Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials
Abstract
1. Introduction
2. Basic Principles and Influencing Factors for the Preparation of 2D Film Materials by PLD
2.1. Basic Principles for the Preparation of 2D Film Materials by PLD
2.2. Influencing Factors for the Preparation of 2D Film Materials by PLD
2.2.1. Pulsed Laser Energy
2.2.2. Quantity of Laser Irradiation
2.2.3. Targets and Substrates
2.2.4. Substrate Temperature
2.2.5. Gas Environment and Pressure
3. Application of PLD Technology in the Preparation of 2D Film Materials
3.1. Application of PLD in Carbides
3.1.1. Application of PLD in Graphene
3.1.2. Application of PLD in Diamond-Like Carbon (DLC)
3.1.3. Application of PLD in Carbon Nanotube (Sheet) Films
3.2. Application of PLD in Sulfides
3.2.1. Application of PLD in MoS2
3.2.2. Application of PLD in WS2
3.2.3. Application of PLD in Other Sulfides
3.3. Application of PLD in Oxides
3.4. Application of PLD in Nitrides
3.5. Application of PLD in Perovskite Materials
4. Advantages, Disadvantages, and Comparison with Other Technologies of PLD Technology
4.1. Advantages of PLD Technology
- (1)
- Rich types and varieties of materials. PLD technology is mainly used to prepare various types of 2D film materials through laser ablation targets with high energy density, which do not have any limitations on the types and elemental composition of the target, and composite 2D film materials can also be constructed between different targets, which greatly increases the versatility and flexibility of the preparation of materials.
- (2)
- Easy to maintain the stoichiometry of the target. In the process of PLD, due to the target being impacted by extremely high energy in a very short period of time, all the elements are rapidly deposited onto the substrate surface in the form of plasma plumes at almost the same rate, thus ensuring the stoichiometry of the prepared material is consistent with that of the target, which is very advantageous for preparing compounds with complex elemental compositions.
- (3)
- The structure and morphology of the prepared materials can be controlled. In the process of preparing 2D film materials using PLD technology, various deposition parameters (laser energy density, background gas type and pressure, substrate material type, substrate temperature, etc.) can be adjusted to achieve control over the crystal structure, morphology, and size of the prepared products.
- (4)
- Relatively low deposition temperature. Due to the high energy of the plasma plume generated by pulsed laser bombardment of the target, the deposition process does not require a high substrate temperature, and even at room temperature, it can be prepared in high-quality 2D film materials. This not only saves energy but also plays an important role in depositing 2D film materials on some substrates that do not tolerate high temperatures.
- (5)
- Easy to operate and highly environmentally friendly. PLD technology does not involve chemical solvent reactions in the material preparation process, and the entire process almost does not produce pollutants, thus demonstrating excellent environmental friendliness in the process of use. At the same time, while ensuring the flexibility of process control, the operation is relatively simple, which lays the foundation for large-scale preparation of high-quality 2D film materials.
4.2. Disadvantages of PLD Technology
- (1)
- Preparation of large-area materials is difficult. In PLD technology, the spot size of the pulsed laser is relatively small, which limits the cross-sectional area of the plasma plume formed by its impact on the target, thereby hindering the preparation of large-sized samples.
- (2)
- Difficulty in precise control of material thickness and uniformity. The plasma plumes formed by different targets and laser parameters have different energies, and they diffuse, nucleate, and grow on the substrate at different deposition rates, thus seriously affecting the thickness and uniformity of the 2D material, which needs to be estimated and explored in multiple experiments.
- (3)
- Deposition of target particles, splashing of plasma plumes, and defects in 2D film materials. When high-energy pulsed lasers bombard a target, they may cause a low-density target to deposit on the substrate in the form of small-sized large particles, thereby affecting the quality of 2D film materials. Meanwhile, plasma plumes with extremely high energy may cause the splashing of particles already deposited onto the substrate during the deposition process, thereby affecting the structure of 2D film materials. In addition, the transmission and interaction of plasma plumes in the background atmosphere are difficult to precisely control, which may form various defects in 2D film materials, thereby affecting their structures and properties.
4.3. Comparison of PLD Technology with Other Technologies in Terms of Performance
5. Conclusions and Outlook
- (1)
- In-depth study of the mechanism of plasma plume generation, diffusion, adsorption, deposition, nucleation, and growth on the substrate during PLD. By combining PLD technology with in situ characterization techniques such as in situ X-ray photoelectron spectroscopy, in situ reflection high-energy electron diffraction, and in situ transmission electron microscopy, the growth process of 2D film materials can be monitored in real time, providing a practical and reliable basis for an in-depth understanding of the mechanism of PLD preparation of 2D film materials and optimization of the preparation process conditions.
- (2)
- Actively explore the possibility of integrating PLD technology with other techniques for preparing 2D film materials, so as to overcome the problems of PLD itself, such as uneven thickness, multiple film defects, and limited scale of preparation, by complementing each other’s strengths and to provide new ways and opportunities for the preparation of higher-quality and larger-scale 2D film materials.
- (3)
- Make full use of emerging technologies such as machine learning and molecular computing simulation to actively develop intelligent models that can simulate the deposition parameters of PLD, thereby more scientifically and quickly optimizing PLD deposition conditions and designing 2D film materials with novel structures and functions, and innovatively develop and enrich the high value-added applications of 2D film materials in the fields of quantum information and biomedicine.
- (4)
- Scientifically construct and develop PLD processes suitable for large-scale production. Improve and prepare large molecular lasers with better energy density, thereby increasing the utilization rate of laser energy and the deposition rate of 2D film materials. At the same time, new PLD production processes such as continuous pulse laser deposition technology and multi-target synchronous deposition technology are developed and designed to improve the rate and quality of industrialized production. In addition, the synergistic cooperation between scientific research and enterprise production should be strengthened, and a new mechanism of joint innovation between industry, academia, and research should be established, so as to accelerate the industrialization process of PLD technology in the preparation of 2D film materials.
Author Contributions
Funding
Conflicts of Interest
References
- Dobrzański, L.A. Significance of materials science for the future development of societies. J. Mater. Process. Technol. 2006, 175, 133–148. [Google Scholar] [CrossRef]
- Ni, D.; Wang, J.; Dong, S. Structural Ceramics—The Cornerstone of Human Civilization. J. Inorg. Mater. 2024, 39, 569–570. [Google Scholar] [CrossRef]
- Allwood, J.M. Unrealistic techno-optimism is holding back progress on resource efficiency. Nat. Mater. 2018, 17, 1050–1051. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q.; Liu, Y.; Yang, W. Ultrafast Synthesis of MXenes in Minutes via Low-Temperature Molten Salt Etching. Adv. Mater. 2024, 36, 2410736. [Google Scholar] [CrossRef]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select 2023, 4, 486–501. [Google Scholar] [CrossRef]
- Babu, R.; Samanta, A.; Prasanthkumar, S.; Polavarapu, L. Zn(II) Alloying Improves the Luminescence Efficiency of Hybrid Tetrahedral Mn(II) Halides ((DMAPH)2MnX4; X = Cl, Br, and I) to Near-Unity. ACS Mater. Lett. 2023, 5, 2131–2138. [Google Scholar] [CrossRef]
- Kocjan, A.; Logar, M.; Shen, Z. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Sci. Rep. 2017, 7, 2541. [Google Scholar] [CrossRef]
- Li, X.; Sun, M.; Wei, X.; Shan, C.; Chen, Q. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization. Nanomaterials 2018, 8, 188. [Google Scholar] [CrossRef]
- Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27. [Google Scholar] [CrossRef]
- Thomas, N.; Mathew, S.; Nair, K.M.; O’Dowd, K.; Forouzandeh, P.; Goswami, A.; McGranaghan, G.; Pillai, S.C. 2D MoS2: Structure, mechanisms, and photocatalytic applications. Mater. Today Sustain. 2021, 13, 100073. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Wang, L.; Lei, W.; Wu, Z.S. Two-dimensional Boron Nitride for Electronics and Energy Applications. Energy Environ. Mater. 2021, 5, 10–44. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Lei, J.; Ma, M.; Wang, C.; Ge, Y.; Wei, Z. Recent advances in mode-locked fiber lasers based on two-dimensional materials. Nanophotonics 2020, 9, 2315–2340. [Google Scholar] [CrossRef]
- Xu, H.; Pasini, D. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion. Sci. Rep. 2016, 6, 34924. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Nan, K.; Bai, W.; Huang, W.; Bai, K.; Lu, L.; Zhou, C.; Liu, Y.; Liu, F.; Wang, J.; et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 2018, 17, 268–276. [Google Scholar] [CrossRef]
- Zhao, Y.-C.; Zhu, M.-X.; Li, S.-S.; Li, P. Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy. Chin. Phys. B 2023, 32, 057301. [Google Scholar] [CrossRef]
- Morissette, E.; Qin, P.; Wu, H.T.; Zhang, N.J.; Watanabe, K.; Taniguchi, T.; Li, J.I. Superconductivity, Anomalous Hall Effect, and Stripe Order in Rhombohedral Hexalayer Graphene. arXiv 2025, arXiv:2504.05129. [Google Scholar]
- He, Y.-P.; Wu, S.-Y.; Guo, J.-X.; Qiu, Q.-H.; Guo, T.-H. First-principles study of electronic, mechanical and piezoelectric properties of Janus MoSH. Philos. Mag. 2023, 103, 1198–1212. [Google Scholar] [CrossRef]
- Kalita, D.; Deuri, J.K.; Sahu, P.; Manju, U. Plasmonic nanostructure integrated two-dimensional materials for optoelectronic devices. J. Phys. D Appl. Phys. 2022, 55, 243001. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, N.; Li, Y. Design, synthesis, and application of some two-dimensional materials. Chem. Sci. 2023, 14, 5266–5290. [Google Scholar] [CrossRef]
- Su, L.; Fan, X.; Wang, C.; Wu, Q.; Li, Y.; Zhang, H.; Xie, H. Advances in photonics of recently developed Xenes. Nanophotonics 2020, 9, 1621–1649. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Li, H.; Xu, X.; Yang, J.; Huo, Z.; Wang, L.; Zhang, W.; Xiao, X.; Ma, Y. Recent Advances in Surface Modifications of Elemental Two-Dimensional Materials: Structures, Properties, and Applications. Molecules 2022, 28, 200. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Briggs, N.; Shallenberger, J.; Wetherington, M.T.; Robinson, J.A. Caveats in obtaining high-quality 2D materials and property characterization. J. Mater. Res. 2020, 35, 855–863. [Google Scholar] [CrossRef]
- Zeng, L.; You, C.; Hong, N.; Zhang, X.; Liang, T. Large-Scale Preparation of 2D Metal Films by a Top-Down Approach. Adv. Eng. Mater. 2020, 22, 1901359. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Y.-P. Mechanical peeling of van der Waals heterostructures: Theory and simulations. Extrem. Mech. Lett. 2019, 30, 100501. [Google Scholar] [CrossRef]
- Verma, D.; Singh, D.; Balakrishnan, V. Fracture toughness of VO2 microcrystals across metal-insulator transition. Mater. Lett. 2022, 315, 132006. [Google Scholar] [CrossRef]
- Salussolia, G.; Barbieri, E.; Pugno, N.M.; Botto, L. Micromechanics of liquid-phase exfoliation of a layered 2D material: A hydrodynamic peeling model. J. Mech. Phys. Solids 2020, 134, 103764. [Google Scholar] [CrossRef]
- Li, D.; Xu, Y.; Guo, J.; Zhang, F.; Zhang, Y.; Liu, J.; Zhang, H. Nonlinear optical properties and photoexcited carrier dynamics of MnPS3 nanosheets. Opt. Express 2022, 30, 36802–36812. [Google Scholar] [CrossRef]
- Kamedulski, P.; Ilnicka, A.; Lukaszewicz, J.P.; Skorupska, M. Highly effective three-dimensional functionalization of graphite to graphene by wet chemical exfoliation methods. Adsorption 2019, 25, 631–638. [Google Scholar] [CrossRef]
- Chen, T.; Liu, H.; Sun, M.; Yang, B.; Ning, P.; Zhu, X.; Savilov, S.V.; Aldoshin, S.M.; Xu, J.; Xia, H. Oxygen-Doped FeF3 Nanosheets Prepared by the Liquid-Phase Exfoliation Method for Lithium Storage. Energy Fuels 2024, 38, 12239–12250. [Google Scholar] [CrossRef]
- Zhang, Q.; Geng, D.; Hu, W. Chemical vapor deposition for few-layer two-dimensional materials. SmartMat 2023, 4, e1177. [Google Scholar] [CrossRef]
- Bonell, F.; Marty, A.; Vergnaud, C.; Consonni, V.; Okuno, H.; Ouerghi, A.; Boukari, H.; Jamet, M. High carrier mobility in single-crystal PtSe2 grown by molecular beam epitaxy on ZnO(0001). 2D Mater. 2021, 9, 015015. [Google Scholar] [CrossRef]
- Tran, D.C.; Pham, G.H.; Huong Chu, T.T.; Kim, J.; Jeong, J.K.; Im, S.; Lee, B.H.; Sung, M.M. Layer-by-Layer Growth of Two-Dimensional Tellurium Thin Films via Ultrahigh-Pressure Atomic Layer Deposition for p-Type Semiconductors. Nano Lett. 2024, 24, 16276–16282. [Google Scholar] [CrossRef] [PubMed]
- Jassim, D.N.; Mansour, J.M.; Mohammed, G.H. Influence of Mn2O3 concentrations on the structural and optical characterization of (ZnO:CuO) thin films prepared by laser technique. J. Opt. 2024. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.; Wen, M.; Wang, G.; Xie, G.; Liu, X.; Jiang, L. WO3/Cd0.5Zn0.5S heterojunction for highly efficient visible-light photocatalytic H2 evolution. J. Phys. Chem. Solids 2023, 178, 111351. [Google Scholar] [CrossRef]
- Lipton, J.; Weng, G.-M.; Rӧhr, J.A.; Wang, H.; Taylor, A.D. Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale. Matter 2020, 2, 1148–1165. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, H.; Wang, P.; Zhou, X.; Liu, C.; Zhang, Q.; Wang, F.; Huang, M.; Chen, S.; Wu, P.; et al. Controllable Doping in 2D Layered Materials. Adv. Mater. 2021, 33, 2104942. [Google Scholar] [CrossRef]
- Park, J.; Hwang, Y.-E.; Koh, D.-Y. Interfacial synthesis: A scalable fabrication method of two-dimensional membranes. Curr. Opin. Chem. Eng. 2023, 40, 100903. [Google Scholar] [CrossRef]
- Huang, W.-Q.; Liu, S.-R.; Peng, H.-Y.; Li, X.; Huang, Z.-M. Synthesis of new silicene structure and its energy band properties. Chin. Phys. B 2020, 29, 084202. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.-l.; Lu, Z.-h.; Di, J.; Wang, S.-w.; Jiang, W. A review of the high-concentration processing, densification, and applications of graphene oxide and graphene. New Carbon Mater. 2024, 39, 483–505. [Google Scholar] [CrossRef]
- Wang, L.; Sun, G.; Yuan, S. Chemical Vapor Deposition Growth of 2D Ferroelectric Materials for Device Applications. Adv. Mater. Technol. 2024, 9, 202301973. [Google Scholar] [CrossRef]
- Hossain, M.; Qin, B.; Li, B.; Duan, X. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today 2022, 42, 101338. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Tehrani, Z.P.; Ohannessian, N.; Schneider, C.W.; Pergolesi, D.; Lippert, T. A practical guide to pulsed laser deposition. Chem. Soc. Rev. 2023, 52, 2294–2321. [Google Scholar] [CrossRef]
- Vatsya, S.R.; Virk, K.S. Solution of two-temperature thermal diffusion model of laser–metal interactions. J. Laser Appl. 2003, 15, 273–278. [Google Scholar] [CrossRef]
- Look, D.C.; Leedy, K.D.; Horng, R.-H.; Santia, M.D.; Badescu, S.C. Electrical and optical properties of degenerate and semi-insulating ZnGa2O4: Electron/phonon scattering elucidated by quantum magnetoconductivity. Appl. Phys. Lett. 2020, 116, 252104. [Google Scholar] [CrossRef]
- Siew, W.O.; Yapl, S.S.; Yong, T.K.; Nee, C.H.; Tou, T.Y. Effects of phase explosion in pulsed laser deposition of nickel thin film and sub-micron droplets. Appl. Surf. Sci. 2011, 257, 2775–2778. [Google Scholar] [CrossRef]
- Schneider, C.W.; Lippert, T. PLD plasma plume analysis: A summary of the PSI contribution. Appl. Phys. A 2023, 129, 138. [Google Scholar] [CrossRef]
- Escalona, M.; Bhuyan, H.; Valenzuela, J.C.; Ibacache, S.; Wyndham, E.; Favre, M.; Veloso, F.; Ruiz, H.M.; Wagenaars, E. Comparative study on the dynamics and the composition between a pulsed laser deposition (PLD) and a plasma enhanced PLD (PE-PLD). Results Phys. 2021, 24, 104066. [Google Scholar] [CrossRef]
- Mostafa, A.M. The Influence of Various Parameters on the Ablation and Deposition Mechanisms in Pulsed Laser Deposition. Plasmonics 2025, 1–9. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, B.; Wei, H.; Xu, F.; Li, Y.; Chen, X.; Cao, B. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Appl. Phys. Lett. 2022, 120, 112109. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Korotaev, A.G.; Kokhanenko, A.P.; Dirko, V.V.; Voitsekhovskii, A.V. Kinetics of epitaxial formation of nanostructures by Frank–van der Merwe, Volmer–Weber and Stranski–Krastanow growth modes. Surf. Coat. Technol. 2020, 384, 125289. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, B.; Rente, B.; Alford, N.; Petrov, P.K. Deposition of Nanocrystalline Multilayer Graphene Using Pulsed Laser Deposition. Crystals 2023, 13, 881. [Google Scholar] [CrossRef]
- Xiong, P.-Y.; Chen, F.-C.; Feng, Z.-P.; Yang, J.-T.; Xia, Y.-D.; Yuan, Y.-F.; Wang, X.; Yuan, J.; Wu, Y.; Shi, J.; et al. Optimization of large-area YBa2Cu3O7–δ thin films by pulsed laser deposition for planar microwave devices. Chin. Phys. B 2023, 32, 077402. [Google Scholar] [CrossRef]
- Al-Mousawi, M.M.A.; Al-Nafiey, A.; Al-Dahesh, G. Studying the effect of the number of laser pulses on the structure, morphology, and optical properties for a thin film of GO-Ag nanocomposites. J. Phys. Conf. Ser. 2021, 1999, 012141. [Google Scholar] [CrossRef]
- Aldaghri, O. Enhancing UV photodetection sensitivity via pulsed laser optimization in SnO2:WO3/Si nanostructures. J. Opt. 2024, 26, 125002. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Ho, Y.T.; Pandey, A.; Tomar, M.; Kapoor, A.K.; Chang, E.Y.; Gupta, V. High performance UV photodetector based on MoS2 layers grown by pulsed laser deposition technique. J. Alloys Compd. 2020, 835, 155222. [Google Scholar] [CrossRef]
- Alvarez, G.A.; Christiansen-Salameh, J.; Biswas, A.; Puthirath, A.B.; Jeong, E.; Kwon, J.; Lee, J.; Gray, T.; Vajtai, R.; Ajayan, P.M.; et al. Cross-plane thermal conductivity of h-BN thin films grown by pulsed laser deposition. Appl. Phys. Lett. 2023, 122, 232101. [Google Scholar] [CrossRef]
- Niwa, E.; Kluczny, M.; Kim, H.Y.; Song, J.T.; Watanabe, M.; Takagaki, A.; Ishihara, T. Proton conductivity in Yb-doped BaZrO3-based thin film prepared by pulsed laser deposition. Solid State Lon. 2023, 396, 116240. [Google Scholar] [CrossRef]
- El Khabchi, L.; Corredor, A.P.; Roulland, F.; Lenertz, M.; Leuvrey, C.; Robert, J.; Versini, G.; Schlur, L.; Lefèvre, C.; Viart, N. Solid-state synthesis of stoichiometric and dense CoV2O4 targets. J. Eur. Ceram. Soc. 2025, 45, 117286. [Google Scholar] [CrossRef]
- Rodrigo, K.; Knudsen, J.; Pryds, N.; Schou, J.; Linderoth, S. Characterization of yttria-stabilized zirconia thin films grown by pulsed laser deposition (PLD) on various substrates. Appl. Surf. Sci. 2007, 254, 1338–1342. [Google Scholar] [CrossRef]
- Ye, J.; Liu, L.; Liu, S.; Mou, S.; Li, Y. Preparing pure C-axis oriented SrTiO3 film on CeO2 film by introducing a nano-Y0.5Gd0.5Ba2Cu3O7- layer. Ceram. Int. 2020, 46, 21989–21994. [Google Scholar] [CrossRef]
- Cui, W.; Zhou, Y.; Cheng, X.; Shan, Y.; Wang, X.; Cao, X.; Cao, B. Epitaxial p-Si/CsPbBr3 heterostructure photodetector with enhanced green responsivity. Appl. Phys. Lett. 2024, 125. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Y.; Nan, C.-W.; Ma, J.; Chen, C. High UV Transparent Conductivity of SrMoO3 Thin Films. Cryst. Growth Des. 2024, 24, 5402–5410. [Google Scholar] [CrossRef]
- Ogugua, S.N.; Ntwaeaborwa, O.M.; Swart, H.C. Latest Development on Pulsed Laser Deposited Thin Films for Advanced Luminescence Applications. Coatings 2020, 10, 1078. [Google Scholar] [CrossRef]
- Lin, T.K.; Chang, H.W.; Wang, C.R.; Wei, D.H.; Tu, C.S.; Chen, P.Y. Multiferroic and nanomechanical properties of Bi1-xYxFeO3 polycrystalline films (x = 0.0–0.1). J. Mater. Sci. Mater. Electron. 2023, 34, 772. [Google Scholar] [CrossRef]
- Heidariramsheh, M.; Haghighi, M.; Dabbagh, M.M.; Mahdavi, S.M. Pure sulfide Cu2ZnSnS4 layers through a one-step low-temperature PLD technique: Insight into simulation on modified back contact to overcome the barrier of MoS2. Mater. Sci. Eng. B 2020, 262, 114701. [Google Scholar] [CrossRef]
- Mouloua, D.; LeBlanc-Lavoie, J.; Pichon, L.; Rajput, N.S.; El Marssi, M.; Jouiad, M.; El Khakani, M.A. Tuning the Optoelectronic Properties of Pulsed Laser Deposited “3D”-MoS2 Films via the Degree of Vertical Alignment of Their Constituting Layers. Adv. Opt. Mater. 2024, 12, 202302966. [Google Scholar] [CrossRef]
- Wohlgemuth, M.A.; Trstenjak, U.; Sarantopoulos, A.; Gunkel, F.; Dittmann, R. Control of growth kinetics during remote epitaxy of complex oxides on graphene by pulsed laser deposition. APL Mater. 2024, 12. [Google Scholar] [CrossRef]
- Boffoue, M.O.; Lenoir, B.; Scherrer, H.; Dauscher, A. Pulsed laser deposition of bismuth in the presence of different ambient atmospheres. Thin Solid Film. 1998, 322, 132–137. [Google Scholar] [CrossRef]
- Plšek, J.; Drogowska-Horná, K.A.; Guerra, V.L.P.; Mikšátko, J.; Valeš, V.; Kalbáč, M. Towards Catalytically Active Porous Graphene Membranes with Pulsed Laser Deposited Ceria Nanoparticles. Chem. A Eur. J. 2021, 27, 4150–4158. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Jia, J. Growth of YBa2Cu3O7-δ superconducting films under different atmospheres by pulsed laser deposition. Phys. C Supercond. Its Appl. 2023, 605, 1354206. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Moussa, S.B.; Al-Muhanna, M.K.; Iqbal, W.; Ajmal, Z.; Raza, S.; Al-Hadeethi, Y.; Orooji, Y. State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research. Adv. Colloid Interface Sci. 2023, 319, 102969. [Google Scholar] [CrossRef] [PubMed]
- Gaudiuso, R. Pulsed Laser Deposition of Carbon-Based Materials: A Focused Review of Methods and Results. Processes 2023, 11, 2373. [Google Scholar] [CrossRef]
- Bleu, Y.; Bourquard, F.; Michalon, J.-Y.; Lefkir, Y.; Reynaud, S.; Loir, A.-S.; Barnier, V.; Garrelie, F.; Donnet, C. Transfer-free graphene synthesis by nickel catalyst dewetting using rapid thermal annealing. Appl. Surf. Sci. 2021, 555, 149492. [Google Scholar] [CrossRef]
- Kumar, P.; Lahiri, I.; Mitra, A. Nickel mediated few-layer graphene growth on glass substrates by pulsed laser deposition. Results Phys. 2019, 14, 102350. [Google Scholar] [CrossRef]
- Larki, F.; Kameli, P.; Nikmanesh, H.; Jafari, M.; Salamati, H. The influence of external magnetic field on the pulsed laser deposition growth of graphene on nickel substrate at room temperature. Diam. Relat. Mater. 2019, 93, 233–240. [Google Scholar] [CrossRef]
- Bleu, Y.; Bourquard, F.; Farre, C.; Chaix, C.; Galipaud, J.; Loir, A.-S.; Barnier, V.; Garrelie, F.; Donnet, C. Boron doped graphene synthesis using pulsed laser deposition and its electrochemical characterization. Diam. Relat. Mater. 2021, 115, 108382. [Google Scholar] [CrossRef]
- Ren, P.; Pu, E.; Liu, D.; Wang, Y.; Xiang, B.; Ren, X. Fabrication of nitrogen-doped graphenes by pulsed laser deposition and improved chemical enhancement for Raman spectroscopy. Mater. Lett. 2017, 204, 65–68. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, L.; Wang, J.; Yan, H.; Cheng, H. A novel graphene tilt fiber grating sensor prepared by PLD and its photosensitive characteristics. Optik 2022, 259, 169041. [Google Scholar] [CrossRef]
- Juvaid, M.M.; Sarkar, S.; Gogoi, P.K.; Ghosh, S.; Annamalai, M.; Lin, Y.-C.; Prakash, S.; Goswami, S.; Li, C.; Hooda, S.; et al. Direct Growth of Wafer-Scale, Transparent, p-Type Reduced-Graphene-Oxide-like Thin Films by Pulsed Laser Deposition. Acs. Nano 2020, 14, 3290–3298. [Google Scholar] [CrossRef]
- Abbas Alshareefi, S.J.; Al-Nafiey, A. Graphene and ZnO NPs-enhanced photodetectors based on SiO NWs: Synthesis, characterization, and applications. Results Opt. 2024, 16, 100690. [Google Scholar] [CrossRef]
- Dawood, F.H.; Ahmed, N.S.; Mutlak, F.A.H. A Novel Approach to Improve Laser Resonance Via Multilayer Nano Particles (Ag-GO-TiO2) Synthesized By Pulsed Laser Deposition. J. Opt. 2024, 1–10. [Google Scholar] [CrossRef]
- Valcheva, E.; Kirilov, K.; Dikovska, A.; Milenov, T. Low temperature electrical transport in thin carbon films deposited on SiO/Si substrates by pulsed laser deposition. J. Phys. Conf. Ser. 2023, 2487, 012038. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, H.; Mi, C.; Yang, C.; Huang, G.; Xu, M. Comparative study on infrared properties of PLD-grown DLC film and SiC film. Infrared Phys. Technol. 2023, 131, 104708. [Google Scholar] [CrossRef]
- Karmakar, S.; Halim, M.A.; Sultana, M.; Sarkar, P.K.; Emu, I.H.; Jaimes-Leal, A.M.; Haque, A. Enhancing sp content in diamond-like carbon thin film electrodes by pulsed laser annealing for durable charge storage performance. Diam. Relat. Mater. 2024, 146, 111196. [Google Scholar] [CrossRef]
- Stock, F.; Antoni, F.; Diebold, L.; Chowde Gowda, C.; Hajjar-Garreau, S.; Aubel, D.; Boubiche, N.; Le Normand, F.; Muller, D. UV laser annealing of Diamond-Like Carbon layers obtained by Pulsed Laser Deposition for optical and photovoltaic applications. Appl. Surf. Sci. 2019, 464, 562–566. [Google Scholar] [CrossRef]
- Farman, S.A.; Ibrahim, M.K.; Aadim, K.A. The Impact of Nanomaterials on Fabrication Silicon Solar Cells by Pulsed Laser Deposition. Nano Hybrids Compos. 2020, 30, 41–54. [Google Scholar] [CrossRef]
- Moise, C.; Rachmani, L.; Mihai, G.; Lazar, O.; Enăchescu, M.; Naveh, N. Pulsed Laser Deposition of SWCNTs on Carbon Fibres: Effect of Deposition Temperature. Polymers 2021, 13, 1138. [Google Scholar] [CrossRef]
- Lopez, J.D.; Castellanos, M.A.; Riascos, H. Influence of substrate temperature on graphene oxide thin films synthesis by laser ablation technique. J. Vac. Sci. Technol. A 2022, 40, 013402. [Google Scholar] [CrossRef]
- Kumar, P.; Kanaujia, P.K.; Vijaya Prakash, G.; Dewasi, A.; Lahiri, I.; Mitra, A. Growth of few- and multilayer graphene on different substrates using pulsed nanosecond Q-switched Nd:YAG laser. J. Mater. Sci. 2017, 52, 12295–12306. [Google Scholar] [CrossRef]
- Kumar, I.; Khare, A. Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique. Appl. Surf. Sci. 2014, 317, 1004–1009. [Google Scholar] [CrossRef]
- Kalsoom, U.; Rafique, M.S.; Shahzadi, S.; Fatima, K.; ShaheeN, R. Bi- tri- and few-layer graphene growth by PLD technique using Ni as catalyst. Mater. Sci. 2017, 35, 687–693. [Google Scholar] [CrossRef]
- Kumar, M.; Polaki, S.R.; Dhara, S. Synergistic effect of morphology and Co+2/Co+3 ratio on supercapacitor performance of Co3O4/vertical graphene nanosheets binder-free hybrid electrodes. J. Energy Storage 2024, 79, 110160. [Google Scholar] [CrossRef]
- Bhaumik, A.; Narayan, J. Conversion of p to n-type reduced graphene oxide by laser annealing at room temperature and pressure. J. Appl. Phys. 2017, 121, 125303. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Huang, G.; Xi, L.; Qin, G.; Zhu, M.; Chu, H. Fabrication and applications of the optical diamond-like carbon films: A review. J. Mater. Sci. 2022, 57, 3971–3992. [Google Scholar] [CrossRef]
- Zia, A.W.; Hussain, S.A.; Rasul, S.; Bae, D.; Pitchaimuthu, S. Progress in diamond-like carbon coatings for lithium-based batteries. J. Energy Storage 2023, 72, 108803. [Google Scholar] [CrossRef]
- Plotnikov, V.A.; Dem’yanov, B.F.; Makarov, S.V. Atomic structure of carbon clusters laser-produced diamond-like carbon films. Diam. Relat. Mater. 2021, 114, 108334. [Google Scholar] [CrossRef]
- Malisz, K.; Świeczko-Żurek, B.; Sionkowska, A. Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Applications—A Review. Materials 2023, 16, 3420. [Google Scholar] [CrossRef]
- Zia, A.W.; Birkett, M. Deposition of diamond-like carbon coatings: Conventional to non-conventional approaches for emerging markets. Ceram. Int. 2021, 47, 28075–28085. [Google Scholar] [CrossRef]
- Buathong, S.; Harnchana, V.; Pimsawat, A.; Jarernboon, W.; Pimanpang, S.; Amornkitbamrung, V. Electrodeposition of Ag-doped diamond-like carbon films on stainless steel for supercapacitor applications. J. Alloys Compd. 2025, 1010, 177942. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, G.; Wang, S.; Mi, C.; Wei, S.; Tian, F.; Li, W.; Cao, H.; Cheng, Y. A review on diamond-like carbon films grown by pulsed laser deposition. Appl. Surf. Sci. 2021, 541, 148573. [Google Scholar] [CrossRef]
- Saleh, M.A.; Jawad, M.K. Polypyrrole/Functionalized Multi-Walled Carbon Nanotube/Nickel Oxide Nanocomposites: Structural, Morphological, Optical and Composition Analysis Studies. Nano Hybrids Compos. 2022, 35, 85–94. [Google Scholar] [CrossRef]
- Ka, I.; Le Borgne, V.; Fujisawa, K.; Hayashi, T.; Kim, Y.A.; Endo, M.; Ma, D.; El Khakani, M.A. PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Mater. Today Energy 2020, 16, 100378. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Tomar, M.; Gupta, V. Realization of low-power and high mobility thin film transistors based on MoS2 layers grown by PLD technique. Mater. Sci. Eng. B 2021, 266, 115047. [Google Scholar] [CrossRef]
- Wang, B.; Bin Zhang, Z.; Zhong, S.P.; Zheng, Z.Q.; Xu, P.; Zhang, H. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. J. Mater. Chem. C 2020, 8, 4988–5014. [Google Scholar] [CrossRef]
- Lv, Q.; Chen, F.; Xia, Y.; Su, W. Recent Progress in Fabrication and Physical Properties of 2D TMDC-Based Multilayered Vertical Heterostructures. Electronics 2022, 11, 2401. [Google Scholar] [CrossRef]
- Renk, T.J.; Kotula, P.G.; McKenzie, B.B.; Ohlhausen, J.A.; Rodriguez, M.A. Metal DiSulfide thin films synthesized by pulsed ion beam ablation: Self-assembled structures with improved mechanical properties in humid conditions. Surf. Coat. Technol. 2024, 479, 130494. [Google Scholar] [CrossRef]
- Xie, M.Z.; Li, L.M.; Li, M.; Ye, Y.; Zhang, J.Z.; Jiang, K.; Shang, L.Y.; Hu, Z.G.; Chu, J.H. Temperature-dependent photoresponse of monolayer MoS2 film grown by pulsed laser deposition. J. Infrared. Millim. W 2021, 40, 302–307. [Google Scholar] [CrossRef]
- Cai, W.; Liu, Y.; Yao, R.; Yuan, W.; Ning, H.; Huang, Y.; Jin, S.; Fang, X.; Guo, R.; Peng, J. Optimization of Pulsed Laser Energy Density for the Preparation of MoS2 Film and Its Device by Pulsed Laser Deposition. Micromachines 2024, 15, 945. [Google Scholar] [CrossRef]
- Ghimire, G.; Ulaganathan, R.K.; Tempez, A.; Ilchenko, O.; Unocic, R.R.; Heske, J.; Miakota, D.I.; Xiang, C.; Chaigneau, M.; Booth, T.; et al. Molybdenum Disulfide Nanoribbons with Enhanced Edge Nonlinear Response and Photoresponsivity. Adv. Mater. 2023, 35, 202302469. [Google Scholar] [CrossRef]
- Hrdá, J.; Moško, M.; Píš, I.; Vojteková, T.; Pribusová Slušná, L.; Hutár, P.; Precner, M.; Dobročka, E.; Španková, M.; Hulman, M.; et al. Investigating structural, optical, and electron-transport properties of lithium intercalated few-layer MoS2 films: Unraveling the influence of disorder. Appl. Phys. Lett. 2024, 124, 123101. [Google Scholar] [CrossRef]
- Anju, K.S.; Midhun, P.S.; Rajeev Kumar, K.; Jayaraj, M.K. Tailoring surface enhanced Raman scattering platform based on pulsed laser deposited MoS2—Ag hybrid nanostructure. Mater. Chem. Phys. 2022, 276, 125286. [Google Scholar] [CrossRef]
- Parmar, S.; Panchal, S.; Datar, S.; Ogale, S. Semiconductor–Semimetal 2D/3D MoS2/SrRuO3(111) TMD/TMO Heterojunction-Based ReRAM Devices. ACS Appl. Electron. Mater. 2023, 5, 5588–5597. [Google Scholar] [CrossRef]
- D’Agosta, P.; Tumino, F.; Russo, V.; Li Bassi, A.; Casari, C.S. Interface coupling in Au-supported MoS2–WS2 heterobilayers grown by pulsed laser deposition. Nanoscale 2023, 15, 7493–7501. [Google Scholar] [CrossRef]
- Seo, S.; Oh, I.; Park, J.-C.; Lee, J.; Jung, Y.; Choi, H.; Ryu, J.; Lee, S. Growth of Transition Metal Dichalcogenide Heterojunctions with Metal Oxides for Metal–Insulator–Semiconductor Capacitors. ACS Appl. Nano Mater. 2021, 4, 12017–12023. [Google Scholar] [CrossRef]
- Španková, M.; Chromik, Š.; Dobročka, E.; Pribusová Slušná, L.; Talacko, M.; Gregor, M.; Pécz, B.; Koos, A.; Greco, G.; Panasci, S.E.; et al. Large-Area MoS2 Films Grown on Sapphire and GaN Substrates by Pulsed Laser Deposition. Nanomaterials 2023, 13, 2837. [Google Scholar] [CrossRef]
- Banday, S.; Reshi, B.A.; Wani, M.F. Adhesion strength and tribological property of self-lubricating Si/MoS2 nanocoating by pulsed laser deposition method. Ceram. Int. 2021, 47, 35260–35267. [Google Scholar] [CrossRef]
- Abutalebi, S.; Khanzadeh, M. Thickness-dependent optical bandgap of WS2/glass thin films deposited PLD method and their optical limitations and nonlinear optical properties by using the CW laser beam (532 nm). Opt. Mater. 2024, 147, 114692. [Google Scholar] [CrossRef]
- Sasi, S.; Midhun, P.S.; Joseph, A.; Aneesh, P.M.; Jayaraj, M.K.; Reshmi, R. Room temperature intrinsic ferromagnetism in pulsed laser ablated few layers of 2D-WS2 on Si/SiO2 substrates. Mater. Today Proc. 2022, 62, 5456–5459. [Google Scholar] [CrossRef]
- Kaushik, A.; Bisht, P.; Senapati, S.; Singh, J.P. Ag nanoparticle functionalized vertical WS2 nanoflakes as SERS substrate for chemical sensing. Surf. Interfaces 2024, 52, 104951. [Google Scholar] [CrossRef]
- Zou, C.; Chen, M.; Luo, X.; Zhou, H.; Yu, T.; Yuan, C. Enhanced photoluminescence of WS2/WO3 heterostructural QDs. J. Alloys Compd. 2020, 834, 155066. [Google Scholar] [CrossRef]
- Kadhim, S.M. Characterization of nanocrystalline SnS thin film fabricated used PLD method for photodetection applications. Int. J. Nanoelectron. M 2024, 17, 172–179. [Google Scholar]
- Aldaghri, O.; Salih, E.Y.; Ramizy, A.; Sabbar Mohammed, A.; Hassan Ibnaouf, K.; Hassan Eisa, M. Rapid fabrication of fast response CdS/Si visible light photodetector: Influence of laser energy. Results Phys. 2023, 54, 107112. [Google Scholar] [CrossRef]
- Cao, X.; Ding, R.; Zhang, Y.; Cui, Y.; Hong, K. A heterojunction film of NiS2 and MnS as an efficient counter electrode for dye-sensitized solar cells. Mater. Today Commun. 2021, 26, 102160. [Google Scholar] [CrossRef]
- Ye, Q.; Lu, J.; Zheng, Z.; Huang, W.; Yao, J.; Yang, G. Pulsed-Laser-Deposition Fabricated ZnIn2S4 Photodetectors with Excellent ON/OFF Switching Characteristics toward High-Temperature-Resistant Photodetection Applications. Adv. Opt. Mater. 2022, 10, 202102335. [Google Scholar] [CrossRef]
- Ramish Esterlich, J.; Affannoukoue, K.; Kaupmees, R.; Miakota, D.; Engberg, S.; Grossberg-Kuusk, M.; Schou, J.; Canulescu, S. Advances in the one-step synthesis of 2D and 3D sulfide materials grown by pulsed laser deposition assisted by a sulfur thermal cracker. Appl. Phys. A 2022, 129, 59. [Google Scholar] [CrossRef]
- Bisht, P.; Belle, B.D.; Aggarwal, P.; Ghosh, A.; Xing, W.; Kaur, N.; Singh, J.P.; Mehta, B.R. Gas Sensing Properties of PLD Grown 2D SnS Film: Effect of Film Thickness, Metal Nanoparticle Decoration, and In Situ KPFM Investigation. Small 2024, 20, 202307037. [Google Scholar] [CrossRef]
- Bertoldo, F.; Unocic, R.R.; Lin, Y.-C.; Sang, X.; Puretzky, A.A.; Yu, Y.; Miakota, D.; Rouleau, C.M.; Schou, J.; Thygesen, K.S.; et al. Intrinsic Defects in MoS2 Grown by Pulsed Laser Deposition: From Monolayers to Bilayers. Acs. Nano 2021, 15, 2858–2868. [Google Scholar] [CrossRef]
- Wei, H.; Dubois, S.; Brunnett, F.; Peiro, J.; Godel, F.; Carrétéro, C.; Panciera, F.; Collin, S.; Bouamrane, F.; Zatko, V.; et al. Large-Area Artificial van der Waals “Mille-Feuille” Superlattices. Adv. Mater. Interfaces 2024, 11, 202400409. [Google Scholar] [CrossRef]
- Fominski, V.; Demin, M.; Fominski, D.; Romanov, R.; Goikhman, A.; Maksimova, K. Comparative Study of the Structure, Composition, and Electrocatalytic Performance of Hydrogen Evolution in MoSx~2+δ/Mo and MoSx~3+δ Films Obtained by Pulsed Laser Deposition. Nanomaterials 2020, 10, 201. [Google Scholar] [CrossRef]
- Miakota, D.I.; Ghimire, G.; Kumar Ulaganathan, R.; Rodriguez, M.E.; Canulescu, S. A novel two-step route to unidirectional growth of multilayer MoS2 nanoribbons. Appl. Surf. Sci. 2023, 619, 156748. [Google Scholar] [CrossRef]
- Karthick Kannan, P.; Shankar, P.; Blackman, C.; Chung, C.H. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Adv. Mater. 2019, 31, 201803432. [Google Scholar] [CrossRef]
- O’Regan, T.P.; Ruzmetov, D.; Neupane, M.R.; Burke, R.A.; Herzing, A.A.; Zhang, K.; Birdwell, A.G.; Taylor, D.E.; Byrd, E.F.C.; Walck, S.D.; et al. Structural and electrical analysis of epitaxial 2D/3D vertical heterojunctions of monolayer MoS2 on GaN. Appl. Phys. Lett. 2017, 111, 051602. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, B.R.; Park, C.; Ray, A.; Brown, S.; Mujid, F.; Lee, J.U.; Zhou, H.; Suh, J.; Lee, K.H.; et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 2019, 366, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, S.; Ji, X.; Adepalli, K.; Yin, K.; Ling, X.; Wang, X.; Xue, J.; Dresselhaus, M.; Kong, J.; et al. Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. Acs. Nano 2018, 12, 2569–2579. [Google Scholar] [CrossRef]
- Pramanik, A.; Davis, D.; Patibandla, S.; Begum, S.; Ray, P.; Gates, K.; Gao, Y.; Chandra Ray, P. A WS2-gold nanoparticle heterostructure-based novel SERS platform for the rapid identification of antibiotic-resistant pathogens. Nanoscale Adv. 2020, 2, 2025–2033. [Google Scholar] [CrossRef]
- Godel, F.; Zatko, V.; Carrétéro, C.; Sander, A.; Galbiati, M.; Vecchiola, A.; Brus, P.; Bezencenet, O.; Servet, B.; Martin, M.-B.; et al. WS2 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits. ACS Appl. Nano Mater. 2020, 3, 7908–7916. [Google Scholar] [CrossRef]
- Lokhande, A.C.; Chalapathy, R.B.V.; He, M.; Jo, E.; Gang, M.; Pawar, S.A.; Lokhande, C.D.; Kim, J.H. Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review. Sol. Energy Mater. Sol. Cells 2016, 153, 84–107. [Google Scholar] [CrossRef]
- Houimi, A.; Yiğit Gezgin, S.; Kılıç, H.Ş. Theoretical Analysis of Solar Cell Performance with Different Backsurface-Filed Layers Utilizing Experimental Results of CdS Films Deposited by Pulsed Laser. Phys. Status Solidi 2022, 219, 2100780. [Google Scholar] [CrossRef]
- Ghosh, R.; Brennaman, M.K.; Uher, T.; Ok, M.-R.; Samulski, E.T.; McNeil, L.E.; Meyer, T.J.; Lopez, R. Nanoforest Nb2O5 Photoanodes for Dye-Sensitized Solar Cells by Pulsed Laser Deposition. ACS Appl. Mater. Interfaces 2011, 3, 3929–3935. [Google Scholar] [CrossRef]
- Zaki, M.-Y.; Sava, F.; Buruiana, A.-T.; Simandan, I.-D.; Becherescu, N.; Galca, A.-C.; Mihai, C.; Velea, A. Synthesis and Characterization of Cu2ZnSnS4 Thin Films Obtained by Combined Magnetron Sputtering and Pulsed Laser Deposition. Nanomaterials 2021, 11, 2403. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Mishra, M.; Mahajan, B.K.; Chakrabarti, S. Unlocking the performance of next-generation non-volatile capacitive memory devices with Ti-doped ZnO nano wires via pulsed laser deposition. J. Alloys Compd. 2025, 1010, 177133. [Google Scholar] [CrossRef]
- Koralli, P.; Petropoulou, G.; Mouzakis, D.E.; Mousdis, G.; Kompitsas, M. Efficient CO sensing by a CuO:Au nanocomposite thin film deposited by PLD on a Pyrex tube. Sens. Actuators A Phys. 2021, 332, 113120. [Google Scholar] [CrossRef]
- Hadi, A.J.; Nayef, U.M.; Mutlak, F.A.H.; Jabir, M.S. High-Efficiency Photodetectors Based on Zinc Oxide Nanostructures on Porous Silicon Grown by Pulsed Laser Deposition. Plasmonics 2023, 19, 577–593. [Google Scholar] [CrossRef]
- Gupta, P.; Joshi, B.C. Influence of Cu incorporation on structural, optical, and electronic structure of ZnO thin films deposited by laser ablation. Phys. B Condens. Matter 2023, 668, 415251. [Google Scholar] [CrossRef]
- Olteanu, A.-M.; Nicoara, A.-I.; Surdu, V.-A.; Isopencu, G.-O.; Banciu, D.-D.; Jinga, S.-I.; Busuioc, C.; Constantinoiu, I. Antibacterial activity of tin-doped zinc oxide thin films deposited by laser ablation. Ceram. Int. 2024, 50, 3497–3510. [Google Scholar] [CrossRef]
- Gupta, P.; Joshi, B.C. Effect of Ni incorporation on structural, optical, morphological properties of ZnO thin films deposited by laser ablation. J. Mater. Sci. Mater. Electron. 2023, 34, 1559. [Google Scholar] [CrossRef]
- Regalado-Contreras, A.; Farías, M.H.; De La Cruz, W. Room temperature deposition of stable p-type ZnO:N thin films through chemical species modulation using reactive pulsed laser deposition. Appl. Surf. Sci. 2023, 640, 158393. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Miu, D.; Viespe, C. SAW Hydrogen Sensors with Pd/SnO2 Layers. Materials 2022, 15, 8012. [Google Scholar] [CrossRef]
- Zanoni, K.P.S.; Pérez-del-Rey, D.; Dreessen, C.; Rodkey, N.; Sessolo, M.; Soltanpoor, W.; Morales-Masis, M.; Bolink, H.J. Tin(IV) Oxide Electron Transport Layer via Industrial-Scale Pulsed Laser Deposition for Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 32621–32628. [Google Scholar] [CrossRef]
- Biswal, R.; Nayak, D.; Janakiraman, S.; Chaudhary, N.V.P.; Ghosh, S.; Adyam, V. Revisiting and enhancing electrochemical properties of SnO2 as anode for sodium-ion batteries. J. Solid State Electrochem. 2020, 25, 561–573. [Google Scholar] [CrossRef]
- Rani, R.; Sharma, M.; Mohan, B.; Kumar, A.; Chandra, R.; Malik, V.K. Enhanced Supercapacitive Performance in Catalyst-Free Binary Composite SnO2–RuO2 Nanostructured Thin Films for Symmetric Supercapacitor Device. Energy Technol. 2024, 12, 202301511. [Google Scholar] [CrossRef]
- Kajal, R.; Kandasami, A.; Kataria, B.; Solanki, P.; Mohan, D. Structural, optical, and dielectric characteristics of pulsed laser deposited SnO2-TiO2 composite thin films. Phys. Scr. 2023, 98, 085935. [Google Scholar] [CrossRef]
- Menazea, A.A.; Awwad, N.S. Pulsed Nd:YAG laser deposition-assisted synthesis of silver/copper oxide nanocomposite thin film for 4-nitrophenol reduction. Radiat. Phys. Chem. 2020, 177, 109112. [Google Scholar] [CrossRef]
- Menazea, A.A.; Mostafa, A.M. Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. J. Environ. Chem. Eng. 2020, 8, 104104. [Google Scholar] [CrossRef]
- Menazea, A.A.; Mostafa, A.M.; Al-Ashkar, E.A. Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Opt. Mater. 2020, 100, 109663. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Xu, M.; Hao, X.; Feng, X. Epitaxial CuO thin films prepared on MgAl2O4 (110) by RF-plasma assisted pulsed laser deposition. Vacuum 2019, 169, 108932. [Google Scholar] [CrossRef]
- Panda, R.; Patel, M.; Thomas, J.; Joshi, H.C. Pulsed laser deposited Cu2O/CuO films as efficient photocatalyst. Thin Solid Films 2022, 744, 139080. [Google Scholar] [CrossRef]
- Mohammed Enad, A.; Rzaij, J.M. Synthesis of CuO Thin Film Incorporated with Nanostructured Nd2O3 Deposited by Pulsed Laser Deposition for Ammonia Sensing Applications. Nano 2024, 20, 2450113. [Google Scholar] [CrossRef]
- Popat, Y.; Orlandi, M.; Gupta, S.; Bazzanella, N.; Pillai, S.; Patel, M.K.; Miotello, A.; Patel, N. Morphological and Elemental Investigations on Co–Fe–B–O Thin Films Deposited by Pulsed Laser Deposition for Alkaline Water Oxidation: Charge Exchange Efficiency as the Prevailing Factor in Comparison with the Adsorption Process. Catal. Lett. 2021, 152, 438–451. [Google Scholar] [CrossRef]
- Velmurugan, R.; Aishwarya, M.; Balamurugan, K.; Nivedha, K.; Subramanian, B. Influencing In situ tuned nanostructures of pulsed laser ablated Co3O4 & WO3 thin film electrodes for binder free flexible operando hybrid supercapacitor devices. Electrochim. Acta 2022, 419, 140371. [Google Scholar] [CrossRef]
- Kumar, V.M.; Polaki, S.R.; Krishnan, R.; Sarguna, R.M.; Mathews, T. Binder-free vertical graphene nanosheets templated NiO petals for high-performance supercapacitor applications. J. Alloys Compd. 2023, 931, 167420. [Google Scholar] [CrossRef]
- Potera, P.; Virt, I.S.; Cieniek, B. Structure and Optical Properties of Transparent Cobalt-Doped ZnO Thin Layers. Appl. Sci. 2023, 13, 2701. [Google Scholar] [CrossRef]
- Guchhait, S.; Aireddy, H.; Das, A.K. The emergence of high room temperature in-plane and out-of-plane magnetostriction in polycrystalline CoFe2O4 film. Sci. Rep. 2021, 11, 22890. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Ruan, Q.; Lee, F.; Li, C.; Iyengar, S.A.; Puthirath, A.B.; Zhang, X.; Kannan, H.; Gray, T.; Birdwell, A.G.; et al. Unidirectional domain growth of hexagonal boron nitride thin films. Appl. Mater. Today 2023, 30, 101734. [Google Scholar] [CrossRef]
- Zemlyanov, D.Y.; Jespersen, M.; Zakharov, D.N.; Hu, J.; Paul, R.; Kumar, A.; Pacley, S.; Glavin, N.; Saenz, D.; Smith, K.C.; et al. Versatile technique for assessing thickness of 2D layered materials by XPS. Nanotechnology 2018, 29, 115705. [Google Scholar] [CrossRef]
- Biswas, A.; Maiti, R.; Lee, F.; Chen, C.Y.; Li, T.; Puthirath, A.B.; Iyengar, S.A.; Li, C.X.; Zhang, X.; Kannan, H.; et al. Unravelling the room temperature growth of two-dimensional h-BN nanosheets for multifunctional applications. Nanoscale Horiz. 2023, 8, 641–651. [Google Scholar] [CrossRef]
- Jia, S.; Chen, W.; Zhang, J.; Lin, C.Y.; Guo, H.; Lu, G.; Li, K.; Zhai, T.; Ai, Q.; Lou, J. CVD growth of high-quality and large-area continuous h-BN thin films directly on stainless-steel as protective coatings. Mater. Today Nano 2021, 16, 100135. [Google Scholar] [CrossRef]
- Kumar, A.; Malik, G.; Pandey, M.K.; Chandra, R.; Mulik, R.S. Corrosion behavior of pulse laser deposited 2D nanostructured coating prepared by self-made h-BN target in salinity environment. Ceram. Int. 2021, 47, 12537–12546. [Google Scholar] [CrossRef]
- Izyumskaya, N.; Demchenko, D.O.; Das, S.; Özgür, Ü.; Avrutin, V.; Morkoç, H. Recent Development of Boron Nitride towards Electronic Applications. Adv. Electron. Mater. 2017, 3, 201600485. [Google Scholar] [CrossRef]
- Vishal, B.; Singh, R.; Chaturvedi, A.; Sharma, A.; Sreedhara, M.B.; Sahu, R.; Bhat, U.; Ramamurty, U.; Datta, R. Chemically stabilized epitaxial wurtzite-BN thin film. Superlattices Microstruct. 2018, 115, 197–203. [Google Scholar] [CrossRef]
- Bhat, U.; Singh, R.; Vishal, B.; Sharma, A.; Horta, S.; Sahu, R.; Datta, R. Distinct Photoluminescence in Multilayered van der Waals Heterostructures of MoS2/WS2/ReS2 and BN. Phys. Status Solidi 2018, 255, 201700691. [Google Scholar] [CrossRef]
- Ortiz, W.; Ramirez, N.J.; Barrionuevo, D.; Bhattarai, M.K.; Feng, P. Characterization of 2D boron nitride nanosheets with hysteresis effect in the Schottky junctions. Nano Express 2021, 2, 010020. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Wang, Y.; Xiong, D.; Wang, S.; Yan, Y.; Chen, S.; Tian, B.; Shi, Y. Suppressing Li Dendrite Puncture with a Hierarchical h-BN Protective Layer. ACS Appl. Mater. Interfaces 2021, 13, 56109–56115. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Meng, J.; Yin, Z.; Jiang, J.; Tian, Y.; Li, J.; Wu, J.; Jin, P.; Zhang, X. Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications. Fundam. Res. 2021, 1, 677–683. [Google Scholar] [CrossRef]
- Melaibari, A.; Eltaher, M.A. High repetition rate deposition of boron nitride films using femtosecond pulsed laser. Mater. Res. Express 2020, 7, 096401. [Google Scholar] [CrossRef]
- Lu, X.; Fan, X.; Zhang, H.; Xu, Q.; Ijaz, M. Review on Preparation of Perovskite Solar Cells by Pulsed Laser Deposition. Inorganics 2024, 12, 128. [Google Scholar] [CrossRef]
- Hussein, S.I.; Ismail, R.A.; Almashhadani, N.J.; Addie, A.J. Fabrication of high-performance nanostructured CsPbI3/Si perovskite photodetector by pulsed laser deposition: Challenges and prospects. Opt. Mater. 2024, 155, 115890. [Google Scholar] [CrossRef]
- Kim, J.; Song, D.; Yun, H.; Lee, J.; Kim, J.H.; Kim, J.H.; Kim, B.; Char, K. Low Leakage in High-k Perovskite Gate Oxide SrHfO3. Adv. Electron. Mater. 2023, 9, 202201341. [Google Scholar] [CrossRef]
- Buczek, M.; Pohlmann, M.; Liu, Z.; Moos, Z.; Gutsche, A.; Cao, P.; Mayer, J.; Stein, W.; Dittmann, R. Large area pulsed laser deposition of memristive Pr0.7Ca0.3MnO3 heterostructures for neuromorphic computing. Thin Solid Films 2024, 805, 140499. [Google Scholar] [CrossRef]
- Vikas, N.P.; Kar, M.; Hota, A.; Purohit, S.; Sethy, S.K.; Sankaran, K.J.; Srivastava, R.P.; Roy, A. Optoelectronic evaluation of SrMnO3 cubic perovskite for prospective visible light solar photovoltaic application. Solar Energy 2025, 290, 113334. [Google Scholar] [CrossRef]
- Rizzo, F.; Piperno, L.; Augieri, A.; Meledin, A.; Feighan, J.; MacManus-Driscoll, J.L.; Celentano, G. Synergistic strategies for enhancing flux pinning in YBa2Cu3O7−x thin films at high fields and low temperature. Phys. C Supercond. Its Appl. 2025, 630, 1354648. [Google Scholar] [CrossRef]
- Liu, H.; Wu, H.; Ong, K.P.; Yang, T.; Yang, P.; Das, P.K.; Chi, X.; Zhang, Y.; Diao, C.; Wong, W.K.A.; et al. Giant piezoelectricity in oxide thin films with nanopillar structure. Science 2020, 369, 292–297. [Google Scholar] [CrossRef]
- Hanani, Z.; Merselmiz, S.; Jaklič, B.; Borštnar, P.; Daneu, N.; Razumnaya, A.; Tikhonov, Y.; Bobnar, V.; Lukyanchuk, I.; Spreitzer, M. Superior energy storage in Sn-doped BaTiO3 thin-film capacitors with a slush-like polar state. Chem. Eng. J. 2025, 510, 161567. [Google Scholar] [CrossRef]
- Sheeraz, M.; Tran, V.-D.; Jo, Y.J.; Kim, G.; Cho, S.; Sohn, C.; Kim, I.W.; Shin, Y.-H.; Ahn, C.W.; Kim, T.H. Defect Engineering of Ferroelectric Hysteresis in Lead-Free Bi1/2(Na,K)1/2TiO3 Thin Films. ACS Appl. Electron. Mater. 2024, 6, 8328–8338. [Google Scholar] [CrossRef]
- Sheeraz, M.; Ahn, C.W.; Duong, N.X.; Hwang, S.Y.; Jang, J.S.; Kim, E.Y.; Kim, Y.K.; Lee, J.; Jin, J.S.; Bae, J.S.; et al. Protonation-Driven Polarization Retention Failure in Nano-Columnar Lead-Free Ferroelectric Thin Films. Adv. Sci. 2024, 11, 202408784. [Google Scholar] [CrossRef]
- Cieniek, L.; Kopia, A.; Kowalski, K.; Moskalewicz, T. High-Quality Perovskite Thin Films for NO2 Detection: Optimizing Pulsed Laser Deposition of Pure and Sr-Doped LaMO3 (M = Co, Fe). Materials 2025, 18, 1175. [Google Scholar] [CrossRef]
- John, J.; Suresh, S.; Sivakumar, M.; Gopchandran, K.G.; Pillai, V.P.M. Ni doping induced property enhancement in laser ablated BaSnO3 films suitable for optoelectronic applications. Heliyon 2024, 10, e26688. [Google Scholar] [CrossRef]
- Lin, T.K.; Chang, H.W.; Chen, P.H.; Wang, C.R.; Wei, D.H.; Tu, C.S.; Chen, P.Y. Structure Transition and Improved Multiferroic Properties of Bi1−xTbxFeO3 (x = 0.00–0.15) Thin Films. IEEE Trans. Magn. 2023, 59, 3286857. [Google Scholar] [CrossRef]
- Kar, B.; Kumar, P.; Mohanta, S.; Behera, S.S.; Shukla, D.K. Giant magnetoelectric coupling in eco-friendly Ba0.95Ca0.05Ti0.95Sn0.05O3/Ni0.7Zn0.3Fe2O4 bilayer thin films. Phys. B Condens. Matter 2025, 701, 416998. [Google Scholar] [CrossRef]
- Ghavidel, E.; Di Carlo, A.; Ishteev, A.; Barichello, J.; Konstantinova, K.; Saranin, D.; Campanari, V.; Martelli, F.; Paci, B.; Generosi, A.; et al. High quality MAPbBr3 films via pulsed laser deposition of single-crystalline targets. J. Mater. Chem. C 2024, 12, 13141–13148. [Google Scholar] [CrossRef]
- Fix, T.; Raissi, S.; Muller, D.; Bouillet, C.; Preziosi, D.; Slaoui, A. Insights on CaTiS3 films grown by pulsed laser deposition. J. Alloys Compd. 2023, 964, 171272. [Google Scholar] [CrossRef]
- Nehra, S.; Shrivastava, S.; Gangwar, S.; Manral, P.; Yadav, C.S.; Malik, V.K.; Dogra, A. Effect of varying laser energy density at LaScO3/SrTiO3 interface. J. Phys. Condens. Matter 2025, 37, 155003. [Google Scholar] [CrossRef] [PubMed]
- Cheikh, A.; David, A.; Lüders, U.; Cardin, J.; Labbé, C.; Duprey, S.; Kumar, D.; Pautrat, A.; Prellier, W.; Fouchet, A. Investigation of optical transitions and electrical properties in LaVO3/SrTiO3 heterostructure. Mater. Sci. Semicond. Process. 2024, 169, 107852. [Google Scholar] [CrossRef]
- Le, X.L.; Phu, N.D.; Duong, N.X. Enhancement of ferroelectricity in perovskite BaTiO3 epitaxial thin films by sulfurization. AIMS Mater. Sci. 2024, 11, 802–814. [Google Scholar] [CrossRef]
- Zala, D.; Joshi, U.S.; Ray, A. Structural and optical analysis of perovskite La-doped BaSnO3 bulk and thin films. Mater. Today Proc. 2022, 67, 927–930. [Google Scholar] [CrossRef]
- Gatea, H.A.; Khalil, S.M. Comparative study of the dielectric properties of the bulk and film of perovskite Ba0.6Sr0.4TiO3. Int. J. Mod. Phys. B 2023, 38, 2450175. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, X.; Zhao, Y.; Jiang, C. Investigation of anisotropic effective magnetic damping in epitaxial La0.67Sr0.33MnO3 film. Appl. Phys. A 2025, 131, 229. [Google Scholar] [CrossRef]
- Dai, W.; Jia, J.; Liu, C. Electrical properties of Pb0.92La0.08(Zr0.52Ti0.48)O3/YBa2Cu3O7− heterostructures. Phys. C Supercond. Its Appl. 2023, 607, 1354242. [Google Scholar] [CrossRef]
Materials | Substrates | Temperature | Background Gases | Pressure | Laser and Laser Energy | Properties | Reference |
---|---|---|---|---|---|---|---|
Graphene | Ni/SiO2 | Room temperature (RT) | Vacuum | 10−7 mbar | KrF 5 J/cm2 | Ideal uniformity and low defect density. | [74] |
Graphene | Ni/glass | 750 °C | Vacuum | 1 × 10−5 Torr | 3.18 J/cm2 | High-quality graphene films with high crystallinity. | [75] |
Multilayer graphene | Si/SiO2 | 800 °C | Vacuum | 3 × 10−5 Torr | KrF 1.5 J/cm2 | A resistance of 6.6 k Ω. | [52] |
Graphene/Ni | Si/SiO2 | RT | Vacuum | 2 × 10−6 Torr | KrF 100 mJ | The defects, surface coverage, and number of graphene layers can be controlled through modification of the magnetic field intensity. | [76] |
Graphene-B | Ni/SiO2/Si | RT | Vacuum | 10−7 mbar | KrF 6.2 J/cm2 | Interfacial electron transfer constant 4.9 × 10−3 cm·s−1. | [77] |
Graphene-N | SiO2/Si | 780 °C | N2 | 9, 50, 100, and 240 Pa | KrF 100 mJ | The relative enhancement factor is about 2.5. | [78] |
Graphene/xCu2O·yMnO | SiO2/Si | RT 300 C | N2 | 0.1 mbar | KrF 3 J/cm2 | A more sensitive response to the test gases (NO2, O3, NH3, and H2S). | [78] |
Graphene tilted Bragg fiber grating | Tilted Bragg fiber grating (TFBG) | _ | Vacuum | 2.9 × 10−4 Pa | Nd:YAG | Strain sensitivity is 0.48 nm/mε. | [79] |
Reduced graphene oxide (rGO) | Silica wafer | 680 °C | O2 | 0.5 mTorr | 2.9 J/cm2 | Transparency >97%, a resistivity of 30.3 mΩ cm, a carrier concentration of 2.3 × 1013 cm−2, and a mobility of 5.11 cm2V−1s−1. | [80] |
Silica nanowires/graphene/zinc oxide nanoparticles | Silicon nanowires | _ | Vacuum | 10−4 mbar | Nd:YAG 700 mJ | Resistivity is 1.13 × 10−2 Ω.cm, carrier concentration is 3.92 × 1018 cm−3, Hall coefficient is 1.59 cm3C−1, the conductivity is 8.87 × 101 Ω−1 cm−1, and mobility is 1.41 × 102 cm2V−1s−1. | [81] |
Ag/graphene /TiO2 | Glass | 200 °C, 300 °C | Vacuum | 2 × 10−5 mbar | Nd:YAG 400 mJ, 600 mJ, 800 mJ, 900 mJ, 1000 mJ | Improve laser resonance. | [82] |
DLC | SiO2/Si | 700 °C | Vacuum | 1 × 10−3 Pa | Nd:YAG 5 J/cm2 | Specific resistance is 1.5 × 10−3 Ω·m. | [83] |
DLC | Intrinsic silicon | RT | Vacuum | 8–12 × 10−4 Pa | KrF 300 mJ, 400 mJ, 500 mJ | High infrared transmittance and refractive index and low extinction coefficient. The | [84] |
DLC | Si | 300 °C | Vacuum | 1.5 × 10 −6 Torr | KrF 1.2 J/cm2 | maximum area-specific capacitance is 48.25 mF/cm2, and the capacitance retention and the coulombic efficiency after 5000 cycles were 97.3% and 93.5%. | [85] |
DLC | SiO2 /Si | RT | Vacuum | 10–8 mbar | KrF 0.2 J/cm2 | Hydrogen-free DLC layers with a high level of sp3 hybridization are obtained. | [86] |
SWCNTs, MWCNTs | Silicon wafer | _ | Vacuum | 2.5 × 10−2 mbar | Nd:YAG 700mJ | Short-circuit current density of SWCNT cells is 30 mA/cm2, and power conversion efficiency is 5.6%. | [87] |
SWCNTs | Carbon fibres | 100 °C–565 °C | _ | _ | KrF 600 mJ | A 20% increase in interfacial shear strength (IFSS) was observed. | [88] |
Materials | Substrates | Temperature | Background Gases | Pressure | Laser and Laser Energy | Properties | Reference |
---|---|---|---|---|---|---|---|
MoS2 | c-Al2O3 | 800 °C | Vacuum | 5 × 10−6 mbar | KrF 4 J/cm2 | Bandgap = 1.86 eV, photocurrent = 0.32 nA, and photoresponse = 3 mAW−1. | [108] |
MoS2 | Silicon, Quartz | 400 °C | Vacuum | 5 × 10−4 Pa | KrF 70 J/cm2 80 J/cm2 90 J/cm2 100 J/cm2 110 J/cm2 | Direct optical band gap = 1.614 eV. opening voltage = 0.61 V, and rectification ratio = 457.0. | [109] |
MoS2 nanoribbons | Al2O3 | 700 °C | Vacuum | 6 × 10−7 mbar | KrF 2 J/cm2 | Responsivity of 8.72 × 102 AW−1 at 532 nm. | [110] |
MoS2-Li | c-Al2O3 | 600 °C | _ | - | KrF | Resistance and activation energy of MoS2-Li film rapidly increase. | [111] |
MoS2-Ag | Si/SiO2 wafer | 700 °C | Vacuum | 10−6 mbar | Nd:YAG | Enhancement factor of 1.8 × 108 and detection limit of 10−12 M for the R6G. | [112] |
MoS2/SrRuO3(111) | c-Al2O3 | 700 °C | O2 | 100 mTorr | KrF 3 J/cm2 | Room temperature resistivity of 1.83 and 1.39 μΩ for FL and BL MoS2/SrRuO3. | [113] |
WS2/MoS2 | Au /mica | RT | _ | _ | KrF 2 J/cm2 | A strong interlayer coupling between MoS2 and WS2. | [114] |
CeO2/MoS2/WSe2 | SiO2/Si | 500 °C | Ar | 100 mTorr | KrF 1.2 J/cm2 | Higher tunneling current. | [115] |
MoS2/GaN heterojunction | GaN/c-Al2O3 | 860 C | Vacuum | 2 × 10−6 Torr | KrF 70 mJ | Schottky barrier height of 0.36 eV. | [116] |
Si/MoS2 | Al alloy | _ | Vacuum | 10−4 Pa | Nd:YAG 2.5 J | Si/MoS2 coating possesses a self-lubricating property. | [117] |
WS2 | Glass | 180 °C | Vacuum | 3 × 10−6 torr | Nd:YAG | Direct bandgap of 1.98 eV and a defect energy of 1.28 eV. | [118] |
WS2 | Si/SiO2 | 700 °C | Vacuum | 10−5 mbar | Nd:YAG 190 mW | Increased saturation magnetization. | [119] |
WS2, WS2-Ag | Silicon | 400 °C | Vacuum | 4 × 10−6 mbar. | Nd:YAG 80 mJ | The detection limits of Ag-WS2 for RhB and MO dyes are 10−16 M and 10−17 M. Raman enhancement factor distributions of 1.0 × 108 and 2.6 × 107. | [120] |
WS2/WO3 heterostructure | Amorphous Al2O3 | _ | Vacuum | 1.5 × 10−8 Torr | KrF | The fast decay time of WS2/WO3 is 1.0 μs, and the slow decay time is 4.1 μs. | [121] |
SnS | Quartz, Silicon wafer | _ | Vacuum | 10−4 Torr | Nd:YAG 700 mJ | Spectral sensitivity, specific detectability, and quantum efficiency are 0.72 A/W, 2.85 × 1011cm·Hz1/2·W−1, and 70.18%, respectively. | [122] |
CdS | Si wafer | _ | Vacuum | 5 × 10−6 mbar | Nd:YAG 140 mJ 180 mJ 220 mJ | External quantum efficiency value = 129.4%, the response time = 179 ms, and recovery time = 161 ms. | [123] |
NiS2/MnS and MnS/NiS2 heterojunction | FTO | 500 °C | O2 | 5 Pa | 350 mJ | Power conversion efficiency (PCE) could reach 6.44%. | [124] |
ZnIn2S4 (ZIS) | SiO2/Si | 450 °C | Vacuum | 6 × 10−4 Pa | KrF | Responsivity, external quantum efficiency, and detection rate were 1.4 AW, 430%, and 9.8 × 109 Jones (1 Jones = 1 cm Hz1/2 W−1). | [125] |
Cu2ZnSnS4 (CZTS) | SiO2/Si sapphire | RT to 500 °C | _ | _ | KrF 0.8 to 2.4 J/cm2 | The composition of CZTS films changed continuously with different deposition temperatures. | [126] |
Cu2ZnSnS4 | modified substrate with MoSe2 | RT, 200 °C 250 °C 300 °C 350 °C | Vacuum | 10−5 Torr | KrF 270 mJ | Conversion efficiency. Conversion of CZTS devices is 13.99%. | [66] |
SnS-Ag, SnS-Pd | SiO2/Si | RT to 500 °C | Vacuum | 1 × 10−6 mbar | Nd:YAG 90 mJ | The response of SnS-Ag is 138% toward 2 ppm NO2, the response of SnS-Pd is 55% toward 70 ppm H2, and limit of detection (LOD) < 1 ppm. | [127] |
Materials | Substrates | Temperature | Background Gases | Pressure | Laser and Laser Energy | Properties | Reference |
---|---|---|---|---|---|---|---|
ZnO | Porous silicon Quartz | _ | Vacuum | 5 × 10−2 mbar | Nd:YAG 400, 600, 800 mJ/pulse | Optical energy gap = from 3.44 to 3.79 eV, ideal factor = 2.33, and EQE = 92.31%. | [144] |
ZnO-Cu (3 wt%, 5 wt% and 7 wt% Cu) | Fused silica | 300 °C | O2 | 1 mTorr | Nd:YAG 1 J/pulse | Optical band gap energy decreases from 3.26 eV to 3.0 eV with increasing the Cu concentration from 0 to 7 wt%. | [145] |
ZnO-Sn | Silicon | RT 400 °C | O2 | 100 mTor 700 mTorr | Nd:YAG 12.92 J/cm2 | Exhibited the most pronounced antibacterial activity. | [146] |
ZnO-Ni (3 wt%, 5 wt% and 7 wt% Cu) | Fused silica | 300 °C | O2 | 1 mTorr | Nd:YAG 1 J/pulse | The effective atomic mass and lattice parameters changed. | [147] |
ZnO-N | Fused silica | RT | N2/O2 | _ | Nd:YAG 16 J/cm2 | Cc = 5.3 × 1018 cm−3, resistivity = 2 Ωcm, and Cm = 0.5 cm2/V·s. | [148] |
Pd/SnO2 | Quartz | RT | O2 | 100 mTor 700 mTorr | Nd-YVO4 0.2 W | The sensitivity of this sensor (Pd/SnO2) = 0.21 Hz/ppm, and LOD = 142 ppm. | [149] |
SnOx | ITO-coated glass | 150 °C | O2/Ar | 5 × 10−3 mbar | KrF 1.5−1.6 J/cm2 | Power conversion efficiencies > 18%. | [150] |
SnO2 | Stainless steel | 300 °C, 400 °C 500 °C | O2 | 300 mTorr | KrF 350 mJ | Specific capacity = 488 mAh/g and coulombic efficiency = 96%. | [151] |
SnO2/ RuO2 | 304 stainless steel | 150 °C | O2 | 150 mTorr | KrF 300 mJ | Specific capacitance = 170.2 Fg−1, capacitive retention of 81.27% over 10,000 cycles, energy density = 19.05 Wh/kg, and power density = 645 W/kg. | [152] |
SnO2/ TiO2 | FTO | 400 °C | O2 | 55 mTorr | KrF 250 mJ | Cm = 6.710 cm2/V·s and resistivity = 1.213 × 10−2 Ωcm. Hall coefficient = 31.86 × 10−2 cm−3C−1) and conductivity = 82.41 (Ωcm)−1. | [153] |
Ag/CuO | Quartz | _ | Vacuum | 10−4 torr | Nd:YAG | Optical transmittance = 96% and direct band gap = 2.15 eV. | [154] |
Ag/CuO | Quartz | _ | Vacuum | 10−4 torr | Nd:YAG | Optical transmittance = 97%, direct band gap = 2.43 eV, and outstanding catalytic efficiency for the degradation of 4-nitrophenol. | [155] |
CdO CuO/CdO | Quartz | _ | Vacuum | 10−4 torr | Nd:YAG | The transmittance = 96%, direct optical band energy band gap for CdO = 2.41 eV, and direct optical band energy band gap for CuO/CdO = 3.39 eV. | [156] |
CuO | MgAl2O4 (110) | 400 °C | Oxygen plasma | 0.09–0.8 Pa. | KrF 4 J/cm2 | The optical band gap = 1.14 to 1.47eV. | [157] |
Cu2O, CuO | Glass | 380 °C | N2/O2 | 0.2 Pa and 2 Pa | Nd:YAG 10 J/cm2 | The direct band gap for Cu2O = 2.45 eV and CuO = 2.25 eV. Photocatalytic efficiencies for MB dye degradation > 96%. | [158] |
Nd2O3/CuO | Silicon | RT | Vacuum | 2.2 × 10−2 kPa. | 200 mJ | Sensitivity = 180% against 79 ppm NH3 at a working temperature of 50 °C. | [159] |
Co-Fe-B-O | FTO | _ | Argon atmosphere | 1.5 × 10–2 mbar | KrF 3 J/cm2 | Overpotential of 315 mV at 10 mA/cm2 and Tafel slope of 31.5 mV/dec. | [160] |
Co3O4/WO3 | Ni foam Carbon paper Si wafer FTO | 500 °C. 650 °C | Vacuum | 10−6 mbar | KrF 0.8 J/pulse | Volumetric capacitance = 141.9 F cm−3 and the voltage window = 1.6 V. Coulombic efficiency > 97%, and capacitance retentions = 91% in cycle life 27,000. | [161] |
Materials | Substrates | Temperature | Background Gases | Pressure | Laser and Laser Energy | Properties | Reference |
---|---|---|---|---|---|---|---|
h-BN | Stainless steel | 600 °C | Ar: N2 = 3:1 | 10 mTorr | 4 J/cm2 | Current density = 13.2 nA/cm2, corrosion rate = 11.7 × 10−3 mm/y, and corrosion resistance = 6.28 × 106 Ω cm2. | [169] |
h-BN | c-Al2O3 | 800–1250 °C | N2 | 10–300 mTorr | KrF 300–700 mJ | On/off ratio of >104, high photoresponsivity, and a sharp cut-off wavelength of 220 nm. | [175] |
h-BN | silicon wafer | 600 °C | – | – | 2.4 mJ | Hardness = 2.47 ± 0.20 GPa. The elastic modulus = 74.32 ± 7.98 GPa. | [176] |
h-BN | SiC | 750 °C | N2 | 100 mTorr | KrF 2.3 mJ/cm2 | Cross-plane thermal conductivity from 1.5 to 0.2 W/(m K), and the thermal boundary conductance interface = 22.3–47.5 MW/(m2 K). | [57] |
h-BN | c-Al2O3 (0001) | – | N2 | 100 mTorr | KrF 2.2 J/cm2 | Contact angle increased from 55° to 60°, friction coefficient = 0.0002, and refractive indices = 1.53–1.55. | [167] |
w-BN | c-Al2O3 | 400 °C 800 °C | Vacuum | 10−5 Torr | – | The hardness = 37 GPa, and the elastic modulus = 339 GPa. | [171] |
Carbon-doped h-BN | Si/SiO2 Mo | 300 °C | CH4 | 200 mTorr | 2 × 108 Wcm−2 | The hysteresis loop’s Schottky diodes are directly affected by the parameters of resistance and barrier lowering. | [173] |
h-BN | Li-pellet | – | Ar | 50 mTorr | KrF 2 J/cm2 | Effectively improving the constant current cycling life of lithium metal batteries (more than 1800 h) and reducing their electrochemical impedance. | [174] |
Materials | Substrates | Temperature | Background Gases | Pressure | Laser and Laser Energy | Properties | Reference |
---|---|---|---|---|---|---|---|
SrMnO3 | FTO-coated glass | 600 °C | O2 | 100 mTorr | KrF 300 mJ | Cc = 1.37 × 1012 cm−3, Cdu = 5.56 × 10−6 S/cm, and Cm = 24.5 cm2/V·s. | [181] |
CsPbI3 | Glass Silicon | 600 °C | Ar | 5 × 10−4 mbar | Nd:YAG 5.7 J/cm2 7.1 J/cm2 8.5 J/cm2 10 J/cm2 | Bandgap 1.83 eV, Cc = 1.38 × 1012 cm−3, Cm = 164.7 cm2/V·s, Rp = 8 A/W, SDR = 1014 Jones, and EQE = 17.5 × 102%. | [191] |
CaTiS3 | Al2O3 | 600 °C | Vacuum | 5 × 10−6 mbar 1 × 10−5 mbar | KrF 1–2 J/cm2 | The absorption coefficient is in the 105 cm −1 range, the direct bandgap = 1.59 eV, and Cc ~1022 cm−3 range. | [192] |
p-Si/n-CsPbBr3 | Ingle crystal silico | 200 °C | Vacuum | 10−3 Pa | KrF 350 mJ | Rp = 780 mA/W, and SDR = 6.78 × 1011 Jones. | [62] |
LaScO3/SrTiO3 | (001) SrTiO3 | 600 °C to 800 °C | O2 | 10−6 mbar 10−4 mbar | KrF 1.5 to 2.5 J/cm2 | The carrier density is 1014 to 1015 e− cm−2, Rv = of 5.2 kΩ, and Cm = 8.5 cm2/V·s. | [193] |
LaVO3/ SrTiO3 | DyScO3 (101) | 900 °C | 0.1% O2/99.9%N2 gas mixture | 2 mTorr | KrF | Bandgap 1.49 eV, Cc = 1.4 × 1018 cm−3, and Cm = 70 cm2/V·s. | [194] |
BaSnO3- Ni (1, 2, 3, 5, and 7 mol %) | Quartz | 600 °C | O2 | 0.02 mbar | Nd:YAG 60 mJ | Cc = 2.98 × 1011–3.50 × 1014 cm3, Cm = 3.13–20.93 cm2/V·s, and ER = 4.05 × 109–1.13 × 103 Ω cm. | [188] |
BaTiO3-S | SrTiO3 (001) | 640 °C | O2 | 100 mTorr | KrF 1.2 J/cm2 | Pr = 23.15 µC/cm2 and Ps = 35.69 µC/cm2. | [195] |
BaSnO3-La (5%) | Sapphire (0001) | 700 °C | O2 | 5 × 10−2 mbar | Nd:YAG 240 J/cm2. | Transmissions = 65–75% and optical bang gap = 3.22–3.51 eV. | [196] |
Ba0.95Ca0.05Ti0.95Sn0.05O3/Ni0.7Zn0.3Fe2O4 | Pt (111)/TiO2/SiO2/Si | 700 °C 650°C | O2 | 150 mTorr | KrF 1.5 J/cm2 | A maximum polarization = 6.8 µC/cm2, Pr = 2.7 µC/cm2, and Ms = 86 emu/cc. Mr = 14.7 emu/cc. | [190] |
Ba0:6Sr0:4TiO3 | _ | _ | Vacuum | 10−3 Torr | Nd:YAG 700 J/cm2 | Dielectric constant = 420, dissipation factor = 0.04, | [197] |
La0.67Sr0.33MnO3 | (001) SrTiO3 | 750 °C | O2 | 15 mTorr | _ | damping value = 0.0014, and damping change rate = 210%. | [198] |
Pb0.92La0.08(Zr0.52Ti0.48)O3/YBa2Cu3O7- ẟ | (00l) LaAlO3 | 800 °C 650 °C | O2 | 30 Pa | _ | Good superconductivity, and its critical transition temperature is ~87 K. Pr = 21 µC/cm2. | [199] |
Parameter | PLD | CVD | MBE | ALD |
---|---|---|---|---|
Cost | High | Varies by type | Extremely expensive | Relatively high |
Scalability | Poor | Good | Limited | Relatively good |
Film uniformity | Good uniformity in small areas, but poor uniformity on large-area substrates | Good uniformity, but for films with complex-shaped substrates or high aspect ratio structures, the uniformity is poor | Capable of achieving atomic-level precise control, and excellent film uniformity and structural integrity | Highly uniform films can be grown on substrates of various shapes, with thickness control accuracy reaching sub-nanometer levels |
Material crystallinity | High crystalline quality two-dimensional materials can be prepared | By optimizing process parameters, high crystallinity films can be prepared | High-quality single-crystal films at the atomic level, high crystallinity of the material | Good crystallinity can be obtained, and atoms can be arranged in an orderly manner on the substrate |
Large-area growth and Industrial feasibility | Uniform growth of centimeter-level area. It is suitable for preparing special and complex film materials. Its application in large-scale industrial production is relatively limited and mainly used in high-end fields. | By optimizing processes and equipment, large-area uniform growth can be achieved, which is widely used in fields such as integrated circuit manufacturing, solar cells, and flat panel displays, with high industrial feasibility | Small area high-quality growth can be achieved in the laboratory, but the technical difficulty and cost of achieving large-area growth are high. It is mainly used in high-end semiconductor research and production fields, and the industrial application scope is relatively narrow | Uniform films can be grown on large-area substrates, but the deposition rate is slow, and the efficiency of large-area growth is relatively low. It is widely used in advanced semiconductor manufacturing and nanotechnology, especially suitable for preparing ultra-thin and highly uniform films. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Li, F.; Zhang, X.; Wang, J.; Yu, Z.; Feng, B.; Li, Y. Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials. Materials 2025, 18, 2999. https://doi.org/10.3390/ma18132999
Cai J, Li F, Zhang X, Wang J, Yu Z, Feng B, Li Y. Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials. Materials. 2025; 18(13):2999. https://doi.org/10.3390/ma18132999
Chicago/Turabian StyleCai, Jixiang, Feixing Li, Xueshuai Zhang, Jianguo Wang, Zecong Yu, Bo Feng, and Youwen Li. 2025. "Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials" Materials 18, no. 13: 2999. https://doi.org/10.3390/ma18132999
APA StyleCai, J., Li, F., Zhang, X., Wang, J., Yu, Z., Feng, B., & Li, Y. (2025). Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials. Materials, 18(13), 2999. https://doi.org/10.3390/ma18132999