Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,028)

Search Parameters:
Keywords = lateral force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1812 KB  
Article
The Optimal Fibular Strut Bone Graft Fixation Angle for Unstable Proximal Humerus Fractures: A Finite Element Analysis
by Hyun Seok Song, Hui-Gyeong Gong, Hyun-Ju Lee, Hyungsuk Kim and Ki-Sik Tae
Bioengineering 2025, 12(10), 1078; https://doi.org/10.3390/bioengineering12101078 (registering DOI) - 3 Oct 2025
Abstract
Adding a fibular strut bone graft to locking plate fixation has been introduced to improve stability and prevent varus collapse. The purpose of this study was to perform finite element analysis (FEA) of the biomechanical characteristics of different insertion angles of the fibular [...] Read more.
Adding a fibular strut bone graft to locking plate fixation has been introduced to improve stability and prevent varus collapse. The purpose of this study was to perform finite element analysis (FEA) of the biomechanical characteristics of different insertion angles of the fibular strut graft in proximal humerus fractures. Proximal humerus fractures with metaphyseal comminution and instability were simulated by creating wedge-shaped osteotomies medially and laterally for varus and valgus models, respectively. Three-dimensional finite element models were reconstructed from computed tomography images. A locking compression plate with a length of 90 mm (three holes) was applied to the proximal humerus fracture model. Fibular allografts were inserted at 0° and 30° to the humeral shaft. Axial and traction forces of 70°, 90°, and 110° relative to the vertical axis were applied to each model to simulate stress on the plate and graft. At axial loads, stresses in both the plate and the graft were lower when the graft was inserted at 0° than at 30°. Under traction loads, plate stress was lower with 30° insertion. Graft stress was also lower with 30° in most experimental conditions in both the valgus and varus models. These findings suggest that oblique insertion may provide biomechanical advantages under traction forces in unstable proximal humerus fractures. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

38 pages, 3996 KB  
Article
Deformation and Energy-Based Comparison of Outrigger Locations in RC and BRB-Core Tall Buildings Under Repetitive Earthquakes
by İlhan Emre İnam and Ahmet Anıl Dindar
Buildings 2025, 15(19), 3563; https://doi.org/10.3390/buildings15193563 - 2 Oct 2025
Abstract
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and [...] Read more.
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and direction of the study: (1) How does the structural performance change when outriggers are placed at various positions? (2) How do outrigger systems affect structural behavior under sequential earthquake scenarios? Nonlinear time history analyses were employed as the primary methodology to evaluate the seismic response of the two reinforced concrete buildings with 24 and 48 stories, respectively. Each building type was developed for two different core configurations: one with a reinforced concrete shear wall core and the other with a BRB core system. Each analysis model also includes outrigger systems constructed with BRBs positioned at different floor levels. Five sequential ground motion records were used to assess the effects of main- and aftershocks. The analysis results were evaluated not only based on displacement and force demands but also using a damage measure called the Park-Ang Damage Index. In addition, displacement-based metrics, particularly the maximum inter-story drift ratio (MISD), were also utilized to quantify lateral displacement demands under consecutive seismic loading. With the results obtained from this study, it is aimed to provide design-oriented insights into the most effective use of outrigger systems formed with BRB in high-rise RC buildings and their functions in increasing seismic resistance, especially in areas likely to experience consecutive seismic events. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 4885 KB  
Article
Nonlinear Aero-Thermo-Elastic Analysis of Laminated Composite Beams with Surface-Bonded FGMs Layers Subjected to a Concentrated Harmonic Load
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
J. Compos. Sci. 2025, 9(10), 539; https://doi.org/10.3390/jcs9100539 - 2 Oct 2025
Abstract
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, [...] Read more.
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, where von Kármán geometric nonlinearities are taken into account, along with the modified third-order piston theory to represent aerodynamic effects. By neglecting axial inertia, the resulting set of nonlinear governing equations is simplified into a single equation. This equation is discretized through the Galerkin procedure, yielding a nonlinear ordinary differential equation. An analytical solution is, then, obtained by applying the method of multiple time scales (MTS). Furthermore, a comprehensive parametric analysis is carried out to evaluate how factors such as the power-law index, stacking sequence, temperature field, load amplitude and position, free-stream velocity, and Mach number influence both the lateral dynamic deflection and the frequency response characteristics (FRCs) of the beams, offering useful guidelines for structural design optimization. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

26 pages, 2204 KB  
Article
Angular Motion Stability of Large Fineness Ratio Wrap-Around-Fin Rotating Rockets
by Zheng Yong, Juanmian Lei and Jintao Yin
Aerospace 2025, 12(10), 890; https://doi.org/10.3390/aerospace12100890 - 30 Sep 2025
Abstract
Long-range rotating wrap-around-fin rockets may exhibit non-convergent conical motion at high Mach numbers, causing increased drag, reduced range, and potential flight instability. This study employs the implicit dual time-stepping method to solve the unsteady Reynolds-averaged Navier–Stokes (URANS) equations for simulating the flow field [...] Read more.
Long-range rotating wrap-around-fin rockets may exhibit non-convergent conical motion at high Mach numbers, causing increased drag, reduced range, and potential flight instability. This study employs the implicit dual time-stepping method to solve the unsteady Reynolds-averaged Navier–Stokes (URANS) equations for simulating the flow field around a high aspect ratio wrap-around-fin rotating rocket at supersonic speeds. Validation of the numerical method in predicting aerodynamic characteristics at small angles of attack is achieved by comparing numerically obtained side force and yawing moment coefficients with experimental data. Analyzing the rocket’s angular motion process, along with angular motion equations, reveals the necessary conditions for the yawing moment to ensure stability during angular motion. Shape optimization is performed based on aerodynamic coefficient features and flow field structures at various angles of attack and Mach numbers, using the yawing moment stability condition as a guideline. Adjustments to parameters such as tail fin curvature radius, tail fin aspect ratio, and body aspect ratio diminish the impact of asymmetric flow induced by the wrap-around fin on the lateral moment, effectively resolving issues associated with near misses and off-target impacts resulting from dynamic instability at high Mach numbers. Full article
23 pages, 7674 KB  
Article
Lateral Impact Performance of Cold-Formed Steel L-Shaped Built-Up Columns
by Mengyao Li, Jinshan Sun, Yi Hu, Liqiang Jiang, Shizhong Zhou, Guangwei Dai and Ning Wu
Materials 2025, 18(19), 4548; https://doi.org/10.3390/ma18194548 - 30 Sep 2025
Abstract
Blasts, vehicle collisions, and other unexpected incidents may cause lateral impacts on building structures, which threaten their safety. This paper investigates the impact resistance of cold-formed steel (CFS) L-shaped built-up columns (LBC). Firstly, a finite element model (FEM) was established and validated through [...] Read more.
Blasts, vehicle collisions, and other unexpected incidents may cause lateral impacts on building structures, which threaten their safety. This paper investigates the impact resistance of cold-formed steel (CFS) L-shaped built-up columns (LBC). Firstly, a finite element model (FEM) was established and validated through experiments conducted by the authors. Then, a parametric analysis was conducted to quantify the effects of axial compression ratio, impact velocity, and dimensions on the impact response. The results indicated that: (1) The peak lateral impact force of the specimens presented a significant nonlinear trend with increasing axial compression ratio, and an optimal axial compression ratio was found as about 0.3. (2) Higher impact velocity intensified both force and displacement responses of the specimens, and both lateral impact peak force and maximum displacement increased significantly with the impact velocity. When the impact velocity rose from 3.13 m/s to 6.26 m/s, the peak force and maximum displacement increased by an average of 38.2% and 96.5%, respectively. (3) Increasing the cross-sectional dimensions and steel thickness, and reducing screw spacing, could significantly enhance the impact resistance and deformation capacity of the specimens. This study reveals the failure mechanism of such members and the laws of parameter influence, which can be used for impact design of CFS-LBC. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

10 pages, 1368 KB  
Technical Note
Construct-to-Construct Internal Distraction and Compression Technique for Scoliosis Correction
by J. Manuel Sarmiento, Rodrigo Navarro-Ramirez, Hoon Choi, Anthony S. Rinella, Han Jo Kim, Lawrence G. Lenke and Michael G. Vitale
J. Clin. Med. 2025, 14(19), 6939; https://doi.org/10.3390/jcm14196939 - 30 Sep 2025
Abstract
Background: Temporary internal distraction is a safe surgical technique that has been shown to improve correction of severe scoliosis. The traditional surgical adjunct for scoliosis treatment in the perioperative period is halo gravity traction, but there are several known disadvantages of this [...] Read more.
Background: Temporary internal distraction is a safe surgical technique that has been shown to improve correction of severe scoliosis. The traditional surgical adjunct for scoliosis treatment in the perioperative period is halo gravity traction, but there are several known disadvantages of this technique. We describe the technical nuances of temporary internal distraction using the construct-to-construct technique, a surgical adjunct that utilizes two rods joined by lateral domino connectors to enact powerful internal distraction or compression forces on the spine for achieving spinal deformity correction. Methods: This study was designed as a retrospective review and illustrative surgical technique report. The primary aim was to describe the construct-to-construct internal distraction and compression technique for scoliosis correction, with illustrative models and representative clinical cases. Results: Internal distraction using the construct-to-construct configuration is performed early in the surgery to take advantage of the viscoelastic properties of the spine as gradually increasing distraction forces are applied. The surgical technique for applying internal distraction and compression using the construct-to-construct configuration is discussed in detail. Conclusions: Construct-to-construct internal distraction and compression techniques are powerful methods to correct severe scoliosis curves, serially distract traditional growing rod constructs, and close three-column osteotomies. Full article
(This article belongs to the Special Issue Scoliosis: Advances in Diagnosis and Management)
Show Figures

Figure 1

18 pages, 15249 KB  
Article
Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models
by Yuxi Jiang, Yutao Chi, Weidong Wang, Wenshan Li, Hui Wang and Jianxiang Sun
Atmosphere 2025, 16(10), 1143; https://doi.org/10.3390/atmos16101143 - 29 Sep 2025
Abstract
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the [...] Read more.
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the multimodel ensemble from the Couple Model Intercomparison Project 6 and a temperature threshold method to investigate the EAWC changes during the period 1979–2100. The results show that the EAWC has been undergoing widespread and robust changes in response to global warming. The winter length in East Asia has shortened and will continue shortening owing to later onsets and earlier withdrawals, leading to a drastic contraction in length from 100 days in 1979 to 43 days (27 days) in 2100 under SSP2-4.5 (SSP5-8.5). While most regions of the East Asian continent are projected to become warmer in winter, the Japan and marginal seas of northeastern Asia will face the risks from colder winters with more frequent extreme cold events, accompanied by less precipitation. Meanwhile, the Tibetan Plateau is very likely to have colder winters in the future, though its surface snow amounts will significantly decline. Greenhouse gas (GHG) emissions are found to be responsible for the EAWC changes. GHG traps heat inside the Earth’s atmosphere and notably increases the air temperature; moreover, its force modulates large-scale atmospheric circulation, facilitating an enhanced and northward-positioned Aleutian low together with a weakened Siberian high, East Asian trough, and East Asian jet stream. These two effects work together, resulting in a contracted winter with robust and uneven regional changes in the EAWC. This finding highlights the urgency of curbing GHG emissions and improving forecasts of the EAWC, which are crucial for mitigating their major ecological and social impacts. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 11496 KB  
Article
Axial Force Analysis and Geometric Nonlinear Beam-Spring Finite Element Calculation of Micro Anti-Slide Piles
by Guoping Lei, Dongmei Yuan, Zexiong Wu and Feifan Liu
Buildings 2025, 15(19), 3498; https://doi.org/10.3390/buildings15193498 - 28 Sep 2025
Abstract
This study investigates the development of axial force in micro anti-slide piles under soil movement during slope stabilization. Axial force arises from two primary mechanisms: axial soil displacement (zs) and pile kinematics. The former plays a dominant role, producing either [...] Read more.
This study investigates the development of axial force in micro anti-slide piles under soil movement during slope stabilization. Axial force arises from two primary mechanisms: axial soil displacement (zs) and pile kinematics. The former plays a dominant role, producing either tensile or compressive axial force depending on the direction of zs, while the kinematically induced component remains consistently tensile. A sliding angle of α=5° represents an approximate transition point where these two effects balance each other. Furthermore, the two mechanisms exhibit distinct mobilization behaviors: zs-induced axial force mobilizes earlier than both bending moment and shear force, whereas kinematically induced axial force mobilizes significantly later. The study reveals two distinct pile–soil interaction mechanisms depending on proximity to the slip surface: away from the slip surface, axial soil resistance is governed by rigid cross-section translation, whereas near the slip surface, rotation-dominated displacement accompanied by soil–pile separation introduces significant complexity in predicting both the magnitude and direction of axial friction. A hyperbolic formulation was adopted to model both the lateral soil resistance relative to lateral pile–soil displacement (p-y behavior) and the axial frictional resistance relative to axial pile–soil displacement (t-z behavior). Soil resistance equations were derived to explicitly incorporate the effects of cross-sectional rotation and pile–soil separation. A novel beam-spring finite element method (BSFEM) that incorporates both geometric and material nonlinearities of the pile behavior was developed, using a soil displacement-driven solution algorithm. Validation against both numerical simulations and field monitoring data from an engineering application demonstrates the model’s effectiveness in capturing the distribution and evolution of axial deformation and axial force in micropiles under varying soil movement conditions. Full article
Show Figures

Figure 1

22 pages, 21059 KB  
Article
Numerical Investigation of the Erosive Dynamics of Glacial Lake Outburst Floods: A Case Study of the 2020 Jinwuco Event in Southeastern Tibetan Plateau
by Shuwu Li, Changhu Li, Pu Li, Yifan Shu, Zhengzheng Li and Zhang Wang
Water 2025, 17(19), 2837; https://doi.org/10.3390/w17192837 - 27 Sep 2025
Abstract
Glacial lake outburst floods (GLOFs) represent increasingly common and high-magnitude geohazards across the cryosphere of the Tibetan Plateau, particularly under ongoing climate warming and glacier retreat. This study combines multi-temporal remote sensing imagery and detailed Flo-2D hydrodynamic modeling to investigate the erosive dynamics [...] Read more.
Glacial lake outburst floods (GLOFs) represent increasingly common and high-magnitude geohazards across the cryosphere of the Tibetan Plateau, particularly under ongoing climate warming and glacier retreat. This study combines multi-temporal remote sensing imagery and detailed Flo-2D hydrodynamic modeling to investigate the erosive dynamics of the 2020 Jinwuco GLOF in Southeastern Tibetan Plateau. Key conclusions include: (1) The 2.35 km-long flood routing channel exhibits pronounced non-uniformity in horizontal curvature, channel width, and cross-sectional shape, significantly influencing flood propagation; five representative cross-sections divide the channel into six distinct segments. (2) Prominent lateral erosion occurred proximally to the dam, attributable to extreme erosive forces and high sediment transport capacity during peak discharge, with horizontal channel curvature further amplifying local impact and erosion. (3) Erosion rates were highest near the dam and in downstream narrow segments, while mid-reach sections with greater width experienced lower erosion. (4) Maximum flow depths reached 28.12 m in topographically confined reaches, whereas peak velocities occurred in upstream and downstream curved sections. (5) The apparent critical erosive shear stress of bank material is controlled not only by soil strength but also by flood dynamics and pre-existing channel morphology, indicating strong feedback between flow dynamics, channel morphology, and critical erosive shear stress of bank material. This study provides a generalized and transferable framework for analyzing GLOF-related erosion in data-scarce high-altitude regions, offering critical insights for hazard assessment, regional planning, and risk mitigation strategies. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

27 pages, 39664 KB  
Article
Research on Suppression of Negative Effects of Vibration in In-Wheel Motor-Driven Electric Vehicles Based on DMPC
by Xiangpeng Meng, Yang Rong, Renkai Ding, Wei Liu, Dong Sun and Ruochen Wang
Processes 2025, 13(10), 3081; https://doi.org/10.3390/pr13103081 - 26 Sep 2025
Abstract
In-wheel motor (IWM)-driven electric vehicles (EVs) are susceptible to road excitation, which can induce eccentricity between the stator and rotor of the IWM. This eccentricity leads to unbalanced electromagnetic forces (UEFs) and electromechanical coupling (EMC) effects, severely degrading vehicle dynamic performance. To address [...] Read more.
In-wheel motor (IWM)-driven electric vehicles (EVs) are susceptible to road excitation, which can induce eccentricity between the stator and rotor of the IWM. This eccentricity leads to unbalanced electromagnetic forces (UEFs) and electromechanical coupling (EMC) effects, severely degrading vehicle dynamic performance. To address this issue, this study first established an EMC system model encompassing UEF, IWM drive, and vehicle dynamics. Based on this model, four typical operating conditions—constant speed, acceleration, deceleration, and steering—were designed to thoroughly analyze the influence of EMC effects on vehicle dynamic response characteristics. The analysis results were validated through real-vehicle experiments. The results indicate that the EMC effects caused by motor eccentricity primarily affect the vehicle’s vertical dynamics performance (especially during acceleration and deceleration), leading to increased vertical body acceleration and reduced ride comfort, while having a relatively minor impact on longitudinal and lateral dynamics performance. Additionally, these effects significantly increase the relative eccentricity of the motor under various operating conditions, further degrading motor performance. To mitigate these negative effects, this paper designs an active suspension controller based on distributed model predictive control (DMPC). Simulation and experimental validation demonstrate that the proposed controller effectively improves ride comfort and body posture stability while significantly suppressing the growth of the motor’s relative eccentricity, thereby enhancing motor operational performance. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

22 pages, 303 KB  
Article
“A Kind of Hamlet”: Rescripting Shakespeare and the Refusal of Racial Scripts in James Ijames’s Fat Ham
by Vanessa I. Corredera
Humanities 2025, 14(10), 188; https://doi.org/10.3390/h14100188 - 26 Sep 2025
Abstract
In his 1926 “Criteria of Negro Art,” W.E.B. Du Bois advocates for art’s role in the quest for liberation while acknowledging the challenges facing the creation of Black art, observing, “We can go on the stage; we can be just as funny as [...] Read more.
In his 1926 “Criteria of Negro Art,” W.E.B. Du Bois advocates for art’s role in the quest for liberation while acknowledging the challenges facing the creation of Black art, observing, “We can go on the stage; we can be just as funny as white Americans wish us to be; we can play all the sordid parts that America likes to assign to Negroes; but for anything else there is still small place for us.” He elaborates, “As it is now we are handing everything over to a white jury.” Almost 100 years later, the issues Du Bois raises about Black art, the quest for Black freedom, and the structures of white supremacy that stymie this striving remain troublingly relevant for contemporary Shakespearean performance. As scholars have noted, complex challenges (the Shakespeare system, capitalist pressures, etc.) continue to make contemporary American Theater, and Shakespeare within it, “still a small space” for Black artists. In the face of these forces, what can and does resistance look like for Black artists within predominantly white theatrical spaces? Here, I tackle this question, thereby continuing the scholarly interrogation of the relationship between contemporary Shakespeare performance, race, and social justice. I turn to a recent lauded adaptation of Shakespeare that, in its move from local theater to Broadway, inevitably had to engage with the structures of American theater’s (and Shakespeare’s) racial capitalism—James Ijames’s Pulitzer-prize-winning Fat Ham (2021). Fat Ham, I contend, tackles head on the historical racial scripts imposed on Black subjects and, through a range of adaptive moves, exposes and resists them, offering counterscripts that insist on the personal and interpersonal complexity and flourishing of Black subjectivity. Full article
8 pages, 506 KB  
Article
Effects of Jogging with a Hydration Pack on Ground Reaction Forces
by Jason Wicke, Jordan L. Cola and Hannah Panzarella
Biomechanics 2025, 5(4), 73; https://doi.org/10.3390/biomechanics5040073 - 26 Sep 2025
Abstract
Background/Objectives: Long-distance running often requires athletes to carry their own hydration. Both the velocity of the runner and the load will affect the ground reaction forces (GRFs). Furthermore, carrying a liquid mass may have different outcomes on GRF compared to carrying a solid [...] Read more.
Background/Objectives: Long-distance running often requires athletes to carry their own hydration. Both the velocity of the runner and the load will affect the ground reaction forces (GRFs). Furthermore, carrying a liquid mass may have different outcomes on GRF compared to carrying a solid mass. This effect may in turn potentially result in a greater risk of injury. The goal of this study was to examine the GRF while jogging with different quantities of water in a hydration pack. It was expected that GRF measures would change with increased hydration pack weight. Methods: Twenty college-aged participants were asked to run over a force plate with an empty hydration pack and packs (0.71 kg) filled with 0.5 litres (1.21 kg), 1.5 litres (1.71 kg), and 2.5 litres (3.21 kg) of water. Results: No significant differences (p > 0.05) in the vertical, lateral, or forward–back measures were found between the different loads. These outcomes may be a result of the dampening effect the movement of the water may have on gait. Conclusions: It is believed that the benefit of having hydration readily available via a hydration pack will outweigh any potential for injury due to the added weight being carried. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

14 pages, 2926 KB  
Article
A Dual-Thread Lag–Locking Screw Enhances Single Lateral Plate Fixation in Bicondylar Tibial Plateau Fractures: A Biomechanical Study
by Ya-Han Chan, Hsuan-Wen Wang, Wei-Che Tsai and Chun-Li Lin
Bioengineering 2025, 12(10), 1023; https://doi.org/10.3390/bioengineering12101023 - 25 Sep 2025
Abstract
Schatzker type V bicondylar tibial plateau fractures present a major challenge due to the difficulty of achieving stable fixation with minimally invasive strategies. This study introduces a dual-thread lag and locking plate (DLLP) design that integrates lag screw compression with unilateral locking plate [...] Read more.
Schatzker type V bicondylar tibial plateau fractures present a major challenge due to the difficulty of achieving stable fixation with minimally invasive strategies. This study introduces a dual-thread lag and locking plate (DLLP) design that integrates lag screw compression with unilateral locking plate fixation. A custom-built compression evaluation platform and standardized 3D-printed fracture models were employed to assess biomechanical performance. DLLP produced measurable interfragmentary compression during screw insertion, with a mean displacement of 1.22 ± 0.11 mm compared with 0.02 ± 0.04 mm for conventional single lateral locking plates (SLLPs) (p < 0.05). In static testing, DLLP demonstrated a significantly greater maximum failure force (7801.51 ± 358.95 N) than SLLP (6224.84 ± 411.20 N, p < 0.05) and improved resistance to lateral displacement at 2 mm (3394.85 ± 392.81 N vs. 2766.36 ± 64.51 N, p = 0.03). Under dynamic fatigue loading simulating one year of functional use, all DLLP constructs survived 1 million cycles with <2 mm displacement, while all SLLP constructs failed prematurely (mean fatigue life: 408,679 ± 128,286 cycles). These findings highlight the critical role of lag screw compression in maintaining fracture stability and demonstrate that DLLP provides superior biomechanical performance compared with SLLP, supporting its potential as a less invasive alternative to dual plating in the treatment of complex tibial plateau fractures. Full article
(This article belongs to the Special Issue Orthopedic and Trauma Biomechanics)
Show Figures

Figure 1

34 pages, 8658 KB  
Article
Driving Processes of the Niland Moving Mud Spring: A Conceptual Model of a Unique Geohazard in California’s Eastern Salton Sea Region
by Barry J. Hibbs
GeoHazards 2025, 6(4), 59; https://doi.org/10.3390/geohazards6040059 - 25 Sep 2025
Abstract
The Niland Moving Mud Spring, located near the southeastern margin of the Salton Sea, represents a rare and evolving geotechnical hazard. Unlike the typically stationary mud pots of the Salton Trough, this spring is a CO2-driven mud spring that has migrated [...] Read more.
The Niland Moving Mud Spring, located near the southeastern margin of the Salton Sea, represents a rare and evolving geotechnical hazard. Unlike the typically stationary mud pots of the Salton Trough, this spring is a CO2-driven mud spring that has migrated southwestward since 2016, at times exceeding 3 m per month, posing threats to critical infrastructure including rail lines, highways, and pipelines. Emergency mitigation efforts initiated in 2018, including decompression wells, containment berms, and route realignments, have since slowed and recently almost halted its movement and growth. This study integrates hydrochemical, temperature, stable isotope, and tritium data to propose a refined conceptual model of the Moving Mud Spring’s origin and migration. Temperature data from the Moving Mud Spring (26.5 °C to 28.3 °C) and elevated but non-geothermal total dissolved solids (~18,000 mg/L) suggest a shallow, thermally buffered groundwater source influenced by interaction with saline lacustrine sediments. Stable water isotope data follow an evaporative trajectory consistent with imported Colorado River water, while tritium concentrations (~5 TU) confirm a modern recharge source. These findings rule out deep geothermal or residual floodwater origins from the great “1906 flood”, and instead implicate more recent irrigation seepage or canal leakage as the primary water source. A key external forcing may be the 4.1 m drop in Salton Sea water level between 2003 and 2025, which has modified regional groundwater hydraulic head gradients. This recession likely enhanced lateral groundwater flow from the Moving Mud Spring area, potentially facilitating the migration of upwelling geothermal gases and contributing to spring movement. No faults or structural features reportedly align with the spring’s trajectory, and most major fault systems trend perpendicular to its movement. The hydrologically driven model proposed in this paper, linked to Salton Sea water level decline and correlated with the direction, rate, and timing of the spring’s migration, offers a new empirical explanation for the observed movement of the Niland Moving Mud Spring. Full article
Show Figures

Figure 1

13 pages, 2257 KB  
Article
Scalable High-Yield Exfoliation of Hydrophilic h-BN Nanosheets via Gallium Intercalation
by Sungsan Kang, Dahun Kim, Seonyou Park, Sung-Tae Lee, John Hong, Sanghyo Lee and Sangyeon Pak
Inorganics 2025, 13(10), 314; https://doi.org/10.3390/inorganics13100314 - 25 Sep 2025
Abstract
Hexagonal boron nitride (h-BN) possesses a unique combination of a wide bandgap, high thermal conductivity, and chemical inertness, making it a key insulating and thermal management material for advanced electronics and nanocomposites. However, its intrinsic hydrophobicity and strong interlayer van der Waals forces [...] Read more.
Hexagonal boron nitride (h-BN) possesses a unique combination of a wide bandgap, high thermal conductivity, and chemical inertness, making it a key insulating and thermal management material for advanced electronics and nanocomposites. However, its intrinsic hydrophobicity and strong interlayer van der Waals forces severely limit exfoliation efficiency and dispersion stability, particularly in scalable liquid-phase processes. Here, we report a synergistic exfoliation strategy that integrates acid-induced hydroxylation with gallium (Ga) intercalation to achieve high-yield (>80%) production of ultrathin (<4 nm) hydrophilic h-BN nanosheets. Hydroxylation introduces abundant -OH groups, expanding interlayer spacing and significantly increasing surface polarity, while Ga intercalation leverages its native Ga2O3 shell to form strong interfacial interactions with hydroxylated basal planes. This oxide-mediated adhesion facilitates efficient layer separation under mild sonication, yielding nanosheets with well-preserved lateral dimensions and exceptional dispersion stability in polar solvents. Comprehensive characterization confirms the sequential chemical and structural modifications, revealing the crucial roles of hydroxylation-induced activation and Ga2O3 assisted wettability enhancement. This combined chemical activation–soft metallic intercalation approach provides a scalable, solution-processable route to high-quality h-BN nanosheets, opening new opportunities for their integration into dielectric, thermal interface, and multifunctional composite systems. Full article
(This article belongs to the Special Issue Physicochemical Characterization of 2D Materials)
Show Figures

Figure 1

Back to TopTop