org/10.3390/biology14070866 - 17 Jul 2025
Viewed by 213
Abstract
The pelvis is the most dimorphic part of the human skeleton, primarily because of its involvement in the birth process. Many sexually dimorphic traits are concentrated in the coxal bones, which form the larger part of the birth canal. The present study aimed [...] Read more.
The pelvis is the most dimorphic part of the human skeleton, primarily because of its involvement in the birth process. Many sexually dimorphic traits are concentrated in the coxal bones, which form the larger part of the birth canal. The present study aimed to assess the sex differences in coxal bone size and to develop machine learning (ML) models for sex estimation based on coxal bone measurements. The sample included abdominal computed tomography scans of 276 adult Bulgarians. Three-dimensional models of the pelves were generated using InVesalius. The three-dimensional coordinates of 34 landmarks located on the right and left coxal bones were collected in MeshLab. Based on the landmark coordinates, various measurements characterizing the coxal bones were calculated. The coxal bone dimensions were tested for significant differences with respect to sex, age, and laterality. Support Vector Machines and logistic regression were employed to train models for sex estimation. The results demonstrate strong sexual dimorphism in coxal bone dimensions along with some bilateral and age-related differences. The trained ML models classify male and female bones with very high accuracy, ranging between 95% and 100%. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

16 pages, 2946 KiB  
Article
AI-Driven Comprehensive SERS-LFIA System: Improving Virus Automated Diagnostics Through SERS Image Recognition and Deep Learning
by Shuai Zhao, Meimei Xu, Chenglong Lin, Weida Zhang, Dan Li, Yusi Peng, Masaki Tanemura and Yong Yang
Biosensors 2025, 15(7), 458; https://doi.org/10.3390/bios15070458 - 16 Jul 2025
Viewed by 216
Abstract
Highly infectious and pathogenic viruses seriously threaten global public health, underscoring the need for rapid and accurate diagnostic methods to effectively manage and control outbreaks. In this study, we developed a comprehensive Surface-Enhanced Raman Scattering–Lateral Flow Immunoassay (SERS-LFIA) detection system that integrates SERS [...] Read more.
Highly infectious and pathogenic viruses seriously threaten global public health, underscoring the need for rapid and accurate diagnostic methods to effectively manage and control outbreaks. In this study, we developed a comprehensive Surface-Enhanced Raman Scattering–Lateral Flow Immunoassay (SERS-LFIA) detection system that integrates SERS scanning imaging with artificial intelligence (AI)-based result discrimination. This system was based on an ultra-sensitive SERS-LFIA strip with SiO2-Au NSs as the immunoprobe (with a theoretical limit of detection (LOD) of 1.8 pg/mL). On this basis, a negative–positive discrimination method combining SERS scanning imaging with a deep learning model (ResNet-18) was developed to analyze probe distribution patterns near the T line. The proposed machine learning method significantly reduced the interference of abnormal signals and achieved reliable detection at concentrations as low as 2.5 pg/mL, which was close to the theoretical Raman LOD. The accuracy of the proposed ResNet-18 image recognition model was 100% for the training set and 94.52% for the testing set, respectively. In summary, the proposed SERS-LFIA detection system that integrates detection, scanning, imaging, and AI automated result determination can achieve the simplification of detection process, elimination of the need for specialized personnel, reduction in test time, and improvement of diagnostic reliability, which exhibits great clinical potential and offers a robust technical foundation for detecting other highly pathogenic viruses, providing a versatile and highly sensitive detection method adaptable for future pandemic prevention. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

19 pages, 13286 KiB  
Article
Differential Evolutionary Mechanisms of Tight Sandstone Reservoirs and Their Influence on Reservoir Quality: A Case Study of Carboniferous–Permian Sandstones in the Shenfu Area, Ordos Basin, China
by Xiangdong Gao, You Guo, Hui Guo, Hao Sun, Xiang Wu, Mingda Zhang, Xirui Liu and Jiawen Deng
Minerals 2025, 15(7), 744; https://doi.org/10.3390/min15070744 - 16 Jul 2025
Viewed by 109
Abstract
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling [...] Read more.
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling factors remain unclear, hindering the effective selection and development of favorable tight gas intervals in the study area. Through comprehensive analysis of casting thin section (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), particle size and sorting, porosity and permeability data from Upper Paleozoic tight sandstone samples, combined with insights into depositional environments, burial history, and chemical reaction processes, this study clarifies the characteristics of tight sandstone reservoirs, reveals the key controlling factors of reservoir quality, confirms the differential evolutionary mechanisms of tight sandstone of different formations, reconstructs the diagenetic sequence, and constructs an evolution model of reservoir minerals and porosity. The research results indicate depositional processes laid the foundation for the original reservoir properties. Sandstones deposited in tidal flat and deltaic environments exhibit superior initial reservoir qualities. Compaction is a critical factor leading to the decline in reservoir quality across all formations. However, rigid particles such as quartz can partially mitigate the pore reduction caused by compaction. Early diagenetic carbonate cementation reduces reservoir quality by occupying primary pores and hindering the generation of secondary porosity induced by acidic fluids, while later-formed carbonate further densifies the sandstone by filling secondary intragranular pores. Clay mineral cements diminish reservoir porosity and permeability by filling intergranular and intragranular pores. The Shanxi and Taiyuan Formations display relatively poorer reservoir quality due to intense illitization. Overall, the reservoir quality of Benxi Formation is the best, followed by Xiashihezi Formation, with the Taiyuan and Shanxi Formations exhibiting comparatively lower qualities. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 3212 KiB  
Article
Computationally Efficient Impact Estimation of Coil Misalignment for Magnet-Free Cochlear Implants
by Samuelle Boeckx, Pieterjan Polfliet, Lieven De Strycker and Liesbet Van der Perre
Sensors 2025, 25(14), 4379; https://doi.org/10.3390/s25144379 - 13 Jul 2025
Viewed by 198
Abstract
A cochlear implant (CI) system holds two spiral coils, one external and one implanted. These coils are used to transmit both data and power. A magnet at the center of the coils ensures proper alignment to assure the highest coupling. However, when the [...] Read more.
A cochlear implant (CI) system holds two spiral coils, one external and one implanted. These coils are used to transmit both data and power. A magnet at the center of the coils ensures proper alignment to assure the highest coupling. However, when the recipient needs a magnetic resonance imaging (MRI) scan, this magnet can cause problems due to the high magnetic field of such a scan. Therefore, a new type of implant without magnets would be beneficial and even supersede the current state of the art of hearing implants. To examine the feasibility of magnet-free cochlear implants, this research studies the impact of coil misalignment on the inductive coupling between the coils and thus the power and data transfer. Rather than using time-consuming finite element analysis (FEA), MATLAB is used to examine the impact of lateral, vertical and angular misalignment on the coupling coefficient using derivations of Neumann’s equation. The MATLAB model is verified with FEA software with a median 8% relative error on the coupling coefficient for various misalignments, ensuring that it can be used to study the feasibility of various magnet-free implants and wireless power and data transmission systems in general. In the case of cochlear implants, the results show that by taking patient and technology constraints like skinflap thickness and mechanical design dimensions into account, the mean error can even be reduced to below 5% and magnet-free cochlear implants can be feasible. Full article
Show Figures

Figure 1

12 pages, 1407 KiB  
Article
Radix Entomolaris and Complex Incisor Anatomy in a Saudi Cohort: A Retrospective Study
by Mubashir Baig Mirza
Diagnostics 2025, 15(13), 1721; https://doi.org/10.3390/diagnostics15131721 - 6 Jul 2025
Viewed by 324
Abstract
Background/Objectives: A thorough understanding of tooth anatomy is essential for effective root canal treatment. This study aims to investigate the root canal morphology of mandibular incisors (MIs) and the presence of distolingual roots in mandibular first molars (MFMs) and to explore the potential [...] Read more.
Background/Objectives: A thorough understanding of tooth anatomy is essential for effective root canal treatment. This study aims to investigate the root canal morphology of mandibular incisors (MIs) and the presence of distolingual roots in mandibular first molars (MFMs) and to explore the potential correlation between these anatomical variations. Methods: A total of 562 CBCT scans were retrospectively analyzed, corresponding to 1124 mandibular central incisors (MCIs), mandibular lateral incisors (MLIs), and MFMs each. The DLR in MFMs was correlated with the complex anatomy in MIs and analyzed using a chi-square test, with the odds ratio obtained through binary regression analysis. Differences related to gender, site, and age were analyzed using the chi-square test. Results: Most MI scans revealed Vertucci Type I canal morphology, with a higher percentage in MCIs (71.1%) than MLIs (64.9%). Additionally, 5.25% of MFM scans indicated a DLR, with a higher prevalence in males (3.5%) and younger individuals (3.4%); however, a statistically significant difference was observed only in MCIs (p = 0.035) across different age groups. The study also identified a highly significant difference in complex canal anatomy, comparing both MIs on either side and the presence of DLR in MFMs (p < 0.001). Furthermore, the relationship between complex canal systems in MIs and MFMs with DLR was confirmed. Conclusions: In conclusion, the Vertucci Type I canal configuration was predominant in both MIs, followed by Type III. The DLR was present in 5.25% of the total scans, and its presence strongly correlated with complex morphology in both MIs. Full article
(This article belongs to the Special Issue Advances in Dental Imaging)
Show Figures

Figure 1

15 pages, 2780 KiB  
Article
Effect of the Functional Appliances on Skeletal, Dentoalveolar, and Facial Soft Tissue Characteristics
by Doris Šimac Pavičić, Anđelo Svirčić, Boris Gašparović, Luka Šimunović, Sara Crnković and Višnja Katić
Appl. Sci. 2025, 15(13), 7529; https://doi.org/10.3390/app15137529 - 4 Jul 2025
Viewed by 202
Abstract
This study aimed to evaluate the impact of Twin Block appliance therapy on skeletal, dentoalveolar, and facial soft tissue characteristics. The study included 18 participants with Class II skeletal malocclusion who were treated with the Twin Block appliance. Lateral cephalograms and 3D face [...] Read more.
This study aimed to evaluate the impact of Twin Block appliance therapy on skeletal, dentoalveolar, and facial soft tissue characteristics. The study included 18 participants with Class II skeletal malocclusion who were treated with the Twin Block appliance. Lateral cephalograms and 3D face scans were analyzed before and after therapy for each participant. Dependent t-test results showed a significant increase in the protrusion of the lower incisors (p < 0.001), proclination of the lower incisors (p = 0.021), SNB (p = 0.005), Ls:E (p = 0.040), mandibular length (p < 0.001), and soft tissue mandible length (p < 0.001) and a significant decrease in the ANB (p = 0.003), Wits (p = 0.001), ANPG (p = 0.001), overbite (p = 0.001), and the retrusion of upper incisors (p = 0.002). Twin Block therapy caused changes in skeletal and soft tissue characteristics. The increase in the SNB angle and mandibular length, accompanied by the decrease in the ANB and Wits values reduced the skeletal discrepancy. The reduction in the ANPG indicated an improvement in the skeletal profile. Additionally, the increase in the soft tissue mandible length and distance between the upper lip and E-line contributed to improved esthetic soft tissue profile characteristics. Full article
Show Figures

Figure 1

34 pages, 20701 KiB  
Article
Sustainable Preservation of Historical Temples Through Ventilation Airflow Dynamics and Environmental Analysis Using Computational Fluid Dynamics
by Mongkol Kaewbumrung, Chalermpol Plengsa-Ard and Wasan Palasai
Appl. Sci. 2025, 15(13), 7466; https://doi.org/10.3390/app15137466 - 3 Jul 2025
Viewed by 415
Abstract
Preserving heritage sites is a complex challenge that requires multidisciplinary approaches, combining scientific accuracy with cultural and historical sensitivity. In alignment with UNESCO’s conservation guidelines, this study investigated the airflow dynamics and wind-induced structural effects within ancient architecture using advanced computational fluid dynamics [...] Read more.
Preserving heritage sites is a complex challenge that requires multidisciplinary approaches, combining scientific accuracy with cultural and historical sensitivity. In alignment with UNESCO’s conservation guidelines, this study investigated the airflow dynamics and wind-induced structural effects within ancient architecture using advanced computational fluid dynamics (CFD). The study site was the Na Phra Meru Historical Temple in Ayutthaya, Thailand, where the shear stress transport kω turbulence model was applied to analyze distinctive airflow patterns. A high-precision 3D computational domain was developed using Faro focus laser scanning technology, with the CFD results being validated based on onsite experimental data. The findings provided critical insights into the temple’s ventilation behavior, revealing strong correlations between turbulence characteristics, wind speed, temperature, and relative humidity. Notably, the small slit windows generated complex flow mixing, producing a large internal recirculation zone spanning approximately 70% of the central interior space. In addition to airflow distribution, the study evaluated the aerodynamic forces and rotational moments acting on the structure based on five prevailing wind directions. Based on these results, winds from the east and northeast generated the highest aerodynamic loads and rotational stresses, particularly in the lateral and vertical directions. Overall, the findings highlighted the critical role of airflow and wind-induced forces in the deterioration and long-term stability of heritage buildings. The study demonstrated the value of integrating CFD, environmental data, and structural analysis to bridge the gap between conservation science and engineering practice. Future work will explore further the interactions between wall moisture and the multi-layered pigments in mural paintings to inform preservation practices. Full article
Show Figures

Figure 1

22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 250
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

24 pages, 7576 KiB  
Article
Study on the Damage Evolution Mechanism of FRP-Reinforced Concrete Subjected to Coupled Acid–Freeze Erosion
by Fei Li, Wei Li, Shenghao Jin, Dayang Wang, Peifeng Cheng and Meitong Piao
Coatings 2025, 15(7), 759; https://doi.org/10.3390/coatings15070759 - 26 Jun 2025
Viewed by 428
Abstract
Plain concrete specimens and FRP(Fiber Reinforced Polymer)-reinforced concrete specimens were fabricated to investigate concrete’s mechanical and surface degradation behaviors reinforced with carbon, basalt, glass, and aramid fiber-reinforced polymer under coupled sulfuric acid and freeze–thaw cycles. The compressive strength of fully wrapped FRP cylindrical [...] Read more.
Plain concrete specimens and FRP(Fiber Reinforced Polymer)-reinforced concrete specimens were fabricated to investigate concrete’s mechanical and surface degradation behaviors reinforced with carbon, basalt, glass, and aramid fiber-reinforced polymer under coupled sulfuric acid and freeze–thaw cycles. The compressive strength of fully wrapped FRP cylindrical specimens and the flexural load capacity of prismatic specimens with FRP reinforced to the pre-cracked surface, along with the dynamic elastic modulus and mass loss, were evaluated before and after acid–freeze cycles. The degradation mechanism of the specimens was elucidated through analysis of surface morphological changes captured in photographs, scanning electron microscopy (SEM) observations, and energy-dispersive spectroscopy (EDS) data. The experimental results revealed that after 50 cycles of coupled acid–freeze erosion, the plain cylindrical concrete specimens showed a mass gain of 0.01 kg. In contrast, after 100 cycles, a significant mass loss of 0.082 kg was recorded. The FRP-reinforced specimens initially demonstrated mass loss trends comparable to those of the plain concrete specimens. However, in the later stages, the FRP confinement effectively mitigated the surface spalling of the concrete, leading to a reversal in mass loss and subsequent mass gain. Notably, the GFRP(Glassfiber Reinforced Polymer)-reinforced specimens exhibited the most significant mass gain of 1.653%. During the initial 50 cycles of acid–freeze erosion, the prismatic and cylindrical specimens demonstrated comparable degradation patterns. However, in the subsequent stages, FRP reduced the exposed surface area-to-volume ratio of the specimens in contact with the acid solution, resulting in a marked improvement in their structural integrity. After 100 cycles of acid–freeze erosion, the compressive strength loss rate and flexural load capacity loss rate followed the ascending order: CFRP-reinforced < BFRP(Basalt Fiber Reinforced Polymer)-reinforced < AFRP(Aramid Fiber Reinforced Polymer)-reinforced < GFRP-reinforced < plain specimens. Conversely, the ductility ranking from highest to lowest was AFRP/GFRP > control group > BFRP/CFRP. A probabilistic analysis model was established to complement the experimental findings, encompassing the quantification of hazard levels and reliability indices. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

19 pages, 3123 KiB  
Article
Giant Chemo-Resistive Response of POSS Nano-Spacers in PS- and PMMA-Based Quantum Resistive Vapour Sensors (vQRS) Used for Cancer Biomarker Analysis
by Abhishek Sachan, Mickaël Castro, Veena Choudhary and Jean-François Feller
Chemosensors 2025, 13(7), 226; https://doi.org/10.3390/chemosensors13070226 - 21 Jun 2025
Viewed by 488
Abstract
The detection of volatile organic compound (VOC) biomarkers from the volatolome for the anticipated diagnosis of severe diseases such as cancers is made difficult due to the presence of high quantities of H2O in the collected samples. It has been shown [...] Read more.
The detection of volatile organic compound (VOC) biomarkers from the volatolome for the anticipated diagnosis of severe diseases such as cancers is made difficult due to the presence of high quantities of H2O in the collected samples. It has been shown that water molecules tend to compete or combine themselves with analytes, which requires either their removal or the development of more sensitive and discriminant sensors. In this later prospect, a positive effect of poly(hedral oligomeric silsesquioxanes) (POSS) is sought out to enhance the sensitivity of carbon nanotube-based quantum resistive vapour sensors (vQRS). POSS, once copolymerized with methyl methacrylate or styrene, can be used as nano-spacers amplifying the disconnection of the nano-junctions due to swelling of the polymer upon the diffusion of VOC. The amplitude of this phenomenon, which is at the origin of the chemo-resistive behaviour of vQRS, was compared with that of homologue transducers made of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA)-coated carbon nanotube (CNT) random networks. The presence of POSS in PS-based sensors has enhanced their sensitivity by 213 times for toluene, by 268 times for acetone, by 4 times for ethanol, and by 187 times for cyclohexane. Similarly, the presence of POSS in PMMA chains increases the sensitivity of sensors to cyclohexane by 10 times, to ethanol by 45 times, to toluene by 244 times, and to acetone and butanone by 4 times. All transducers were made by spray layer by layer (sLbL) to obtain a hierarchically structured conducting architecture. The transducers’ surface was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to observe the CNT coating and dispersion level in the matrix. All sensors were tested with twenty-one VOC part of lung and skin cancer biomarkers by using a dynamic vapour analysis (DVA). The vQRS based on POSS copolymers demonstrated much larger chemo-resistive responses (AR) than the sensors based only on pure polymers and were found to be very selective towards cyclohexane and hexene-1. The PMMA-co-POSS/CNT sensor was able to detect down to 12 ppm of VOC with a very high signal-to-noise ratio (SNR) and to discriminate six VOC among them all with a PCA (principal component analysis) projection. Full article
Show Figures

Figure 1

25 pages, 21149 KiB  
Article
Enhancing Conventional Land Surveying for Cadastral Documentation in Romania with UAV Photogrammetry and SLAM
by Lucian O. Dragomir, Cosmin Alin Popescu, Mihai V. Herbei, George Popescu, Roxana Claudia Herbei, Tudor Salagean, Simion Bruma, Catalin Sabou and Paul Sestras
Remote Sens. 2025, 17(13), 2113; https://doi.org/10.3390/rs17132113 - 20 Jun 2025
Viewed by 584
Abstract
This study presents an integrated surveying methodology for efficient and accurate cadastral documentation, combining UAV photogrammetry, SLAM-based terrestrial and aerial scanning, and conventional geodetic measurements. Designed to be scalable across various cadastral and planning contexts, the workflow was tested in Charlottenburg, Romania’s only [...] Read more.
This study presents an integrated surveying methodology for efficient and accurate cadastral documentation, combining UAV photogrammetry, SLAM-based terrestrial and aerial scanning, and conventional geodetic measurements. Designed to be scalable across various cadastral and planning contexts, the workflow was tested in Charlottenburg, Romania’s only circular heritage village. The approach addresses challenges in built environments where traditional total station or GNSS techniques face limitations due to obstructed visibility and complex architectural geometries. The SLAM system was initially deployed in mobile scanning mode using a backpack configuration for ground-level data acquisition, and was later mounted on a UAV to capture building sides and areas inaccessible from the main road. The results demonstrate that the integration of aerial and terrestrial data acquisition enables precise building footprint extraction, with a reported RMSE of 0.109 m between the extracted contours and ground-truth total station measurements. The final cadastral outputs are fully compatible with GIS and CAD systems, supporting efficient land registration, urban planning, and historical site documentation. The findings highlight the method’s applicability for modernizing cadastral workflows, particularly in dense or irregularly structured areas, offering a practical, accurate, and time-saving solution adaptable to both national and international land administration needs. Beyond the combination of known technologies, the innovation lies in the practical integration of terrestrial and aerial SLAM (dual SLAM) with RTK UAV workflows under real-world constraints, offering a field-validated solution for complex cadastral scenarios where traditional methods are limited. Full article
Show Figures

Graphical abstract

12 pages, 923 KiB  
Article
Cortical and Striatal Functional Connectivity in Juvenile-Onset Huntington’s Disease
by Amy Barry and Peg C. Nopoulos
Brain Sci. 2025, 15(6), 663; https://doi.org/10.3390/brainsci15060663 - 19 Jun 2025
Viewed by 660
Abstract
Background: Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, with a rare juvenile-onset form (JoHD) marked by early, rigid motor symptoms. This study examined cortical and subcortical resting-state connectivity in JoHD, hypothesizing preserved cortical [...] Read more.
Background: Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, with a rare juvenile-onset form (JoHD) marked by early, rigid motor symptoms. This study examined cortical and subcortical resting-state connectivity in JoHD, hypothesizing preserved cortical networks but altered striatal connectivity, in line with early subcortical atrophy despite relatively spared cortical volume. Methods: Participants included children and young adults with clinician-confirmed Juvenile-Onset Huntington’s Disease (JoHD; n = 19) and gene-non-expanded (GNE) controls (n = 64), both drawn from longitudinal studies at the University of Iowa. Resting-state functional MRI scans were analyzed to assess canonical cortical network and striatal connectivity, and linear mixed-effects models tested group differences and associations with motor, cognitive, and clinical outcomes. Results: JoHD participants showed reduced connectivity within the left somatomotor network and striatal circuits, despite largely typical cortical network connectivity. Striatal connectivity was associated with disease burden and cognitive ability, while left somatomotor connectivity was unrelated to clinical outcomes. Conclusions: These findings support the hypothesis of antagonistic pleiotropy in JoHD, where early neural advantages—such as relatively preserved or possibly enhanced cortical function—may contribute to later striatal vulnerability and degeneration. The observed left-lateralized somatomotor hypoconnectivity aligns with prior volumetric and gene expression research, highlighting the role of excitotoxic glutamatergic input and the selective vulnerability of high-functioning circuits in disease progression. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop