Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = laser conduction joining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 14848 KiB  
Article
A Comparative Study of Arc Welding and Laser Welding for the Fabrication and Repair of Multi-Layer Hydro Plant Bellows
by Lichao Cao, Kaiming Lv, Zhengjun Liu, Guoying Tu, Yi Zhang, Han Hu, Zirui Yang, Huikang Wang, Hao Zhang and Guijun Bi
Appl. Sci. 2025, 15(6), 3387; https://doi.org/10.3390/app15063387 - 20 Mar 2025
Viewed by 627
Abstract
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to [...] Read more.
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to the defects of pores and insufficient fusion when fabricating or repairing such bellows. Precise laser welding with a high energy density and a low heat input has the potential to join multi-layer bellows in a high-quality manner. In this study, a comparative investigation was conducted on the arc welding and laser welding of multi-layer 316L stainless steel sheets and B610CF high-strength steel plates regarding the weld quality, microstructure and tensile properties. The results show that laser-welded joints produced a narrower heat-affected zone and a full weld without visible defects. Compared with arc welding, laser welding had more equiaxed grain regions in the fusion zone and a homogeneous elemental distribution in the heat-affected zone. This led to a more reliable welded joint using laser welding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 15835 KiB  
Article
Research on Laser Direct Transmission Welding of Transparent Polystyrene and Polycarbonate Based on Laser Surface Modification
by Kehui Zhai, Fuhao Yang, Qiyan Gu, Yu Lin, Minqiu Liu, Deqin Ouyang, Yewang Chen, Ying Zhang, Qitao Lue and Shuangchen Ruan
Polymers 2025, 17(3), 409; https://doi.org/10.3390/polym17030409 - 4 Feb 2025
Viewed by 1050
Abstract
The conventional near-infrared laser transmission welding (LTW) process for joining dissimilar transparent polymers is limited by the need to incorporate optical absorbents, which compromises joint performance and raises biocompatibility concerns. To address these issues, this study proposed a surface modification technique using femtosecond [...] Read more.
The conventional near-infrared laser transmission welding (LTW) process for joining dissimilar transparent polymers is limited by the need to incorporate optical absorbents, which compromises joint performance and raises biocompatibility concerns. To address these issues, this study proposed a surface modification technique using femtosecond laser ablation prior to the welding process. Experiments involved 520 nm femtosecond laser ablation of transparent polymers, followed by LTW of dissimilar transparent polymers using an 808 nm laser, with subsequent characterization and mechanical property evaluations. A maximum joint strength of 13.65 MPa was achieved. A comprehensive investigation was conducted into the physical and chemical mechanisms through which laser ablation improved the welding performance of dissimilar transparent polymers. The results demonstrated that laser ablation generated microstructures that serve as substitutes for optical absorbents while also facilitating the formation of numerous oxygen-containing functional groups. These enhancements improve miscibility and bonding performance between dissimilar polymers, enabling absorbent-free welding between ablated polycarbonate (PC) and polystyrene (PS). This work confirms both the feasibility and potential application of this process for direct LTW of dissimilar transparent polymers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 19559 KiB  
Article
Comparative Study of the Effects of Different Surface States During the Laser Sealing of 304 Steel/High-Alumina Glass
by Changjun Chen, Bei Bao, Jiaqi Shao, Min Zhang and Haodong Liu
Coatings 2025, 15(1), 101; https://doi.org/10.3390/coatings15010101 - 17 Jan 2025
Viewed by 932
Abstract
Laser welding (sealing) is a promising technology for joining metal to glass, but it shows poor joint strength in existing studies. This study conducted the laser sealing of a 304 stainless steel alloy to high-alumina glass using pre-oxidation and laser surface melting as [...] Read more.
Laser welding (sealing) is a promising technology for joining metal to glass, but it shows poor joint strength in existing studies. This study conducted the laser sealing of a 304 stainless steel alloy to high-alumina glass using pre-oxidation and laser surface melting as an interlayer. The present investigation aimed to determine the influence of this surface modification strategy on the mechanical behavior of glass-to-metal sealing joints made via laser welding. An experimental campaign was conducted on 304 stainless steel and high-alumina glass. Pre-oxidation and laser surface melting treatment were performed on the 304 steel alloy surface before joining to improve the mechanical interlock and chemical bonding between the substrates. The microstructures of the 304 steel alloy/glass interface were investigated by using scanning electron microscopy (SEM) and an energy-dispersive spectrometer (EDS), and the interface evolution mechanism and the correlation between the steel/glass joining strength and the interface morphology were discussed. Finite element analysis software simulated the temperature field and stress field in the welding process, and the reasons for the differences in the welding strengths of different surface treatment samples were analyzed in depth. The results showed that the laser surface melting strategy used significantly influenced the mechanical behavior of the joints and the failure mode. Adopting a higher number of scans improved the mechanical interlock and, consequently, the mechanical behavior of the joints. Full article
Show Figures

Figure 1

16 pages, 4367 KiB  
Article
Laser Welding of Micro-Wire Stent Electrode as a Minimally Invasive Endovascular Neural Interface
by Bo Wen, Liang Shen and Xiaoyang Kang
Micromachines 2025, 16(1), 21; https://doi.org/10.3390/mi16010021 - 26 Dec 2024
Cited by 1 | Viewed by 1224
Abstract
Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood [...] Read more.
Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm. A high-precision laser welding technique was developed to join micro-wire electrodes without compromising structural integrity or performance. To ensure consistent results, a novel micro-wire welding with platinum pad method was introduced during the welding process. The fabricated electrodes were integrated with stent structures and subjected to detailed electrochemical performance testing to evaluate their potential as neural interface components. The laser-welded endovascular stent electrodes exhibited excellent electrochemical properties, including low impedance and stable charge transfer capabilities. At the same time, in this study, a simulation is conducted of the electrode distribution and arrangement on the stent structure, optimizing the utilization of the available surface area for enhanced functionality. These results demonstrate the potential of the fabricated electrodes for high-performance neural interfacing in endovascular applications. The approach provided a promising solution for advancing endovascular neural engineering technologies, particularly in applications requiring compact electrode designs. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

19 pages, 15728 KiB  
Article
Investigation of the Weldability of 3D-Printed Multi-Material Materials (PLA and PLA Wood) Using Friction Stir Welding
by Gökhan Şahin, Nergizhan Anaç and Oğuz Koçar
Polymers 2024, 16(23), 3249; https://doi.org/10.3390/polym16233249 - 22 Nov 2024
Cited by 2 | Viewed by 1015
Abstract
In the industry sector, it is very common to have different types of dissimilar materials on the same construction rather than products made from a single type of material. Traditional methods (welding, mechanical fastening, and adhesive bonding) and hybrid techniques (friction stir welding, [...] Read more.
In the industry sector, it is very common to have different types of dissimilar materials on the same construction rather than products made from a single type of material. Traditional methods (welding, mechanical fastening, and adhesive bonding) and hybrid techniques (friction stir welding, weld bonding, and laser welding) are used in the assembly or joining of these materials. However, while joining similar types of materials is relatively easy, the process becomes more challenging when joining dissimilar materials due to the structure and properties of the materials involved. In recent years, additive manufacturing and 3D printing have revolutionized the manufacturing landscape and have provided great opportunities for the production of polymer-based multi-materials. However, developments in the joining of multi-material parts are limited, and their limits are not yet clear. This study focuses on the joining of 3D-printed products made from PLA-based multiple materials (PLA and PLA Wood) using friction stir welding. Single-material and multi-material parts (with 100% infill ratio and three different combinations of 50% PLA/50% PLA Wood) were welded at a feed rate of 20 mm/min and three different tool rotational speeds (1750, 2000, and 2250 rpm). Tensile and bending tests were conducted on the welded samples, and temperature measurements were taken. The fractured surfaces of the samples were examined to perform a damage analysis. It is determined that the weld strength of multi-materials changes depending on the combination of the material (material design). For multi-materials, a welding efficiency of 74.3% was achieved for tensile strength and 142.68% for bending load. Full article
(This article belongs to the Special Issue Advanced Joining Technologies for Polymers and Polymer Composites)
Show Figures

Figure 1

13 pages, 9227 KiB  
Article
Effect of Preheating Parameters on Extrusion Welding of High-Density Polyethylene Materials
by Chungwoo Lee, Suseong Woo, Sooyeon Kwon and Jisun Kim
Polymers 2024, 16(21), 2992; https://doi.org/10.3390/polym16212992 - 25 Oct 2024
Viewed by 1384
Abstract
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their [...] Read more.
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their application in large, complex marine structures remains underexplored, particularly in terms of joining methods. Existing techniques, such as ultrasonic welding, laser welding, and friction stir welding, are unsuitable for large-scale HDPE components, where extrusion welding is more viable. This study focuses on evaluating the impact of key process parameters, such as the preheating temperature, hot air movement speed, and nozzle distance, on the welding performance of HDPE. By analyzing the influence of these variables on heat distribution during the extrusion welding process, we aim to conduct basic research to derive optimal conditions for achieving strong and reliable joints. The results highlight the critical importance of a uniform temperature distribution in preventing defects such as excessive melting or thermal degradation, which could compromise weld integrity. This research provides valuable insights into improving HDPE joining techniques, contributing to its broader adoption in the marine and manufacturing industries. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 7468 KiB  
Article
Microstructure and Hardness Properties of Additively Manufactured AISI 316L Welded by Tungsten Inert Gas and Laser Welding Techniques
by Mohamed Elsayed, Mahmoud Khedr, Antti Järvenpää, A. M. Gaafer and Atef Hamada
Materials 2024, 17(18), 4489; https://doi.org/10.3390/ma17184489 - 12 Sep 2024
Cited by 2 | Viewed by 1870
Abstract
In this study, 316L austenitic stainless-steel (ASS) plates fabricated using an additive manufacturing (AM) process were joined using tungsten inert gas (TIG) and laser welding techniques. The 316L ASS plates were manufactured using a laser powder bed fusion (LPBF) technique, with building orientations [...] Read more.
In this study, 316L austenitic stainless-steel (ASS) plates fabricated using an additive manufacturing (AM) process were joined using tungsten inert gas (TIG) and laser welding techniques. The 316L ASS plates were manufactured using a laser powder bed fusion (LPBF) technique, with building orientations (BOs) of 0° and 90°, designated as BO-0 and BO-90, respectively. The study examined the relationship between indentation resistance and microstructure evolution within the fusion zone (FZ) of the welded joints considering the effects of different BOs. Microstructural analysis of the weldments was conducted using optical and laser confocal scanning microscopes, while hardness measurements were obtained using a micro-indentation hardness (HIT) technique via the Berkovich approach. The welded joints produced with the TIG technique exhibited FZs with a greater width than those created by laser welding. The microstructure of the FZs in TIG-welded joints was characterized by dendritic austenite and 1–4 wt.% δ-ferrite phases, while the corresponding microstructure in laser-welded joints consisted of a single austenite phase with cellular structures. Additionally, the grain size values of FZs produced using the laser welding technique were lower than those produced using the TIG technique. Therefore, TIG-welded joints showcased hardness values lower than those welded by laser welding. Furthermore, welded joints with the BO-90 orientation displayed the greatest cooling rates following welding processing, leading to FZs with hardness values greater than BO-0. For instance, the FZs of TIG-welded joints with BO-0 and BO-90 had HIT values of 1.75 ± 0.22 and 2.1 ± 0.09 GPa, whereas the corresponding FZs produced by laser welding had values of 1.9 ± 0.16 and 2.35 ± 0.11 GPa, respectively. The results have practical implications for the design and production of high-performance welded components, providing insights that can be applied to improve the efficiency and quality of additive manufacturing and welding processes. Full article
Show Figures

Figure 1

16 pages, 9384 KiB  
Article
Structural Analysis of Thermal Diffusion and Non-Uniform Temperature Distribution along the Sidewall Thickness of STS316L during Gas Tungsten Arc Butt Welding
by Taehyung Na, Gwang-Ho Jeong, Kiyoung Kim, Yongdeog Kim, Junsung Bae, Seonmin Kim, Sang-Hyun Ahn, Seung-Hoon Bae, Sang-Kyo Kim and Dae-Won Cho
Processes 2024, 12(5), 1038; https://doi.org/10.3390/pr12051038 - 20 May 2024
Cited by 2 | Viewed by 1629
Abstract
This study investigated how welding affects the thermal deformation of square cells produced for casks, which are dry storage containers for spent nuclear fuel. We aimed to minimize structural deformation by utilizing STS316L as the material for the square cells. We explored a [...] Read more.
This study investigated how welding affects the thermal deformation of square cells produced for casks, which are dry storage containers for spent nuclear fuel. We aimed to minimize structural deformation by utilizing STS316L as the material for the square cells. We explored a method of subdividing the square cells and joining them through butt welding. Keeping the upper plate thickness constant, GTA butt welding was conducted while varying the column’s wall thickness, followed by measurement with a laser vision sensor. The heat conduction and thermal strain were then calculated using a finite element analysis (FEM). Both experimental and analytical results confirmed that there was significant thermal deformation in the cases of thick-walled columns due to variations in heat conduction distribution, with the resulting deformation patterns depending on thickness. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

114 pages, 85007 KiB  
Review
Advancements in Additive Manufacturing for Copper-Based Alloys and Composites: A Comprehensive Review
by Alireza Vahedi Nemani, Mahya Ghaffari, Kazem Sabet Bokati, Nima Valizade, Elham Afshari and Ali Nasiri
J. Manuf. Mater. Process. 2024, 8(2), 54; https://doi.org/10.3390/jmmp8020054 - 2 Mar 2024
Cited by 21 | Viewed by 7180
Abstract
Copper-based materials have long been used for their outstanding thermal and electrical conductivities in various applications, such as heat exchangers, induction heat coils, cooling channels, radiators, and electronic connectors. The development of advanced copper alloys has broadened their utilization to include structural applications [...] Read more.
Copper-based materials have long been used for their outstanding thermal and electrical conductivities in various applications, such as heat exchangers, induction heat coils, cooling channels, radiators, and electronic connectors. The development of advanced copper alloys has broadened their utilization to include structural applications in harsh service conditions found in industries like oil and gas, marine, power plants, and water treatment, where good corrosion resistance and a combination of high strength, wear, and fatigue tolerance are critical. These advanced multi-component structures often have complex designs and intricate geometries, requiring extensive metallurgical processing routes and the joining of the individual components into a final structure. Additive manufacturing (AM) has revolutionized the way complex structures are designed and manufactured. It has reduced the processing steps, assemblies, and tooling while also eliminating the need for joining processes. However, the high thermal conductivity of copper and its high reflectivity to near-infrared radiation present challenges in the production of copper alloys using fusion-based AM processes, especially with Yb-fiber laser-based techniques. To overcome these difficulties, various solutions have been proposed, such as the use of high-power, low-wavelength laser sources, preheating the build chamber, employing low thermal conductivity building platforms, and adding alloying elements or composite particles to the feedstock material. This article systematically reviews different aspects of AM processing of common industrial copper alloys and composites, including copper-chrome, copper-nickel, tin-bronze, nickel-aluminum bronze, copper-carbon composites, copper-ceramic composites, and copper-metal composites. It focuses on the state-of-the-art AM techniques employed for processing different copper-based materials and the associated technological and metallurgical challenges, optimized processing variables, the impact of post-printing heat treatments, the resulting microstructural features, physical properties, mechanical performance, and corrosion response of the AM-fabricated parts. Where applicable, a comprehensive comparison of the results with those of their conventionally fabricated counterparts is provided. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

17 pages, 9895 KiB  
Article
Challenges in Contacting Metal–Polymer Current Collectors in Pouch Cells
by Hakon Gruhn, Tobias Krüger, Malte Mund, Maja W. Kandula and Klaus Dilger
J. Manuf. Mater. Process. 2023, 7(6), 219; https://doi.org/10.3390/jmmp7060219 - 5 Dec 2023
Cited by 3 | Viewed by 4045
Abstract
Recent research focuses on replacing metal current collectors with metallized polymer foils. However, this introduces significant challenges during cell production, as manufacturing steps must be adapted. Currently, copper is used as the current collector on the anode side and aluminum on the cathode [...] Read more.
Recent research focuses on replacing metal current collectors with metallized polymer foils. However, this introduces significant challenges during cell production, as manufacturing steps must be adapted. Currently, copper is used as the current collector on the anode side and aluminum on the cathode side. These current collectors are then joined within the cell with an arrester tab. This step, known as contacting, is carried out industrially in pouch cells using ultrasonic welding or laser beam welding. However, since the polymer foil is electrically insulating, the current contacting procedures cannot be directly transferred to the metal–polymer current collectors. In this work, ultrasonic welding, laser beam welding, and a mechanical contacting method are considered, and the challenges arising from the material properties are highlighted. The properties of the joints are discussed as a function of the number of foils and the coating thickness of the metallization. It is demonstrated that successful contacting by ultrasonic welding and mechanical clamping is possible, as both mechanical strength and electrical conductivity are ensured by the joint. Laser beam welding was unsuccessful. Additionally, the electrical resistance is one to two orders of magnitude higher than that of pure aluminum and copper foils, which necessitates further optimization. Furthermore, ultrasonic welding is limited to welding 16 foils or fewer. This does not match industrial requirements. Consequently, novel approaches for contacting metal–polymer current collectors are required. Full article
(This article belongs to the Special Issue Advanced Joining Processes and Techniques 2023)
Show Figures

Figure 1

29 pages, 4580 KiB  
Article
Determination of the Contact Resistance of Planar Contacts: Electrically Conductive Adhesives in Battery Cell Connections
by Philipp Jocher, Michael K. Kick, Manuel Rubio Gomez, Adrian V. Himmelreich, Alena Gruendl, Edgar Hoover, Michael F. Zaeh and Andreas Jossen
Batteries 2023, 9(9), 443; https://doi.org/10.3390/batteries9090443 - 29 Aug 2023
Cited by 2 | Viewed by 5536
Abstract
This study presents a method to analyze the electrical resistance of planar contacts. The method can determine whether the contact resistance of the joint exhibits linear or non-linear behavior. By analyzing the current distribution over a planar contact, it can be determined whether [...] Read more.
This study presents a method to analyze the electrical resistance of planar contacts. The method can determine whether the contact resistance of the joint exhibits linear or non-linear behavior. By analyzing the current distribution over a planar contact, it can be determined whether an area-based contact resistance is justified or if other parameters define the contact resistance. Additionally, a quantitative evaluation of the factors that affect the measurement accuracy, including the positioning, the measurement equipment used, and the influence of the current injection on the sense pin was conducted. Based on these findings, the electrical contact resistance and the mechanical ultimate tensile force of a silver-filled epoxy-based adhesive are analyzed and discussed. The layer thickness and the lap joint length were varied. Overall, the investigated adhesive shows a low contact resistance and high mechanical strength of the same magnitude as that of well-established joining techniques, such as welding, press connections, and soldering. In addition to evaluating the mechanical and electrical properties, the electric conductive adhesive underwent an economic assessment. This analysis revealed that the material costs of the adhesive significantly contribute to the overall connection costs. Consequently, the effective costs in mass production are higher than those associated with laser beam welding. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

16 pages, 12144 KiB  
Article
Numerical Strength Analysis of Laser-Welded Differential Housing and Gear Considering Residual Stress
by Liuping Wang, Zhengshun Ni, Yingang Xiao, Yongqiang Li, Xianghuan Liu, Yongzhi Chen, Shuanghao Cui, Dejun Zhang, Chengji Mi and Quanguo He
Materials 2023, 16(13), 4721; https://doi.org/10.3390/ma16134721 - 29 Jun 2023
Cited by 2 | Viewed by 1623
Abstract
In order to avoid slackening of differential housing and gear joined by bolts, the laser-welding process is proposed in this paper, and the strength of a connecting joint was estimated by numerical analysis with consideration of welding residual stress. The process parameters of [...] Read more.
In order to avoid slackening of differential housing and gear joined by bolts, the laser-welding process is proposed in this paper, and the strength of a connecting joint was estimated by numerical analysis with consideration of welding residual stress. The process parameters of laser welding for dissimilar materials QT600 cast iron and 20MnCr5 structural alloy steel were introduced, and chemical composition analysis and microstructure analysis were conducted on the welded joints. The finite element model of laser-welded differential housing and gear was established to obtain the welding residual stress by applying a moving heat source. To verify the accuracy of the simulated result, static pressing tests were employed. The maximum tensile residual stress was 319.4 MPa, located at the same point as the maximum temperature. The simulated stress agreed well with the experimental data. Finally, the dynamic strength of laser-welded differential housing and gear under forward, reverse, and start-up conditions was assessed by regarding welding residual stress as the initial stress field, which showed that all safety factors were greater than 1.4. Full article
Show Figures

Figure 1

27 pages, 9121 KiB  
Article
Numerical Simulation of Temperature Fields during Laser Welding–Brazing of Al/Ti Plates
by Mária Behúlová and Eva Babalová
Materials 2023, 16(6), 2258; https://doi.org/10.3390/ma16062258 - 11 Mar 2023
Cited by 12 | Viewed by 3211
Abstract
The formation of dissimilar weld joints, including Al/Ti joints, is an area of research supported by the need for weight reduction and corrosion resistance in automotive, aircraft, aeronautic, and other industries. Depending on the cooling rates and chemical composition, rapid solidification of Al/Ti [...] Read more.
The formation of dissimilar weld joints, including Al/Ti joints, is an area of research supported by the need for weight reduction and corrosion resistance in automotive, aircraft, aeronautic, and other industries. Depending on the cooling rates and chemical composition, rapid solidification of Al/Ti alloys during laser welding can lead to the development of different metastable phases and the formation of brittle intermetallic compounds (IMCs). The effort to successfully join aluminum to titanium alloys is associated with demands to minimize the thickness of brittle IMC zones by selecting appropriate welding parameters or applying suitable filler materials. The paper is focused on the numerical simulation of the laser welding–brazing of 2.0 mm thick titanium Grade 2 and EN AW5083 aluminum alloy plates using 5087 aluminum filler wire. The developed simulation model was used to study the impact of laser welding–brazing parameters (laser power, welding speed, and laser beam offset) on the transient temperature fields and weld-pool characteristics. The results of numerical simulations were compared with temperatures measured during the laser welding–brazing of Al/Ti plates using a TruDisk 4002 disk laser, and macrostructural and microstructural analyses, and weld tensile strength measurements, were conducted. The ultimate tensile strength (UTS) of welded–brazed joints increases with an increase in the laser beam offset to the Al side and with an increase in welding speed. The highest UTS values at the level of 220 MPa and 245 MPa were measured for joints produced at a laser power of 1.8 kW along with a welding speed of 30 mm·s−1 and a laser beam offset of 300 μm and 460 μm, respectively. When increasing the laser power to 2 kW, the UTS decreased. The results exhibited that the tensile strength of Al/Ti welded–brazed joints was dependent, regardless of the welding parameters, on the amount of melted Ti Grade 2, which, during rapid solidification, determines the thickness and morphology of the IMC layer. A simple formula was proposed to predict the tensile strength of welded–brazed joints using the computed cross-sectional Ti weld metal area. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 8137 KiB  
Article
Optimization of Laser-Assisted Polypropylene Aluminum Joining
by Mahdi Amne Elahi, Anthony Marozzi and Peter Plapper
Appl. Sci. 2023, 13(6), 3582; https://doi.org/10.3390/app13063582 - 10 Mar 2023
Cited by 4 | Viewed by 1910
Abstract
Laser joining of polymers to metals is a rising research subject due to the potential of considerably reducing the weight of structures. This article deals with the laser joining process between polypropylene and aluminum. Without pre-treatment, laser joining of these materials is not [...] Read more.
Laser joining of polymers to metals is a rising research subject due to the potential of considerably reducing the weight of structures. This article deals with the laser joining process between polypropylene and aluminum. Without pre-treatment, laser joining of these materials is not feasible, and the method applied in this study to circumvent this issue is a surface modification of aluminum with a pulsed laser to create mechanical interlocking for the heat conduction laser joining technique. Different patterns and various laser parameters are analyzed with the design of experiments to best understand the effects of each parameter along with microscopic observations. It is found that engraving weakens the mechanical properties of the aluminum samples. The compromise between the engraving depth and the mechanical properties of the samples is optimized, and the engraving process with a 0.28 mm line width, 27.3% density and 150 mm/s speed provides the highest mechanical performance of the assembly with minimum degradation of aluminum samples. Moreover, by adjusting the laser power and using power modulation below 300 W, the decomposition of polypropylene occurring at high temperatures is reduced to a minimum. After the final optimization, the joined samples reliably withstand a maximum force of 1500 N, which is, approximately, a shear strength of 20 MPa. Full article
(This article belongs to the Special Issue Laser Material Processing and Thermal Joining Process)
Show Figures

Figure 1

23 pages, 11371 KiB  
Article
Microstructural Evolution and Mechanical Performance of Two Joints of Medium-Mn Stainless Steel with Low- and High-Alloyed Steels
by Mahmoud Khedr, I. Reda Ibrahim, Matias Jaskari, Mohammed Ali, Hamed A. Abdel-Aleem, Tamer S. Mahmoud and Atef Hamada
Materials 2023, 16(4), 1624; https://doi.org/10.3390/ma16041624 - 15 Feb 2023
Cited by 10 | Viewed by 2434
Abstract
In this work, 2 mm thick medium-Mn austenitic stainless steel (MMn–SS) plates were joined with austenitic NiCr stainless steel (NiCr–SS) and low-carbon steel (LCS) using the gas tungsten arc welding technique. A precise adjustment of the welding process parameters was conducted to achieve [...] Read more.
In this work, 2 mm thick medium-Mn austenitic stainless steel (MMn–SS) plates were joined with austenitic NiCr stainless steel (NiCr–SS) and low-carbon steel (LCS) using the gas tungsten arc welding technique. A precise adjustment of the welding process parameters was conducted to achieve high-quality dissimilar joints of MMn–SS with NiCr–SS and LCS. The microstructural evolution was studied using laser scanning confocal and electron microscopes. Secondary electron imaging and electron backscatter diffraction (EBSD) techniques were intensively employed to analyze the fine features of the weld structures. The mechanical properties of the joints were evaluated by uniaxial tensile tests and micro-indentation hardness (HIT). The microstructure of the fusion zone (FZ) in the MMn–SS joints exhibited an austenitic matrix with a small fraction of δ-ferrite, ~6%. The tensile strength (TS) of the MMn–SS/NiCr–SS joint is significantly higher than that of the MMn–SS/LCS joint. For instance, the TSs of MMn–SS joints with NiCr–SS and LCS are 610 and 340 MPa, respectively. The tensile properties of MMn–SS/LCS joints are similar to those of BM LCS, since the deformation behavior and shape of the tensile flow curve for that joint are comparable with the flow curve of LCS. The HIT measurements show that the MMn–SS/NiCr–SS joint is significantly stronger than the MMn–SS/LCS joint since the HIT values are 2.18 and 1.85 GPa, respectively. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites)
Show Figures

Figure 1

Back to TopTop