Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = lateral plate mesoderm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 14355 KB  
Article
The Interaction Between the asb5a and asb5b Subtypes Jointly Regulates the L-R Asymmetrical Development of the Heart in Zebrafish
by Wanbang Zhou, Wanwan Cai, Yongqing Li, Luoqing Gao, Xin Liu, Siyuan Liu, Junrong Lei, Jisheng Zhang, Yuequn Wang, Zhigang Jiang, Xiushan Wu, Xiongwei Fan, Fang Li, Lan Zheng and Wuzhou Yuan
Int. J. Mol. Sci. 2025, 26(6), 2765; https://doi.org/10.3390/ijms26062765 - 19 Mar 2025
Viewed by 1076
Abstract
The asb5 gene, a member of the Asb protein subfamily characterized by six ankyrin repeat domains, is highly conserved and comprises two subtypes, asb5a and asb5b, in zebrafish. Our previous research has demonstrated that a deficiency of the asb5 gene significantly [...] Read more.
The asb5 gene, a member of the Asb protein subfamily characterized by six ankyrin repeat domains, is highly conserved and comprises two subtypes, asb5a and asb5b, in zebrafish. Our previous research has demonstrated that a deficiency of the asb5 gene significantly impairs early cardiac contractile function, highlighting its close relationship with heart development. Zebrafish asb5 expression was disrupted by both morpholino (MO) antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. A high-throughput RNA-Seq analysis was used to analyze the possible molecular regulatory mechanism of asb5 gene deletion leading to left–right (L-R) asymmetry defects in the heart. Whole-mount in situ hybridization (WISH) was conducted to evaluate gene expression patterns of Nodal signaling components and the positions of heart organs. Heart looping was defective in zebrafish asb5 morphants. Rescue experiments in the asb5-deficiency group (inactivating both asb5a and asb5b) demonstrated that the injection of either asb5a-mRNA or asb5b-mRNA alone was insufficient to rectify the abnormal L-R asymmetry of the heart. In contrast, the simultaneous injection of both asb5a-mRNA and asb5b-mRNA successfully rescued the morphological phenotype. A high-throughput RNA-Seq analysis of embryos at 48 h post fertilization (hpf) revealed that numerous genes associated with L-R asymmetry exhibited expression imbalances in the asb5-deficiency group. WISH further confirmed that the expression of genes such as fli1a, acta1b, hand2, has2, prrx1a, notch1b, and foxa3 were upregulated, while the expression of mei2a and tal1 was downregulated. These results indicated that loss of the asb5 gene in zebrafish led to the disordered development of L-R asymmetry in the heart, resulting in an imbalance in the expression of genes associated with the regulation of L-R asymmetry. Subsequently, we examined the expression patterns of classical Nodal signaling pathway-related genes using WISH. The results showed that the midline barrier factor gene lefty1 was downregulated at early stages in the asb5-deficiency group, and the expression of spaw and lefty2, which are specific to the left lateral plate mesoderm (LPM), was disrupted. This study reveals that the two subtypes of the asb5 gene in zebrafish, asb5a and asb5b, interact and jointly regulate the establishment of early cardiac L-R asymmetry through the Nodal-spaw-lefty signaling pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 12199 KB  
Article
A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs
by Nitza Kahane, Yael Dahan-Barda and Chaya Kalcheim
Int. J. Mol. Sci. 2024, 25(11), 5602; https://doi.org/10.3390/ijms25115602 - 21 May 2024
Viewed by 2008
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of [...] Read more.
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

17 pages, 13150 KB  
Article
Rtf1 Transcriptionally Regulates Neonatal and Adult Cardiomyocyte Biology
by Adam D. Langenbacher, Fei Lu, Lauren Crisman, Zi Yi Stephanie Huang, Douglas J. Chapski, Thomas M. Vondriska, Yibin Wang, Chen Gao and Jau-Nian Chen
J. Cardiovasc. Dev. Dis. 2023, 10(5), 221; https://doi.org/10.3390/jcdd10050221 - 20 May 2023
Cited by 1 | Viewed by 3742
Abstract
The PAF1 complex component Rtf1 is an RNA Polymerase II-interacting transcription regulatory protein that promotes transcription elongation and the co-transcriptional monoubiquitination of histone 2B. Rtf1 plays an essential role in the specification of cardiac progenitors from the lateral plate mesoderm during early embryogenesis, [...] Read more.
The PAF1 complex component Rtf1 is an RNA Polymerase II-interacting transcription regulatory protein that promotes transcription elongation and the co-transcriptional monoubiquitination of histone 2B. Rtf1 plays an essential role in the specification of cardiac progenitors from the lateral plate mesoderm during early embryogenesis, but its requirement in mature cardiac cells is unknown. Here, we investigate the importance of Rtf1 in neonatal and adult cardiomyocytes using knockdown and knockout approaches. We demonstrate that loss of Rtf1 activity in neonatal cardiomyocytes disrupts cell morphology and results in a breakdown of sarcomeres. Similarly, Rtf1 ablation in mature cardiomyocytes of the adult mouse heart leads to myofibril disorganization, disrupted cell–cell junctions, fibrosis, and systolic dysfunction. Rtf1 knockout hearts eventually fail and exhibit structural and gene expression defects resembling dilated cardiomyopathy. Intriguingly, we observed that loss of Rtf1 activity causes a rapid change in the expression of key cardiac structural and functional genes in both neonatal and adult cardiomyocytes, suggesting that Rtf1 is continuously required to support expression of the cardiac gene program. Full article
Show Figures

Figure 1

29 pages, 49849 KB  
Article
The Role of Posterior Neural Plate-Derived Presomitic Mesoderm (PSM) in Trunk and Tail Muscle Formation and Axis Elongation
by Barbara K. Stepien, Verena Pawolski, Marc-Christoph Wagner, Thomas Kurth, Mirko H. H. Schmidt and Hans-Henning Epperlein
Cells 2023, 12(9), 1313; https://doi.org/10.3390/cells12091313 - 4 May 2023
Cited by 2 | Viewed by 3017
Abstract
Elongation of the posterior body axis is distinct from that of the anterior trunk and head. Early drivers of posterior elongation are the neural plate/tube and notochord, later followed by the presomitic mesoderm (PSM), together with the neural tube and notochord. In axolotl, [...] Read more.
Elongation of the posterior body axis is distinct from that of the anterior trunk and head. Early drivers of posterior elongation are the neural plate/tube and notochord, later followed by the presomitic mesoderm (PSM), together with the neural tube and notochord. In axolotl, posterior neural plate-derived PSM is pushed posteriorly by convergence and extension of the neural plate. The PSM does not go through the blastopore but turns anteriorly to join the gastrulated paraxial mesoderm. To gain a deeper understanding of the process of axial elongation, a detailed characterization of PSM morphogenesis, which precedes somite formation, and of other tissues (such as the epidermis, lateral plate mesoderm and endoderm) is needed. We investigated these issues with specific tissue labelling techniques (DiI injections and GFP+ tissue grafting) in combination with optical tissue clearing and 3D reconstructions. We defined a spatiotemporal order of PSM morphogenesis that is characterized by changes in collective cell behaviour. The PSM forms a cohesive tissue strand and largely retains this cohesiveness even after epidermis removal. We show that during embryogenesis, the PSM, as well as the lateral plate and endoderm move anteriorly, while the net movement of the axis is posterior. Full article
(This article belongs to the Collection Feature Papers in 'Tissues and Organs')
Show Figures

Figure 1

21 pages, 4079 KB  
Article
A Descriptive Whole-Genome Transcriptomics Study in a Stem Cell-Based Tool Predicts Multiple Tissue-Specific Beneficial Potential and Molecular Targets of Carnosic Acid
by Farhana Ferdousi, Kazunori Sasaki, Satoshi Fukumitsu, Hidetoshi Kuwata, Mitsutoshi Nakajima and Hiroko Isoda
Int. J. Mol. Sci. 2023, 24(9), 8077; https://doi.org/10.3390/ijms24098077 - 29 Apr 2023
Cited by 4 | Viewed by 2922
Abstract
Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In [...] Read more.
Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In the present study, we conducted an untargeted whole-genome transcriptomics analysis to investigate CA-induced early biological and molecular events in human amniotic epithelial stem cells (hAESCs) with the aim of exploring its multiple tissue-specific functionalities and potential molecular targets. We found that seven days of CA treatment in hAESCs could induce mesoderm-lineage-specific differentiation. Tissue enrichment analysis revealed that CA significantly enriched lateral plate mesoderm-originated cardiovascular and adipose tissues. Further tissue-specific PPI analysis and kinase and transcription factor enrichment analyses identified potential upstream regulators and molecular targets of CA in a tissue-specific manner. Gene ontology enrichment analyses revealed the metabolic, antioxidant, and antifibrotic activities of CA. Altogether, our comprehensive whole-genome transcriptomics analyses offer a thorough understanding of the possible underlying molecular mechanism of CA. Full article
(This article belongs to the Special Issue State-of-the-Art Bioactives and Nutraceuticals in Japan)
Show Figures

Figure 1

13 pages, 2726 KB  
Article
A Blood Vessel Organoid Model Recapitulating Aspects of Vasculogenesis, Angiogenesis and Vessel Wall Maturation
by Sven Schmidt, Yvonne Alt, Nikita Deoghare, Sarah Krüger, Anna Kern, Anna Frederike Rockel, Nicole Wagner, Süleyman Ergün and Philipp Wörsdörfer
Organoids 2022, 1(1), 41-53; https://doi.org/10.3390/organoids1010005 - 28 Apr 2022
Cited by 24 | Viewed by 11957
Abstract
Blood vessel organoids are an important in vitro model to understand the underlying mechanisms of human blood vessel development and for toxicity testing or high throughput drug screening. Here we present a novel, cost-effective, and easy to manufacture vascular organoid model. To engineer [...] Read more.
Blood vessel organoids are an important in vitro model to understand the underlying mechanisms of human blood vessel development and for toxicity testing or high throughput drug screening. Here we present a novel, cost-effective, and easy to manufacture vascular organoid model. To engineer the organoids, a defined number of human induced pluripotent stem cells are seeded in non-adhesive agarose coated wells of a 96-well plate and directed towards a lateral plate mesoderm fate by activation of Wnt and BMP4 signaling. We observe the formation of a circular layer of angioblasts around days 5–6. Induced by VEGF application, CD31+ vascular endothelial cells appear within this vasculogenic zone at approximately day 7 of organoid culture. These cells arrange to form a primitive vascular plexus from which angiogenic sprouting is observed after 10 days of culture. The differentiation outcome is highly reproducible, and the size of organoids is scalable depending on the number of starting cells. We observe that the initial vascular ring forms at the interface between two cell populations. The inner cellular compartment can be distinguished from the outer by the expression of GATA6, a marker of lateral plate mesoderm. Finally, 14-days-old organoids were transplanted on the chorioallantois membrane of chicken embryos resulting in a functional connection of the human vascular network to the chicken circulation. Perfusion of the vessels leads to vessel wall maturation and remodeling as indicated by the formation of a continuous layer of smooth muscle actin expressing cells enwrapping the endothelium. In summary, our organoid model recapitulates human vasculogenesis, angiogenesis as well as vessel wall maturation and therefore represents an easy and cost-effective tool to study all steps of blood vessel development and maturation directly in the human setting without animal experimentation. Full article
(This article belongs to the Special Issue Feature Papers in Organoids)
Show Figures

Figure 1

31 pages, 1480 KB  
Review
Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis
by Estefania Lozano-Velasco, Carlos Garcia-Padilla, Maria del Mar Muñoz-Gallardo, Francisco Jose Martinez-Amaro, Sheila Caño-Carrillo, Juan Manuel Castillo-Casas, Cristina Sanchez-Fernandez, Amelia E. Aranega and Diego Franco
Int. J. Mol. Sci. 2022, 23(5), 2839; https://doi.org/10.3390/ijms23052839 - 4 Mar 2022
Cited by 15 | Viewed by 6097
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart [...] Read more.
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development. Full article
(This article belongs to the Special Issue Common Molecular Mechanisms in Embryonic Development)
Show Figures

Figure 1

11 pages, 1402 KB  
Article
Identification of Surface Antigens That Define Human Pluripotent Stem Cell-Derived PRRX1+Limb-Bud-like Mesenchymal Cells
by Daisuke Yamada, Tomoka Takao, Masahiro Nakamura, Toki Kitano, Eiji Nakata and Takeshi Takarada
Int. J. Mol. Sci. 2022, 23(5), 2661; https://doi.org/10.3390/ijms23052661 - 28 Feb 2022
Cited by 3 | Viewed by 3341
Abstract
Stem cell-based therapies and experimental methods rely on efficient induction of human pluripotent stem cells (hPSCs). During limb development, the lateral plate mesoderm (LPM) produces limb-bud mesenchymal (LBM) cells that differentiate into osteochondroprogenitor cells and form cartilage tissues in the appendicular skeleton. Previously, [...] Read more.
Stem cell-based therapies and experimental methods rely on efficient induction of human pluripotent stem cells (hPSCs). During limb development, the lateral plate mesoderm (LPM) produces limb-bud mesenchymal (LBM) cells that differentiate into osteochondroprogenitor cells and form cartilage tissues in the appendicular skeleton. Previously, we generated PRRX1-tdTomato reporter hPSCs to establish the protocol for inducing the hPSC-derived PRRX1+ LBM-like cells. However, surface antigens that assess the induction efficiency of hPSC-derived PRRX1+ LBM-like cells from LPM have not been identified. Here, we used PRRX1-tdTomato reporter hPSCs and found that high pluripotent cell density suppressed the expression of PRRX1 mRNA and tdTomato after LBM-like induction. RNA sequencing and flow cytometry suggested that PRRX1-tdTomato+ LBM-like cells are defined as CD44high CD140Bhigh CD49f. Importantly, other hPSC lines, including four human induced pluripotent stem cell lines (414C2, 1383D2, HPS1042, HPS1043) and two human embryonic stem cell lines (SEES4, SEES7), showed the same results. Thus, an appropriate cell density of hPSCs before differentiation is a prerequisite for inducing the CD44high CD140Bhigh CD49f PRRX1+ LBM-like cells. Full article
(This article belongs to the Special Issue Molecular Metabolisms in Cartilage Health and Diseases)
Show Figures

Figure 1

20 pages, 1313 KB  
Review
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development
by Nitza Kahane and Chaya Kalcheim
Int. J. Mol. Sci. 2021, 22(17), 9141; https://doi.org/10.3390/ijms22179141 - 24 Aug 2021
Cited by 13 | Viewed by 7726
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The [...] Read more.
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis. Full article
(This article belongs to the Special Issue Cell Fate Decisions in Neural Development)
Show Figures

Figure 1

13 pages, 3921 KB  
Article
Persistent Ventricle Partitioning in the Adult Zebrafish Heart
by Catherine Pfefferli, Hannah R. Moran, Anastasia Felker, Christian Mosimann and Anna Jaźwińska
J. Cardiovasc. Dev. Dis. 2021, 8(4), 41; https://doi.org/10.3390/jcdd8040041 - 9 Apr 2021
Cited by 3 | Viewed by 4881
Abstract
The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF), both emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers [...] Read more.
The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF), both emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers and subsequent chamber septation. The single ventricle-forming zebrafish heart also integrates FHF and SHF lineages during embryogenesis, yet the contributions of these two myocardial lineages to the adult zebrafish heart remain incompletely understood. Here, we characterize the myocardial labeling of FHF descendants in both the developing and adult zebrafish ventricle. Expanding previous findings, late gastrulation-stage labeling using drl-driven CreERT2 recombinase with a myocardium-specific, myl7-controlled, loxP reporter results in the predominant labeling of FHF-derived outer curvature and the right side of the embryonic ventricle. Raised to adulthood, such lineage-labeled hearts retain broad areas of FHF cardiomyocytes in a region of the ventricle that is positioned at the opposite side to the atrium and encompasses the apex. Our data add to the increasing evidence for a persisting cell-based compartmentalization of the adult zebrafish ventricle even in the absence of any physical boundary. Full article
(This article belongs to the Special Issue Zebrafish Heart Development, Regeneration, and Disease Modelling)
Show Figures

Figure 1

22 pages, 16990 KB  
Review
From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish
by Cassie L. Kemmler, Fréderike W. Riemslagh, Hannah R. Moran and Christian Mosimann
J. Cardiovasc. Dev. Dis. 2021, 8(2), 17; https://doi.org/10.3390/jcdd8020017 - 10 Feb 2021
Cited by 49 | Viewed by 11781
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early [...] Read more.
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model. Full article
(This article belongs to the Special Issue Zebrafish Heart Development, Regeneration, and Disease Modelling)
Show Figures

Figure 1

15 pages, 1082 KB  
Review
The Progress of Stem Cell Technology for Skeletal Regeneration
by Shoichiro Tani, Hiroyuki Okada, Ung-il Chung, Shinsuke Ohba and Hironori Hojo
Int. J. Mol. Sci. 2021, 22(3), 1404; https://doi.org/10.3390/ijms22031404 - 30 Jan 2021
Cited by 8 | Viewed by 6000
Abstract
Skeletal disorders, such as osteoarthritis and bone fractures, are among the major conditions that can compromise the quality of daily life of elderly individuals. To treat them, regenerative therapies using skeletal cells have been an attractive choice for patients with unmet clinical needs. [...] Read more.
Skeletal disorders, such as osteoarthritis and bone fractures, are among the major conditions that can compromise the quality of daily life of elderly individuals. To treat them, regenerative therapies using skeletal cells have been an attractive choice for patients with unmet clinical needs. Currently, there are two major strategies to prepare the cell sources. The first is to use induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs), which can recapitulate the skeletal developmental process and differentiate into various skeletal cells. Skeletal tissues are derived from three distinct origins: the neural crest, paraxial mesoderm, and lateral plate mesoderm. Thus, various protocols have been proposed to recapitulate the sequential process of skeletal development. The second strategy is to extract stem cells from skeletal tissues. In addition to mesenchymal stem/stromal cells (MSCs), multiple cell types have been identified as alternative cell sources. These cells have distinct multipotent properties allowing them to differentiate into skeletal cells and various potential applications for skeletal regeneration. In this review, we summarize state-of-the-art research in stem cell differentiation based on the understanding of embryogenic skeletal development and stem cells existing in skeletal tissues. We then discuss the potential applications of these cell types for regenerative medicine. Full article
(This article belongs to the Special Issue Cell Therapy Approaches for Bone and Cartilage Regeneration)
Show Figures

Figure 1

17 pages, 3645 KB  
Article
The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
by Paul W. Chrystal, Curtis R. French, Francesca Jean, Serhiy Havrylov, Suey van Baarle, Ann-Marie Peturson, Pengfei Xu, J. Gage Crump, David B. Pilgrim, Ordan J. Lehmann and Andrew J. Waskiewicz
Genes 2021, 12(2), 170; https://doi.org/10.3390/genes12020170 - 26 Jan 2021
Cited by 8 | Viewed by 4544
Abstract
Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 [...] Read more.
Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a−/−; foxc1b−/− homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 5473 KB  
Article
In Vitro Fabrication of Hybrid Bone/Cartilage Complex Using Mouse Induced Pluripotent Stem Cells
by Phoonsuk Limraksasin, Takeru Kondo, Maolin Zhang, Hiroko Okawa, Thanaphum Osathanon, Prasit Pavasant and Hiroshi Egusa
Int. J. Mol. Sci. 2020, 21(2), 581; https://doi.org/10.3390/ijms21020581 - 16 Jan 2020
Cited by 38 | Viewed by 5655
Abstract
Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional [...] Read more.
Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional spheres. At day 12, iPSC spheres were subjected to shaking culture and maintained in osteogenic induction medium for 31 days (Os induction). In another condition, the osteogenic induction medium was replaced by chondrogenic induction medium at day 22 and maintained for a further 21 days (Os-Chon induction). Os induction produced robust mineralization and some cartilage-like tissue, which promoted expression of osteogenic and chondrogenic marker genes. In contrast, Os-Chon induction resulted in partial mineralization and a large area of cartilage tissue, with greatly increased expression of chondrogenic marker genes along with osterix and collagen 1a1. Os-Chon induction enhanced mesodermal lineage commitment with brachyury expression followed by high expression of lateral plate and paraxial mesoderm marker genes. These results suggest that combined use of micro-space culture and mechanical stimuli facilitates hybrid bone/cartilage tissue formation from iPSCs, and that the bone/cartilage tissue ratio in iPSC constructs could be manipulated through the induction protocol. Full article
(This article belongs to the Special Issue From hIPSCs to Adult Cells in a Dish: Promises and Pitfalls)
Show Figures

Figure 1

12 pages, 965 KB  
Review
Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us?
by Axel Schweickert, Tim Ott, Sabrina Kurz, Melanie Tingler, Markus Maerker, Franziska Fuhl and Martin Blum
J. Cardiovasc. Dev. Dis. 2018, 5(1), 1; https://doi.org/10.3390/jcdd5010001 - 29 Dec 2017
Cited by 13 | Viewed by 7346
Abstract
Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of [...] Read more.
Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure. Full article
(This article belongs to the Special Issue Left–Right Asymmetry and Cardiac Morphogenesis)
Show Figures

Figure 1

Back to TopTop