Numerical Investigation of the Erosive Dynamics of Glacial Lake Outburst Floods: A Case Study of the 2020 Jinwuco Event in Southeastern Tibetan Plateau
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Acquisition
3.2. Valley Morphometry Analysis
3.3. Jinwuco GLOF Downstream Propagation Modeling
4. Result
4.1. Valley Morphological Characteristics of the Jinwuco GLOF
4.2. Spatial Distribution and Quantification of Valley Lateral Bank Erosion
4.3. Lateral Bank Erosion Mechanisms of Jinwuco GLOF
5. Discussion
5.1. Influence of Oversized Boulders on the Propagation of GLOF
5.2. Modeling Sensitivity Analysis and Limitations
5.3. Implications for Future GLOF Hazard
6. Conclusions
- (1)
- The morphology of the 2.35 km-long routing valley of the Jinwuco GLOF is non-uniform, characterized by varied horizontal curvature, channel width, and cross-sectional shapes. Changes in channel curvatures and widths will significantly affect the propagation of the GLOF. Based on the morphological analysis, five representative cross-sections are discerned, which cut the 2.35 km-long channel into six segments.
- (2)
- The lateral bank erosion was significant on both sides near the dam of the glacier lake, which can be attributed to the extremely high erosive power and sediment transport capacity at the moment of peak discharge of the GLOF. The curved channel changed the direction of the GLOF, signifying severe frontal collision and impact between the flood and the sediment on one side, and hence, enhancing lateral bank erosion.
- (3)
- Generally, the bank erosion rate was relatively low in the middle with a large channel width, while it reached quite high values at the beginning near the dam of the glacier lake and at the tail with a shrunk channel width.
- (4)
- The highest values of maximum flow depths of Jinwuco GLOF concentrate in the downstream narrow channels, with a peak value of 28.12 m. In contrast, the highest values of maximum flow velocity appear in relatively horizontal curved channel sections.
- (5)
- The ‘apparent’ critical erosive shear stress of soil on the lateral bank is not only a function of its mechanical strength, but also other factors, including the dynamics of upper erosive flood and initial channel morphology. The non-uniform channel morphology of the Jinwuco GLOF can alter the flow dynamics and the initiation of lateral bank soil, thus affecting the ‘apparent’ critical erosive shear stress of soil.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, D.-H.; Zhai, P.-M. Amplification of warming on the Tibetan Plateau. Adv. Clim. Change Res. 2023, 14, 493–501. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lettenmaier, D.P.; Mosbrugger, V.; Zhang, B.; et al. Recent Third Pole’s rapid warming ac-companies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Pepin, N.; Chen, D.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Zhao, F.; Long, D.; Li, X.; Huang, Q.; Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 2022, 270, 112853. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Yao, X.; Duan, H.; Yang, J.; Pang, W. Inventory of Glacial Lake in the Southeastern Qinghai-Tibet Plateau Derived from Sentinel-1 SAR Image and Sentinel-2 MSI Image. Remote Sens. 2023, 15, 5142. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Duan, H.; Yao, X.; Zhang, D.; Qi, M.; Liu, J. Glacial lake changes and identification of potentially dangerous glacial lakes in the Yi’ong Zangbo River Basin. Water 2020, 12, 538. [Google Scholar] [CrossRef]
- Allen, S.K.; Rastner, P.; Arora, M.; Huggel, C.; Stoffel, M. Lake outburst and debris flow disaster at Kedarnath, June 2013: Hydrometeorological triggering and topographic predisposition. Landslides 2016, 13, 1479–1491. [Google Scholar] [CrossRef]
- Gurung, D.R.; Khanal, N.R.; Bajracharya, S.R.; Tsering, K.; Joshi, S.; Tshering, P.; Penjor, T. Lemthang Tsho glacial lake outburst flood (GLOF) in Bhutan: Cause and impact. Geoenviron. Disasters 2017, 4, 17. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T.; et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 2021, 11, 411–417. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Saha, S.; Bera, B.; Bhattacharjee, S.; Ghosh, D.; Tamang, L.; Shit, P.K.; Sengupta, N. Identification of the multiple causes of recent series of landslides and related damage by extreme rainfall and GLOF in Sikkim Himalaya, India, during October 2023. Landslides 2024, 21, 2993–3009. [Google Scholar] [CrossRef]
- Sattar, A.; Haritashya, U.K.; Kargel, J.S.; Karki, A. Transition of a small Himalayan glacier lake outburst flood to a giant transborder flood and debris flow. Sci. Rep. 2022, 12, 12421. [Google Scholar] [CrossRef]
- Cook, K.L.; Andermann, C.; Gimbert, F.; Adhikari, B.R.; Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 2018, 362, 53–57. [Google Scholar] [CrossRef]
- Zheng, G.; Mergili, M.; Emmer, A.; Allen, S.; Bao, A.; Guo, H.; Stoffel, M. The 2020 glacial lake outburst flood at Jinwuco, Tibet: Causes, impacts, and implications for hazard and risk assessment. Cryosphere Discuss. 2021, 15, 3159–3180. [Google Scholar] [CrossRef]
- Vilímek, V.; Zapata, M.L.; Klimeš, J.; Patzelt, Z.; Santillán, N. Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2005, 2, 107–115. [Google Scholar] [CrossRef]
- Zhou, G.G.; Zhou, M.; Shrestha, M.S.; Song, D.; Choi, C.E.; Cui, K.F.E.; Peng, M.; Shi, Z.; Zhu, X.; Chen, H. Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floods. Geomorphology 2019, 334, 29–43. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Hu, K.; Wang, F. Experimental study of debris-flow entrainment over stepped-gradient beds incorporating bed sediment porosity. Eng. Geol. 2020, 274, 105708. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Hu, K.; Shen, F. Effects of bed longitudinal inflexion and sediment porosity on basal entrainment mechanism: Insights from laboratory debris flows. Landslides 2021, 18, 3041–3062. [Google Scholar] [CrossRef]
- Zimmer, P.D.; Gabet, E.J. Assessing glacial modification of bedrock valleys using a novel approach. Geomorphology 2018, 318, 336–347. [Google Scholar] [CrossRef]
- FLO-2D Reference User’s Manual. FLO-2D Software Inc.: Nutrioso, AZ, USA, 2009. [CrossRef]
- Kurovskaia, V.; Chernomorets, S.; Vinogradova, T.; Krylenko, I.; Ghulomaidarov, A.; Raimbekov, Y. Scenarios calculations of outburst flood and debris flows. IOP Conf. Ser. Earth Environ. Sci. 2021, 834, 012009. [Google Scholar] [CrossRef]
- Erena, S.H.; Worku, H.; De Paola, F. Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. J. Hydrol. Reg. Stud. 2018, 19, 224–239. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Tegos, A.; Oikonomou, A.; Pagana, V.; Koukouvinos, A.; Mamassis, N.; Koutsoyiannis, D.; Efstratiadis, A. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J. Hydrol. 2016, 534, 478–492. [Google Scholar] [CrossRef]
- Guo, Q.-C.; Jin, Y.-C. Modeling sediment transport using depth-averaged and moment equations. J. Hydraul. Eng. 1999, 125, 1262–1269. [Google Scholar] [CrossRef]
- Liu, W.; He, S. Dynamic simulation of a mountain disaster chain: Landslides, barrier lakes, and outburst floods. Nat. Hazards 2017, 90, 757–775. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, L.M. EDDA 1.0: Integrated simulation of debris flow erosion, deposition and property changes. Geosci. Model Dev. 2015, 8, 829–844. [Google Scholar] [CrossRef]
- Zhou, X.B.; Chen, Z.Y.; Li, S.; Wang, L. Comparison of sediment transport model in dam break simulation. J. Basic Sci. Eng. 2015, 23, 1097–1108. [Google Scholar]
- Garcia-Castellanos, D.; O’cOnnor, J.E. Outburst floods provide erodability estimates consistent with long-term landscape evolution. Sci. Rep. 2018, 8, 10573. [Google Scholar] [CrossRef]
- Osman, A.M.; Thorne, C.R. Riverbank stability analysis. I: Theory. J. Hydraul. Eng. 1988, 114, 134–150. [Google Scholar] [CrossRef]
- Hanson, G.J.; Simon, A. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrol. Process. 2001, 15, 23–38. [Google Scholar] [CrossRef]
- Briaud, J.-L.; Chen, H.-C.; Govindasamy, A.V.; Storesund, R. Levee Erosion by Overtopping in New Orleans during the Katrina Hurricane. J. Geotech. Geoenviron. Eng. 2008, 134, 618–632. [Google Scholar] [CrossRef]
- Chang, D.S.; Zhang, L.M.; Xu, Y.; Huang, R.Q. Field testing of erodibility of two landslide dams triggered by the 12 May Wenchuan earthquake. Landslides 2011, 8, 321–332. [Google Scholar] [CrossRef]
- Huber, M.L.; Lupker, M.; Gallen, S.F.; Christl, M.; Gajurel, A.P. Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas. Earth Surf. Dyn. 2020, 8, 769–787. [Google Scholar] [CrossRef]
- Morey, S.M.; Shobe, C.M.; Huntington, K.W.; Lang, K.A.; Johnson, A.G.; Duvall, A.R. The lasting legacy of megaflood boulder deposition in mountain rivers. Geophys. Res. Lett. 2023, 51, e2023GL105066. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, K.; Wei, L.; Liu, W. Rapid changes in fluvial morphology in response to the high-energy Yigong outburst flood in 2000: Integrating channel dynamics and flood hydraulics. J. Hydrol. 2022, 612, 128199. [Google Scholar] [CrossRef]
- Wang, W.; Gao, Y.; Anacona, P.I.; Lei, Y.; Xiang, Y.; Zhang, G.; Li, S.; Lu, A. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas. Geomorphology 2018, 306, 292–305. [Google Scholar] [CrossRef]
- Wang, Q.; Duan, H.; Liu, N.; Du, Z.; Wang, P.; Yi, B.; Xu, J.; Huang, J.; Zhang, Y.; Yao, X. Change of moraine-dammed glacial lakes and simulation of glacial lake outburst flood in the Yi’ong Zangbo River basin. Front. Earth Sci. 2022, 10, 881285. [Google Scholar] [CrossRef]
- Jafarzadegan, K.; Alipour, A.; Gavahi, K.; Moftakhari, H.; Moradkhani, H. Toward improved river boundary conditioning for simulation of extreme floods. Adv. Water Resour. 2021, 158, 104059. [Google Scholar] [CrossRef]
- Alipour, A.; Jafarzadegan, K.; Moradkhani, H. Global sensitivity analysis in hydrodynamic modeling and flood inundation mapping. Environ. Model. Softw. 2022, 152, 105398. [Google Scholar] [CrossRef]
- Osti, R.; Egashira, S.; Adikari, Y. Prediction and assessment of multiple glacial lake outburst floods scenario in Pho Chu River basin, Bhutan. Hydrol. Process. 2011, 27, 262–274. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; von Specht, S.; Roessner, S.; Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Change 2019, 9, 379–383. [Google Scholar] [CrossRef]
Segments | S1–S14 | S15–S36 | S37–S50 | S51–S69 | S70–S81 | S82–S94 |
---|---|---|---|---|---|---|
Erodibility coefficient (106 mm3/N-s) | 0.073 | 0.113 | 0.332 | 0.099 | 0.273 | 0.161 |
Critical resistance to erosion (Pa) | 0.139 | 11.5 | 4.57 | 1.01 | 0.366 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, C.; Li, P.; Shu, Y.; Li, Z.; Wang, Z. Numerical Investigation of the Erosive Dynamics of Glacial Lake Outburst Floods: A Case Study of the 2020 Jinwuco Event in Southeastern Tibetan Plateau. Water 2025, 17, 2837. https://doi.org/10.3390/w17192837
Li S, Li C, Li P, Shu Y, Li Z, Wang Z. Numerical Investigation of the Erosive Dynamics of Glacial Lake Outburst Floods: A Case Study of the 2020 Jinwuco Event in Southeastern Tibetan Plateau. Water. 2025; 17(19):2837. https://doi.org/10.3390/w17192837
Chicago/Turabian StyleLi, Shuwu, Changhu Li, Pu Li, Yifan Shu, Zhengzheng Li, and Zhang Wang. 2025. "Numerical Investigation of the Erosive Dynamics of Glacial Lake Outburst Floods: A Case Study of the 2020 Jinwuco Event in Southeastern Tibetan Plateau" Water 17, no. 19: 2837. https://doi.org/10.3390/w17192837
APA StyleLi, S., Li, C., Li, P., Shu, Y., Li, Z., & Wang, Z. (2025). Numerical Investigation of the Erosive Dynamics of Glacial Lake Outburst Floods: A Case Study of the 2020 Jinwuco Event in Southeastern Tibetan Plateau. Water, 17(19), 2837. https://doi.org/10.3390/w17192837