Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = late gestation and early lactation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3249 KiB  
Article
Measurement of Salivary Cortisol for Revealing Age-Specific Dependence of Cortisol Levels on Time, Feeding, and Oxygen Metabolism in Newborn Infants
by Tomoko Suzuki, Sachiko Iwata, Chinami Hanai, Satoko Fukaya, Yuka Watanabe, Shigeharu Nakane, Hisayoshi Okamura, Shinji Saitoh and Osuke Iwata
Biosensors 2025, 15(7), 420; https://doi.org/10.3390/bios15070420 - 1 Jul 2025
Viewed by 421
Abstract
Salivary cortisol is widely used to assess stress and circadian rhythms, yet its control variables in neonates, particularly regarding postnatal age, remain poorly understood. To elucidate age-specific effects of clinical variables on cortisol levels, 91 neonates with a mean (standard deviation) gestational age [...] Read more.
Salivary cortisol is widely used to assess stress and circadian rhythms, yet its control variables in neonates, particularly regarding postnatal age, remain poorly understood. To elucidate age-specific effects of clinical variables on cortisol levels, 91 neonates with a mean (standard deviation) gestational age of 34.2 (3.8) weeks and postnatal age of 38.3 (35.4) days were categorised into Early, Medium, and Late groups by quartiles (days 10 and 56). Interactions with postnatal age were evaluated by comparing Early-to-Medium or Early-to-Late differences in regression coefficients between independent variables and cortisol levels. In the whole cohort, maternal hypertensive disorders of pregnancy and morning sampling were associated with reduced cortisol levels (both p = 0.001). Mean regression coefficients (95% CI) between variables and cortisol levels were as follows: for postconceptional age, Early, −0.102 (−0.215, 0.010) and Late, 0.065 (−0.203, 0.332) (p = 0.035); for feeding duration, Early, 0.796 (−0.134, 1.727) and Late, −0.702 (−2.778, 1.376) (p = 0.010); for time elapsed since feeding, Early, −0.748 (−1.275, −0.221) and Late, −0.071 (−1.230, 1.088) (p = 0.036); and for blood lactate, Early, 0.086 (0.048 to 0.124), Medium, 0.022 (−0.063, 0.108), and Late, −0.018 (−0.106, 0.070) (p = 0.008 and <0.001 vs. Medium and Late, respectively). The influence of postconceptional age, oral feeding, and anaerobic metabolism on salivary cortisol levels was observed during the birth transition period but not beyond 10 days of life. Given the age-specific dependence of cortisol levels on clinical variables, including postconceptional age, feeding, and oxygen metabolism, caution is warranted when interpreting findings from studies on salivary cortisol in newborn infants. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

26 pages, 2747 KiB  
Article
Physiological and Microbial Community Dynamics in Does During Mid-Gestation to Lactation and Their Impact on the Growth, Immune Function, and Microbiome Transmission of Offspring Kids
by Haidong Du, Kenan Li, Wenliang Guo, Meila Na, Jing Zhang, Jing Zhang and Renhua Na
Animals 2025, 15(7), 954; https://doi.org/10.3390/ani15070954 - 26 Mar 2025
Viewed by 438
Abstract
This study investigated changes in physiological processes and rumen microbial communities in does from mid-gestation to lactation and identified potential associations between these physiological changes and the rumen microbiome. Additionally, we studied the transmission mechanisms of microorganisms between the dam and offspring. Our [...] Read more.
This study investigated changes in physiological processes and rumen microbial communities in does from mid-gestation to lactation and identified potential associations between these physiological changes and the rumen microbiome. Additionally, we studied the transmission mechanisms of microorganisms between the dam and offspring. Our study demonstrates significant changes in maternal physiological metabolism, immune status, and rumen microbiota from mid-pregnancy through lactation. We identified potential associations between these physiological changes and the rumen microbiome. Moreover, the findings highlight that alterations in maternal physiological metabolism and immune status significantly influence the growth and immune development of offspring kids. Additionally, we observed that the maternal microbiota serves as a key source of gastrointestinal microbial communities in young animals, with early colonization of maternally derived microbes in the offspring’s gastrointestinal tract playing a role in shaping their immune system development. The results for primary outcomes are as follows: The serum levels of estrogen and progesterone in pregnant does were greater than those observed during lactation, while the concentration of growth hormone, triiodothyronine, and glucose exhibited an upward trend during lactation. During late gestation, the serum IL-10 concentration in does decreased, while the TNF-α concentration increased. Additionally, on day 140 of gestation, does showed a significant decrease in IgG, total protein, and globulin levels. From mid-gestation to lactation, the abundance of dominant phyla and genera, including Firmicutes, Bacteroidetes, Patescibacteria, Bacteroidales_RF16_group, Clostridia_UCG-014, RF39, and Eubacterium_ventriosum_group, in the rumen of does underwent significant changes. LEfSe analysis identified a series of marker microorganisms in the rumen of does at different physiological stages. A correlation was observed between these dominant bacteria and the serum physiological indicators of the does. Notably, rumen volatile fatty acids also exhibited a correlation with serum physiological indicators. In addition, serum physiological indicators of does were significantly correlated with the growth and immune indicators of their kids. Microbiological origin analysis revealed that the gastrointestinal microbiome of kids primarily originated from the rumen, birth canal, and milk of does. Further analysis identified a correlation between the kids’ serum immunometric indicators and certain gastrointestinal microorganisms. In particular, the jejunum microbiota of 28-day-old lactating kids, including Alysiella, Neisseria, and Muribaculaceae, showed a significant positive correlation with serum IL-6 and IL-10 levels. Meanwhile, these genera were dominant in the saliva and milk of does, suggesting a direct microbial transfer from dam to offspring. These microbial communities may play a significant role in modulating the metabolism and immune responses of the offspring, thereby influencing their immune system development. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

24 pages, 4132 KiB  
Article
Effects of Botanical Blend of Turmeric, Capsicum, and Pepper Extracts on Colostrum and Milk Yield and Quality, Passive Transfer of Immunity, and Performance of Beef Cow–Calf Pairs
by Grace H. Jardon, Madison R. Kovarna, Jeff S. Heldt, Emma H. Wall and Ana Clara B. Menezes
Vet. Sci. 2025, 12(3), 250; https://doi.org/10.3390/vetsci12030250 - 6 Mar 2025
Viewed by 2133
Abstract
This study evaluated the effects of a botanical supplement (a formulated proprietary blend of turmeric, capsicum, and black pepper oleoresin in a fat carrier; PHYT), fed pre- and post-calving, on colostrum and milk yield and the quality, passive transfer of immunity, and performance [...] Read more.
This study evaluated the effects of a botanical supplement (a formulated proprietary blend of turmeric, capsicum, and black pepper oleoresin in a fat carrier; PHYT), fed pre- and post-calving, on colostrum and milk yield and the quality, passive transfer of immunity, and performance of cow–calf pairs. Twenty-three (BW = 532 ± 9.13 kg; age 36 mo) crossbred Angus cows were randomly assigned to three treatment groups: (1) not supplemented (CON, n = 7); (2) supplemented with 250 mg/head/day (PHYT250, n = 8); or (3) supplemented with 500 mg/head/day (PHYT500, n = 8) of the botanical supplement. The cows were individually fed the supplement from 30 days (±6 days) pre-calving to 60 days post-calving. Colostrum was collected on d 0 (pre-suckling), and d 1, d 2, and d 3 post-calving. The total milk from all quarters was collected 45 and 90 d post-calving and at weaning. Colostrum and milk volumes were recorded, and samples were analyzed for percentages of fat, protein, milk urea nitrogen, other solids, and lactose. Colostrum samples were analyzed for concentrations of IgG, IgA, and IgM, and milk samples were analyzed for IgG concentration using radial immunodiffusion. Blood samples were collected from dams and calves, and serum was analyzed for concentrations of IgG (cows and calves) and IgA (calves). Cow and calf BW were measured periodically until weaning. Supplementation with PHYT linearly increased fat in colostrum (CON = 3.29, PHIT250 = 4.23, and PHYT500 = 4.17 ± 0.77%; p = 0.05) and IgA in calf serum (96.91, 151.69, and 183.42 ± 29.78 mg/dL for CON, PHYT250, and PHYT500, respectively; p = 0.04) and tended to linearly increase concentrations of fat in milk (CON = 3.84, PHYT250 = 4.05, and PHYT500 = 4.71 ± 1.04%; p = 0.07), IgG in calf serum (2082.31; 2196.29; and 2577.78 ± 213.08 mg/dL for CON, PHYT250, and PHYT500, respectively; p = 0.09), and IgM in colostrum (CON = 179.04; PHYT250 = 170.79; PHYT500 = 218.30 ± 16.08 mg/dL; p = 0.09). A quadratic response was observed for calf ADG (p = 0.03), where CON (0.99 ± 0.03 kg/d) was less than PHYT250 (1.10 ± 0.03 kg/d), and intermediate values were observed for PHYT500 (1.01 ± 0.03 kg/d). In summary, supplementation with PHYT led to a linear increase in colostrum fat and IgA levels in calf serum. Additionally, supplementation tended to linearly elevate fat concentrations in milk, IgG levels in calf serum, and IgM levels in colostrum. Our results suggest that supplementing beef cows in late gestation and early lactation with 250 or 500 mg/head/d of PHYT improves colostrum quality and calf health and performance. Further investigation is needed to determine both the biological significance and the economic benefits of botanical additives in beef production. Full article
Show Figures

Figure 1

14 pages, 1352 KiB  
Article
Effect of Postbiotic Supplementation on Nutrient Digestibility and Milk Yield during the Transition Period in Dairy Cows
by Fernando Vicente, María Campo-Celada, Mario Menéndez-Miranda, Jairo García-Rodríguez and Adela Martínez-Fernández
Animals 2024, 14(16), 2359; https://doi.org/10.3390/ani14162359 - 15 Aug 2024
Cited by 1 | Viewed by 2810
Abstract
The metabolites secreted by probiotics or released after their lysis are called postbiotics. They provide physiological benefits to the host, preventing the colonisation of pathogens by improving the intestinal environment for beneficial commensal bacteria, which reduces the incidence of digestive disorders and improves [...] Read more.
The metabolites secreted by probiotics or released after their lysis are called postbiotics. They provide physiological benefits to the host, preventing the colonisation of pathogens by improving the intestinal environment for beneficial commensal bacteria, which reduces the incidence of digestive disorders and improves the immune system. The aim of this work was to evaluate the addition of postbiotics to dairy cow rations during the transition period on nutrient digestibility, composition, and milk yield. The effects of two postbiotics were evaluated in twelve Friesian cows from 30 days before calving to two months of lactation. The animals were randomly allocated to two treatment groups: control (CT) and supplemented with postbiotics (PC and PR). Feeding was ad libitum with 60/40 of forage/concentrate ratio on dry matter basis. Daily feed intake and milk production were recorded individually throughout the study. Two digestibility balances were performed, one before parturition and one after parturition. Colostrum was sampled at first milking and milk was sampled weekly. Data were analysed using a mixed mode in R software 4.4.1. The results suggest that postbiotic supplementation in late gestation and early lactation increase the voluntary intake of dry matter, especially in the PR treatment, with higher apparent total tract digestibility of dry matter, organic matter and neutral detergent fibre. Both treatments including postbiotics induced an increase in colostral immunoglobulin concentration. Milk production of cows receiving the PC treatment was the highest, with high fat and protein yields and a higher persistence of the production curve throughout the lactation. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

13 pages, 2997 KiB  
Brief Report
Preliminary Report on Diet Estimation of Taruka (Hippocamelus antisensis d’Orbigny, 1834) in an Agricultural Area of the Andean Foothills of the Tarapacá Region, Chile
by Giorgio Luis Castellaro, Carla Loreto Orellana, Juan Pablo Escanilla, Nicolás Fuentes-Allende and Benito A. González
Animals 2024, 14(12), 1814; https://doi.org/10.3390/ani14121814 - 18 Jun 2024
Cited by 1 | Viewed by 1357
Abstract
The success of conservation programs for the taruka (Hippocamelus antisensis d’Orbigny), an endemic and endangered deer, depends on many factors, highlighting anthropogenic and ecological effects. Among the latter, how this herbivore interacts with forage resources is important. The objective of the study [...] Read more.
The success of conservation programs for the taruka (Hippocamelus antisensis d’Orbigny), an endemic and endangered deer, depends on many factors, highlighting anthropogenic and ecological effects. Among the latter, how this herbivore interacts with forage resources is important. The objective of the study was to describe the main attributes of the diet of this deer in rangelands adjacent to agricultural areas of the foothills of the Tarapacá Region, Chile. The botanical composition of the diet (BCD) was determined by microhistology of feces and fecal nitrogen (NF, %) was measured in two contrasting seasons (rainy summer and dry winter). From the BCD and FN, their relative diversity (J) and crude protein percentage were estimated. In the BCD, Medicago sativa dominated (27.6 ± 8.2% vs. 53.9 ± 9.2%, in rainy summer and dry end winter, respectively), followed by herbaceous dicots (46.2 ± 9.4% vs. 19.4 ± 8.7%) and shrubby species (21.5 ± 7.8% vs. 23.4 ± 7.0%), from rangelands. The contribution of grasses and graminoid species was low, not exceeding 3% and 0.4% of the diet, respectively, with no differences between seasons of the year. Intake of horticultural crop species was marginal (1.3 ± 1.3%), being detected only in the wet season. Diet relative diversity was higher during the wet period (0.75 ± 0.07) compared to the dry period (0.58 ± 0.06), since in the first period it was possible to find a greater number of palatable species. There were no significant differences in the FN attributed to the time of the year (average of 1.8 ± 0.19%), which indicates that the diet of this deer would be stable in terms of its protein quality. These FN levels estimate sufficient dietary protein content to satisfy maintenance and early pregnancy, but these could be limiting during late gestation and lactation. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

18 pages, 1618 KiB  
Article
Temporal and Spatial Influences on Fawn Summer Survival in Pronghorn Populations: Management Implications from Noninvasive Monitoring
by Cole A. Bleke, Eric M. Gese, Juan J. Villalba, Shane B. Roberts and Susannah S. French
Animals 2024, 14(10), 1468; https://doi.org/10.3390/ani14101468 - 15 May 2024
Viewed by 1184
Abstract
Monitoring vital rates allows managers to estimate trends in growth rates of ungulate populations. However, connecting the influence of nutrition on ungulate demography is challenging. Noninvasive sampling offers a low-cost, low-effort alternative for measuring nutritional indices, allowing for an increased understanding of the [...] Read more.
Monitoring vital rates allows managers to estimate trends in growth rates of ungulate populations. However, connecting the influence of nutrition on ungulate demography is challenging. Noninvasive sampling offers a low-cost, low-effort alternative for measuring nutritional indices, allowing for an increased understanding of the mechanistic relationships between environmental factors, nutrition, and specific population vital rates. We examined the temporal influence of intrinsic and extrinsic factors on pronghorn (Antilocapra americana) fawn recruitment. We collected fresh fecal samples from adult female pronghorn in five subpopulations spanning three sampling periods associated with critical maternal life-history stages (late gestation, early lactation, breeding season) for 2 years to investigate both intra- and interannual influences. Intrinsic factors were fecal glucocorticoid metabolites (FGMs), nutritional indices (fecal nitrogen (FN) and 2,6-diaminopimelic acid (DAPA)), and dietary composition (protein intake of forbs, graminoids, legumes, other, shrubs), while the extrinsic factor was vegetative greenness (normalized difference vegetation index (NDVI)). We found variations in DAPA, protein intake of forbs, variation in forb protein intake, and protein intake of legumes during late gestation positively influenced fawn recruitment. Fecal nitrogen during early lactation showed the strongest positive influence on the recruitment of any measured parameter. Finally, breeding season NDVI and the variation in DAPA values positively influenced the subsequent year’s fawn recruitment. Our longitudinal study enabled us to investigate which parameter was most important to specific periods of fawn development and recruitment. We combined the results across five subpopulations, but interpretation and subsequent management decisions should be made at the subpopulation level such that pronghorn subpopulations with low recruitment can be positively influenced by increasing nitrogen on the landscape available to adult females during the early lactation period. As the use of noninvasive monitoring methods continues to expand, we believe our methodologies and results can be broadly applied to other ungulate monitoring programs. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

18 pages, 2665 KiB  
Article
Neuroprotective Epigenetic Changes Induced by Maternal Treatment with an Inhibitor of Soluble Epoxide Hydrolase Prevents Early Alzheimer′s Disease Neurodegeneration
by Clara Bartra, Alba Irisarri, Ainhoa Villoslada, Rubén Corpas, Samuel Aguirre, Elisa García-Lara, Cristina Suñol, Mercè Pallàs, Christian Griñán-Ferré and Coral Sanfeliu
Int. J. Mol. Sci. 2022, 23(23), 15151; https://doi.org/10.3390/ijms232315151 - 2 Dec 2022
Cited by 6 | Viewed by 2940
Abstract
Modulation of Alzheimer′s disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N′-[4-(trifluoromethoxy)phenyl] urea (TPPU), [...] Read more.
Modulation of Alzheimer′s disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N′-[4-(trifluoromethoxy)phenyl] urea (TPPU), reported as ant-inflammatory and neuroprotective against AD pathology in the adult 5XFAD mouse model of AD, was administered to wild-type (WT) female mice mated to heterozygous 5XFAD males during gestation and lactation. Two-month-old 5XFAD male and female offspring of vehicle-treated dams showed memory loss as expected. Remarkably, maternal treatment with TPPU fully prevented memory loss in 5XFAD. TPPU-induced brain epigenetic changes in both WT and 5XFAD mice, modulating global DNA methylation (5-mC) and hydroxymethylation (5-hmC) and reducing the gene expression of some histone deacetylase enzymes (Hdac1 and Hdac2), might be on the basis of the long-term neuroprotection against cognitive impairment and neurodegeneration. In the neuropathological analysis, both WT and 5XFAD offspring of TPPU-treated dams showed lower levels of AD biomarkers of tau hyperphosphorylation and microglia activation (Trem2) than the offspring of vehicle-treated dams. Regarding sex differences, males and females were similarly protected by maternal TPPU, but females showed higher levels of AD risk markers of gliosis and neurodegeneration. Taken together, our results reveal that maternal treatment with TPPU impacts in preventing or delaying memory loss and AD pathology by inducing long-term modifications in the epigenetic machinery and its marks. Full article
(This article belongs to the Special Issue Metabolism and the Biological Functions of Oxylipins)
Show Figures

Graphical abstract

29 pages, 4848 KiB  
Article
Transcriptome Analysis of Goat Mammary Gland Tissue Reveals the Adaptive Strategies and Molecular Mechanisms of Lactation and Involution
by Rong Xuan, Jianmin Wang, Xiaodong Zhao, Qing Li, Yanyan Wang, Shanfeng Du, Qingling Duan, Yanfei Guo, Zhibin Ji and Tianle Chao
Int. J. Mol. Sci. 2022, 23(22), 14424; https://doi.org/10.3390/ijms232214424 - 20 Nov 2022
Cited by 15 | Viewed by 3524
Abstract
To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), [...] Read more.
To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution. Full article
(This article belongs to the Special Issue mRNAs in Biology)
Show Figures

Figure 1

14 pages, 3809 KiB  
Article
Plasma Metabolomic Analysis Reveals the Relationship between Immune Function and Metabolic Changes in Holstein Peripartum Dairy Cows
by Zhuo Yang, Fang Luo, Guolin Liu, Zhengzhong Luo, Sijia Ma, Hang Gao, Hailong He and Jinzhong Tao
Metabolites 2022, 12(10), 953; https://doi.org/10.3390/metabo12100953 - 6 Oct 2022
Cited by 7 | Viewed by 2496
Abstract
Dairy cows undergo dynamic physiological changes from late gestation to early lactation, including metabolic changes and immune dysfunction. The aim of this study was to investigate the relationship between immune function and metabolic changes in peripartum dairy cows. Fifteen healthy Holstein dairy cows [...] Read more.
Dairy cows undergo dynamic physiological changes from late gestation to early lactation, including metabolic changes and immune dysfunction. The aim of this study was to investigate the relationship between immune function and metabolic changes in peripartum dairy cows. Fifteen healthy Holstein dairy cows were enrolled 14 days prior to parturition, and plasma was collected on day −7, 0, 7, and 21 relative to calving. Plasma non-esterified fatty acids (NEFAs), glucose, β-hydroxybutyric acid (BHBA), immunoglobulin G (IgG), tumor necrosis factor alpha (TNF-α), and interleukin-2 levels were measured, and metabolic profiles were determined using ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. The data were analyzed using Tukey–Kramer adjustment for multiple comparisons, and multivariate and univariate statistical analyses were performed to screen for differential metabolites. The results showed that the concentrations of NEFAs, glucose, BHBA, and TNF-α in the plasma significantly increased and concentrations of IgG and interleukin-2 in plasma significantly decreased from −7 d to the calving day (p < 0.05). Additionally, the concentrations of glucose, IgG, and TNF-α significantly decreased from 0 to +7 d, and concentrations of NEFAs decreased significantly from +7 to +21 d (p < 0.05). The following six primary metabolic pathways were identified in all time point comparisons, and L-glutamate, linoleic acid, taurine, and L-tryptophan were involved in these major metabolic pathways. Correlation and pathway analyses indicated that a negative energy balance during the transition period adversely affects immune responses in cows, and L-tryptophan exerts immunomodulatory effects through the Trp-Kyn pathway, resulting in depletion of Trp and elevation of Kyn. Full article
(This article belongs to the Special Issue Advances in Metabolic Challenges and Nutrition Research in Dairy Cows)
Show Figures

Graphical abstract

11 pages, 277 KiB  
Article
Differences of the Plasma Total Lipid Fraction from Pre-Foaling to Post-Foaling Period in Donkeys
by Anastasia Lisuzzo, Francesca Bonelli, Micaela Sgorbini, Irene Nocera, Giulia Cento, Elisa Mazzotta, Luca Turini, Mina Martini, Federica Salari, Massimo Morgante, Tamara Badon and Enrico Fiore
Animals 2022, 12(3), 304; https://doi.org/10.3390/ani12030304 - 26 Jan 2022
Cited by 11 | Viewed by 2799
Abstract
The period from late gestation to early lactation is characterized by changes in energy metabolism. The aim of the current study was to analyze the plasma total lipid fraction using gas chromatography (GC) analysis, in order to highlight metabolic changes from the pre-foaling [...] Read more.
The period from late gestation to early lactation is characterized by changes in energy metabolism. The aim of the current study was to analyze the plasma total lipid fraction using gas chromatography (GC) analysis, in order to highlight metabolic changes from the pre-foaling to post-foaling periods. Eleven pluriparous dairy jennies (mean age of 11.88 ± 3.79 years) belonging to the Amiata donkey breed were enrolled. Blood sampling was performed at 15 days before foaling (T0), and 15 (T1), 30 (T2), 60 (T3), and 90 (T4) days after foaling, for biochemical and GC analysis. A total of 37 fatty acids were identified in plasma samples: 4 medium chain (MCFA), 24 long chain (LCFA), and 9 very-long chain (VLCFA) fatty acids. Among them, 20 fatty acids changed significantly, and two fatty acid showed a trend toward significance. Furthermore, the LCFA, saturated, unsaturated, monounsaturated, and polyunsaturated ω-3 fatty acids changed significantly during the study period. The main alterations were between T0 and the other time points and appeared to be related to lipid metabolism, cellular structure and function, and inflammatory and immune responses. Our findings reveal greater energy requirements at the end of gestation compared to early lactation in donkeys. Full article
(This article belongs to the Special Issue Advances in Equine Metabolomics)
15 pages, 942 KiB  
Article
Relative Late Gestational Muscle and Adipose Thickness Reflect the Amount of Mobilization of These Tissues in Periparturient Dairy Cattle
by Conor McCabe, Aridany Suarez-Trujillo, Theresa Casey and Jacquelyn Boerman
Animals 2021, 11(8), 2157; https://doi.org/10.3390/ani11082157 - 21 Jul 2021
Cited by 10 | Viewed by 3957
Abstract
Due to insufficient dry matter intake and heightened nutrient requirements in early lactation, periparturient dairy cows mobilize adipose and muscle tissues to bridge energy and amino acid gaps, respectively. Our objective was to evaluate the relationship between the relative muscle thickness of late [...] Read more.
Due to insufficient dry matter intake and heightened nutrient requirements in early lactation, periparturient dairy cows mobilize adipose and muscle tissues to bridge energy and amino acid gaps, respectively. Our objective was to evaluate the relationship between the relative muscle thickness of late pregnant cows and their early lactation performance. At 35 d before expected calving (BEC), longissimus dorsi muscle thickness (LDT) was measured in forty-one multiparous Holstein cows via ultrasound. Tissue mobilization was evaluated via ultrasound images of LDT and backfat thickness (BFT) at 21 and 7 d BEC as well as at 0, 10, 30, and 60 DIM. Plasma concentrations of 3-methylhistidine (3-MH), creatinine (CRE), non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) were evaluated weekly. Milk yield and milk component data were collected through 60 DIM. Cattle were assigned post hoc to high-muscle (HM; n = 20; LDT > 4.49 cm) or low-muscle (LM; n = 21; ≤4.37 cm) groups, with mean LDT at 35 d BEC greater in HM (5.05 ± 0.49) than in LM (3.52 ± 0.65) animals. Between 35 and 21 d BEC, LM cows gained LDT, whereas HM cows gained BFT. HM cows mobilized more muscle from 21 d BEC to 30 DIM, as reflected by a greater loss of LDT, greater 3-MH concentrations (532 vs. 438 ± 30 ng/mL), and a greater 3-MH:CRE ratio (0.164 vs. 0.131 ± 0.008) in the first three weeks postpartum. The LDT and BFT at 21 d BEC were related to the amount of respective tissue mobilized through 30 DIM (R2 = 0.37 and 0.88, respectively). Although calves born to HM cattle were larger (45.2 vs. 41.8 ± 0.7 kg), HM cows produced less milk (38.8 vs. 41.6 ± 0.8 kg/d) with a tendency towards higher fat content (4.33 vs. 4.05 ± 0.12%), likely related to the mobilization of more backfat from 0 to 60 DIM (1.78 vs. 0.68 ± 0.34 mm), compared to LM cattle. These findings suggest that a cow’s metabolic status, as measured by LDT and BFT prepartum, may influence the metabolic strategy the animal uses to meet energy and amino acid requirements in late gestation and early lactation. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

16 pages, 3352 KiB  
Article
Effects of Tall Fescue Endophyte Type and Dopamine Receptor D2 Genotype on Cow-Calf Performance during Late Gestation and Early Lactation
by Sarah A. Wilbanks, Susan Maggie Justice, Thomas West, James L. Klotz, John G. Andrae and Susan K. Duckett
Toxins 2021, 13(3), 195; https://doi.org/10.3390/toxins13030195 - 9 Mar 2021
Cited by 5 | Viewed by 2762
Abstract
Grazing endophyte-infected, toxic tall fescue reduces cow/calf production; therefore, this study examines alternate strategies such as use of novel endophyte fescue varieties during late gestation and early lactation or genetic selection of resistant cows. Pregnant cows (n = 75) were randomly assigned to [...] Read more.
Grazing endophyte-infected, toxic tall fescue reduces cow/calf production; therefore, this study examines alternate strategies such as use of novel endophyte fescue varieties during late gestation and early lactation or genetic selection of resistant cows. Pregnant cows (n = 75) were randomly assigned to fescue endophyte type: 1) endophyte-infected ergot alkaloid producing tall fescue (E+) or 2) novel endophyte-infected, non-toxic tall fescue (NOV) within maternal (A|A, n = 38 and G|G, n = 37) DRD2 genotype to examine changes in cow/calf performance and milk production during late gestation and early lactation. Grazing E+ fescue pastures during late gestation reduced cow body weight gain but did not alter calf birth weight compared to NOV. Milk production and calf ADG during the first 30 day of lactation were lower for E+ than NOV. The calving rate was reduced, but not calving interval for E+ cows. The adjusted 205-day weight of calves was lower in those grazing E+ with their dams compared to NOV. There were no interactions between DRD2 genotype and fescue endophyte type indicating that genotype was not associated with response to E+ fescue in this study. Overall, grazing NOV tall fescue pastures rather than E+ during critical stages of production improved cow gain during late gestation, calving rate, early milk production and calf growth. Full article
(This article belongs to the Special Issue Global Impact of Ergot Alkaloids)
Show Figures

Figure 1

16 pages, 2919 KiB  
Article
Responses of Vaginal Microbiota to Dietary Supplementation with Lysozyme and its Relationship with Rectal Microbiota and Sow Performance from Late Gestation to Early Lactation
by Shengyu Xu, Yanpeng Dong, Jiankai Shi, Zimei Li, Lianqiang Che, Yan Lin, Jian Li, Bin Feng, Zhengfeng Fang, Zhuo Yong, Jianping Wang and De Wu
Animals 2021, 11(3), 593; https://doi.org/10.3390/ani11030593 - 24 Feb 2021
Cited by 13 | Viewed by 3033
Abstract
This study was conducted to evaluate the effects of dietary lysozyme (LZM) supplementation on the vaginal microbiota, as well as the relationship between vaginal microbiota and the fecal microbiota of rectum and the reproductive performance of the sow. A total of 60 Yorkshire [...] Read more.
This study was conducted to evaluate the effects of dietary lysozyme (LZM) supplementation on the vaginal microbiota, as well as the relationship between vaginal microbiota and the fecal microbiota of rectum and the reproductive performance of the sow. A total of 60 Yorkshire × Landrace sows (3–6 of parity) were arranged from day 85 of gestation to the end of lactation in a completely randomized design with three treatments (control diet, control diet + lysozyme 150 mg/kg, control diet + lysozyme 300 mg/kg). The results showed that sows fed with lysozyme increased serum interleukin-10 (IL-10, p < 0.05) on day 7 of lactation. The vaginal microbiota varied at different taxonomic levels with LZM supplementation by 16S rRNA gene sequencing. The most representative changes included a decrease in Tenericutes, Streptococcus, Bacillus and increase in Bacteroidetes, Actinobacteria, Enterococcus, and Lactobacillus (p < 0.05). There were 777 OTUs existing in both, vaginal and fecal microbiota. The addition of LZM also decreased the abundance of Tenericutes (p < 0.05) in the vagina and feces. The changes in the microbiota were correlated in some cases positively with the performance of the sow, for example, Bacillus in feces was positively correlated with the neonatal weight (p < 0.05). These results indicate that the addition of lysozyme to the diet of sow during perinatal period promote the change of vaginal bacterial community after farrowing. The variations in vaginal microbiota are also associated with the changes in the fecal microbiology of the rectum and the reproductive performance of the sow. Therefore, it is concluded that dietary supplementation with lysozyme in sows in late gestation stage until early lactation, is beneficial to establish vaginal microbiota that seems to promote maternal health and reproductive performance. Full article
(This article belongs to the Special Issue Nutrition, Physiology and Gut Microbiota Interaction in Pigs)
Show Figures

Figure 1

17 pages, 748 KiB  
Review
Monitoring and Improving the Metabolic Health of Dairy Cows during the Transition Period
by Luciano S. Caixeta and Bobwealth O. Omontese
Animals 2021, 11(2), 352; https://doi.org/10.3390/ani11020352 - 31 Jan 2021
Cited by 51 | Viewed by 10052
Abstract
The peripartum period of a dairy cow is characterized by several physiological and behavioral changes in response to a rapid increase in nutrient demands, to support the final stages of fetal growth and the production of colostrum and milk. Traditionally, the transition period [...] Read more.
The peripartum period of a dairy cow is characterized by several physiological and behavioral changes in response to a rapid increase in nutrient demands, to support the final stages of fetal growth and the production of colostrum and milk. Traditionally, the transition period is defined as the period 3 weeks before and 3 weeks after parturition. However, several researchers have argued that the transition period begins at the time of dry-off (~60–50 days prior to calving) and extends beyond the first month post-calving in high producing dairy cows. Independent of the definition used, adequate adaptation to the physiological demands of this period is paramount for a successful lactation. Nonetheless, not all cows are successful in transitioning from late gestation to early lactation, leading to approximately one third of dairy cows having at least one clinical disease (metabolic and/or infectious) and more than half of the cows having at least one subclinical case of disease within the first 90 days of lactation. Thus, monitoring dairy cows during this period is essential to detect early disease signs, diagnose clinical and subclinical diseases, and initiate targeted health management to avoid health and production impairment. In this review, we discuss different strategies to monitor dairy cows to detected unintended disruptions in performance and management strategies that can be implemented to improve the metabolic health and performance of dairy cows during the transition period. Full article
(This article belongs to the Special Issue Dairy Cow Health and Welfare)
Show Figures

Figure 1

13 pages, 2342 KiB  
Article
Effects of Dietary L-Carnitine Supplementation on Platelets and Erythrogram of Dairy Cows with Special Emphasis on Parturition
by Susanne Ursula Kononov, Jennifer Meyer, Jana Frahm, Susanne Kersten, Jeannette Kluess, Ulrich Meyer, Korinna Huber and Sven Dänicke
Dairy 2021, 2(1), 1-13; https://doi.org/10.3390/dairy2010001 - 22 Dec 2020
Cited by 8 | Viewed by 4950
Abstract
During late gestation and early lactation, many proliferative processes and metabolic adaptions are involved in homeorhesis. An adjusted supply of oxygen is a precondition for an optimized cellular energy metabolism whereby erythrocytes play a central role. Endogenous L-carnitine modulates the mitochondrial fatty acid [...] Read more.
During late gestation and early lactation, many proliferative processes and metabolic adaptions are involved in homeorhesis. An adjusted supply of oxygen is a precondition for an optimized cellular energy metabolism whereby erythrocytes play a central role. Endogenous L-carnitine modulates the mitochondrial fatty acid utilization for generating adenosine triphosphate (ATP). As it might be insufficient around calving due to increased need, L-carnitine supplementation is frequently recommended. Thus, the present study addressed the interplay between the red hemogram, platelets, oxidative stress indices, and L-carnitine supplementation of dairy cows around calving. German Holstein cows were assigned to a control (n = 30) and an L-carnitine group (n = 29, 25 g of rumen-protected L-carnitine per cow and per day), and blood samples were taken from day 42 ante partum (ap) until day 110 postpartum (pp), with a higher sampling frequency during the first three days pp. The time courses of the erythrogram parameters reflected the physiological adaptations to the oxygen need without being influenced by L-carnitine supplementation. Erythrocytic antioxidative enzymatic defence paralleled the relative development of polycythemia ap, while non-enzymatic total plasma antioxidative capacity continuously increased pp. In contrast to erythrocytes, the platelet counts of the L-carnitine supplemented cows varied at significantly higher levels. This can be interpreted as a result of a membrane-stabilizing effect of L-carnitine. Full article
(This article belongs to the Section Dairy Animal Nutrition and Welfare)
Show Figures

Figure 1

Back to TopTop