Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (270)

Search Parameters:
Keywords = laser beam welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7341 KB  
Article
Study on Mechanical Properties of Adjustable-Ring-Mode Laser Scanning Welding of TA1 Titanium Alloy to 304 Stainless Steel Dissimilar Thin Sheets
by Geng Li, Tengyi Yu, Peiqing Yang, Suning Zhao, Shuai Zhang, Honghua Ma, Shang Wu, Ji Li and Ming Gao
Materials 2026, 19(2), 230; https://doi.org/10.3390/ma19020230 - 7 Jan 2026
Viewed by 132
Abstract
The adjustable-ring-mode (ARM) scanning laser was used to perform butt welding on 0.5 mm thick TA1 titanium alloy and 304 stainless steel (SS304) thin sheets, with 1.2 mm diameter AZ61S magnesium alloy welding wire as the filling material. Microhardness test results show that [...] Read more.
The adjustable-ring-mode (ARM) scanning laser was used to perform butt welding on 0.5 mm thick TA1 titanium alloy and 304 stainless steel (SS304) thin sheets, with 1.2 mm diameter AZ61S magnesium alloy welding wire as the filling material. Microhardness test results show that the hardness distribution presented a trend of being higher in the base metals on both sides and lower in the middle filling area, with no hardening observed in the weld zone. For all specimens subjected to horizontal and axial weld bending tests, the bending angle reached 108° without any cracks occurring. When the ring power was in the range of 800–1000 W, or the scanning frequency was between 100 and 200 Hz, all the average tensile strengths of the welded joints were more than 80% of that of the AZ61S filling material (approximately 240 MPa); the maximum average tensile strength stood at 281.2 MPa, which is equivalent to 93.7% of the AZ61S. As the ring power or scanning frequency increased further, the tensile strengths of the joints showed a decreasing trend. The remelting effect of the trailing edge of the ARM laser under high energy conditions, or the scouring of the turbulent molten flow induced by the scanning beam, damages the weak links at the newly formed solid–liquid interface and increases the Fe concentration in the molten pool. This leads to a thicker FeAl interface layer during growth, thereby resulting in a decline in the mechanical properties of the welded joints. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites, Second Edition)
Show Figures

Figure 1

25 pages, 11724 KB  
Review
Tab-to-Busbar Interconnections in EV Battery Packs: An Introductory Review of Typical Welding Methods
by Sooyong Choi, Sooman Lim, Ali Shan, Jinkyu Lee, Tae Gwang Yun and Byungil Hwang
Micromachines 2026, 17(1), 2; https://doi.org/10.3390/mi17010002 - 19 Dec 2025
Viewed by 656
Abstract
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes [...] Read more.
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes are compared in terms of heat input, interfacial metallurgy, electrical resistance, mechanical robustness, and manufacturability. USW, as a solid-state method, suppresses porosity and limits Al-Cu intermetallic growth, but is sensitive to thickness, stack geometry, and tool wear. LBW enables high-speed, automated production with precise energy delivery, yet requires careful control to mitigate spatter, porosity, and brittle IMCs in dissimilar joints. RW remains cost-effective and flexible but can suffer from electrode wear and variability with highly conductive stacks. This review also summarizes the effect of the busbar material (Al versus Cu) and thickness on the connection resistance and temperature increase under a high current. No single process is universally superior, and the selection should match the stack-up, reliability targets, and production constraints. This paper aims to provide an overview of recent and conventional research trends for each welding method and to introduce selected non-traditional approaches, thereby presenting a range of viable options for future applications. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

19 pages, 20616 KB  
Article
Properties and Microstructure Evaluation of Laser-Welded TP347—TP904L High-Alloy, Stainless Steels Joints, Modified with 309L Filler
by Hubert Danielewski, Piotr Kurp, Andrzej Skrzypczyk, Jindřich Kozák, Pavel Konopík, Jianhua Yao, Qunli Zhang and Sylwia Rzepa
Materials 2025, 18(24), 5633; https://doi.org/10.3390/ma18245633 - 15 Dec 2025
Viewed by 404
Abstract
This study presents the results of laser beam welding of dissimilar high-alloy super stainless steels. Differences in their thermal and mechanical properties pose significant challenges in manufacturing processes. The present work demonstrates the potential advantages of using 309L filler material in laser welding [...] Read more.
This study presents the results of laser beam welding of dissimilar high-alloy super stainless steels. Differences in their thermal and mechanical properties pose significant challenges in manufacturing processes. The present work demonstrates the potential advantages of using 309L filler material in laser welding of high-alloy materials with different properties. The research focuses on a comparative evaluation of the effects of 309L filler metal on the TP904L—TP347 joint in terms of joint strength and microstructure. The analysis of the joints provides insight into the role of the filler metal in improving joint properties. The obtained results show that both welds exhibit a similar microstructure composed of pillar, cellular, and equiaxed dendrites; however, they differ in dendrite growth orientation, calculated ferrite number (FN), the G/R ratio, and dendrite arm spacing, indicating a lower thermal gradient in the joint welded with filler metal. The results also reveal the presence of precipitates in the welds near the TP904L steel fusion line, most likely Cr23C6 type. Mechanical properties evaluation, based on standard and miniaturized tensile tests as well as hardness measurement, shows that the use of 309L filler metal improves both the joint strength and ductility, although it does not significantly affect the material hardness. Full article
(This article belongs to the Special Issue Mechanical and Metallurgical Behaviour of Welded Materials)
Show Figures

Figure 1

21 pages, 17711 KB  
Article
Effect of Anodizing and Welding Parameters on Microstructure and Mechanical Properties of Laser-Welded A356 Alloy
by Baiwei Zhu, Hongwei Yuan, Jun Liu, Gong Chen, Tianyun Feng and Erliang Liu
Coatings 2025, 15(12), 1461; https://doi.org/10.3390/coatings15121461 - 10 Dec 2025
Viewed by 398
Abstract
This study investigates the effects of anodizing and welding parameters on the microstructure and mechanical properties of laser-welded die-cast A356 aluminum alloy. The influence of different surface oxidation conditions, namely, no anodized film (NAF), single-sheet anodized film (SSAF), and double-sheet anodized films (DSAF), [...] Read more.
This study investigates the effects of anodizing and welding parameters on the microstructure and mechanical properties of laser-welded die-cast A356 aluminum alloy. The influence of different surface oxidation conditions, namely, no anodized film (NAF), single-sheet anodized film (SSAF), and double-sheet anodized films (DSAF), was assessed. The porosity, elemental distribution, and mechanical behavior was systematically analyzed. The results indicate that anodizing reduces the fusion zone (FZ) size by approximately 5%–15% and increases porosity, primarily due to the thermal-barrier effect, energy consumption during film decomposition, and hydrogen release. Welding speed and defocusing amount have a significant impact on heat input and melt-pool dynamics. Quantitative analysis revealed that lower welding speeds and positive defocusing amount increased the FZ size by 15% and porosity by 2%–5%. In contrast, optimized conditions (welding speed of 4 m/min and 0 mm defocus) enhanced gas evacuation and minimized pore formation. Elemental analysis showed that anodizing promoted Si enrichment and increased oxygen incorporation, with oxygen content rising by 10%–15%, from 0.78 wt% (NAF) to 1.31 wt% (DSAF). Microhardness testing revealed a reduction in heat-affected zone (HAZ) hardness due to thermal softening induced by anodizing, while FZ hardness peaked under optimized welding conditions, reaching a maximum value of 95.66 HV. Tensile testing indicated that anodized films enhance the yield strength (YS) of the fusion zone (FZ) but may reduce ductility. Under optimized welding conditions (4 m/min, 0 mm), the joints exhibited the best overall performance, achieving the YS of 125.28 ± 10.57 MPa, an ultimate tensile strength (UTS) of 193.18 ± 3.66 MPa, and an elongation of 3.46 ± 0.25%. These findings provide valuable insights for optimizing both anodizing and welding parameters to improve the mechanical properties of A356 joints. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

14 pages, 3197 KB  
Article
Morphology of Fumes from Hybrid Laser–Arc Welding of X5CrNi18-10 Stainless Steel
by Janusz Adamiec, Joanna Wyciślik-Sośnierz, Jolanta Matusiak, Michał Urbańczyk, Marcin Lemanowicz, Robert Kusiorowski and Anna Gerle
Materials 2025, 18(24), 5534; https://doi.org/10.3390/ma18245534 - 9 Dec 2025
Viewed by 359
Abstract
Stainless steels are widely used across many industrial sectors, including the fabrication of welded structures. The most common methods for joining these materials are arc welding processes. Increasing demands for higher weld quality and process efficiency have led to a growing adoption of [...] Read more.
Stainless steels are widely used across many industrial sectors, including the fabrication of welded structures. The most common methods for joining these materials are arc welding processes. Increasing demands for higher weld quality and process efficiency have led to a growing adoption of laser-based technologies in industry. One of the most frequently applied techniques is hybrid laser–arc welding (HLAW), which combines two heat sources—the laser beam and the electric arc—acting simultaneously. For new, innovative joining technologies, a critical factor in their implementation is their impact on the environment and human health. This article presents the results of a study on the morphology of fumes emitted during the HLAW of X5CrNi18-10 (1.4301) stainless steel. Laser diffraction and scanning electron microscopy were used to characterize the fume morphology. The International Agency for Research on Cancer has classified welding fumes as a carcinogenic agent to humans. The results revealed that more than 20% of particles generated during hybrid welding belong to the most hazardous fraction, as they can penetrate beyond the laryngeal region. These particles exhibit a homogeneous elemental distribution, with the chromium content standing at approximately 20% and nickel nearly 10%. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Metal and Non-Metallic Materials)
Show Figures

Figure 1

13 pages, 3064 KB  
Article
Investigation of Weld Formation, Microstructure and Mechanical Properties of Small Core Diameter Single Mode Fiber Laser Welding of Medium Thick 6061 Aluminum Alloy
by Binyan He, Guojin Chen, Jianming Zheng and Pu Huang
Photonics 2025, 12(12), 1204; https://doi.org/10.3390/photonics12121204 - 7 Dec 2025
Viewed by 460
Abstract
In this study, a small core diameter single mode fiber laser was applied to weld an 8 mm thick plate of 6061-T6 aluminum alloy. The microstructural evolution and mechanical properties of the laser welded aluminum alloy specimens were investigated in detail. The results [...] Read more.
In this study, a small core diameter single mode fiber laser was applied to weld an 8 mm thick plate of 6061-T6 aluminum alloy. The microstructural evolution and mechanical properties of the laser welded aluminum alloy specimens were investigated in detail. The results indicated that fully penetrated welded specimens, free of welding defects like porosity, melt sagging, and hot cracking could be achieved by optimizing the processing parameters through response surface methodology. The upper part of the fusion zone consisted mainly of fine equiaxed dendrites, with secondary dendrite arm spacing (SDAS) of approximately 3–5 μm. While the lower region of the fusion zone exhibited pronounced microstructural coarsening, made up mostly of coarse columnar grains, along with some localized equiaxed grains, and an SDAS ranging from 8 to 12 μm. Both the fusion zone and heat affected zone (HAZ) were characterized by a “softened” hardness profile. The fusion zone featured a narrow region with the lowest microhardness across the welded joint with the microhardness value reducing to ~72% of the base metal (BM). Meanwhile, the microhardness of the HAZ was ~87.4% of the BM. The ultimate tensile strength of laser welded specimens was ~243.6 MPa, amounting to approximately 78.3% of the base metal. This study provides a fresh approach for welding medium-thick aluminum alloy plate using a high-quality laser beam, even at the kilowatt level with a fiber laser, and it shows a strong promise for applications in light-alloy manufacturing sectors such as automotive, rail transportation, aerospace, and beyond. Full article
(This article belongs to the Special Issue Laser Processing and Modification of Materials)
Show Figures

Figure 1

22 pages, 9034 KB  
Article
Laser Beam Welding of IN625 Alloy with Equiaxed Grains: Influence of Process Parameters
by Giuliano Angella, Fabio Bergamini, Francesco Cognini, Alessandra Fava, Paolo Ferro, Alessandra Palombi, Maria Richetta and Alessandra Varone
Metals 2025, 15(12), 1296; https://doi.org/10.3390/met15121296 - 25 Nov 2025
Viewed by 478
Abstract
Ni-based superalloys, known for their excellent mechanical strength and corrosion resistance at high temperature, are widely used in aeronautic, aerospace, and energy industries. Since both the materials and manufacturing processes required to produce high-performance components made of these alloys are expensive, the welding [...] Read more.
Ni-based superalloys, known for their excellent mechanical strength and corrosion resistance at high temperature, are widely used in aeronautic, aerospace, and energy industries. Since both the materials and manufacturing processes required to produce high-performance components made of these alloys are expensive, the welding repair of damaged components plays a crucial role in industrial applications. High energy density welding techniques, such as laser beam welding (LBW) and electron beam welding (EBW), are the most promising to achieve high-quality welds. Nevertheless, welding processes significantly affect the microstructure and mechanical properties of both the melted zone (MZ) and the heat-affected zone (HAZ). This may result in alloying element segregation, precipitation of undesired secondary phases, and the presence of residual stresses that can lead to crack formation. Therefore, a comprehensive investigation of the effects of process parameters on weld seam properties is essential to maintain high performance standards. In this work, LBW was employed to join 2.5 mm thick plates of equiaxed IN625 superalloy. The seams were produced by varying three parameters: the two characteristic parameters of LBW, i.e., laser power (P = 1700, 2000, 2300 W) and welding speed (v = 15, 20, 25 mm/s), alongside power modulation (Γ = Pmin/Pmax = 0.6, 0.8, 1). The scope of this work is to evaluate the effect of the combined variation of all these welding parameters on the final characteristics of welded seams. The resulting microstructures were characterized by using digital radiography, Light Microscopy (LM), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). Vickers microhardness measurements were performed across the weld seams to evaluate the mechanical properties in the MZ and HAZ. The optimal set of welding parameters, producing defect-free seams without cracks and pores, was identified as P = 2000 W, v = 25 mm/s, and Γ = 0.6. Full article
(This article belongs to the Special Issue Weldability and Reparability of Nickel-Base Alloys)
Show Figures

Graphical abstract

28 pages, 5475 KB  
Article
A Deep Learning-Based CNN-LSTM Framework for Constitutive Parameter Inversion in Alloy Gradient-Grained Materials
by Hao Jiang, Mengyi Chen, Jianxin Hou, Zhenfei Guo, Zixuan Hu, Zongzhe Man, Xiao Wei and Da Liu
Metals 2025, 15(12), 1286; https://doi.org/10.3390/met15121286 - 24 Nov 2025
Viewed by 526
Abstract
Alloy gradient-grained structures (represented by copper as a typical single-phase face-centered cubic (FCC) metal), known for their superior mechanical properties such as enhanced strength, ductility, and fatigue resistance, have become increasingly important in aerospace and automotive industries. These alloys are often fabricated using [...] Read more.
Alloy gradient-grained structures (represented by copper as a typical single-phase face-centered cubic (FCC) metal), known for their superior mechanical properties such as enhanced strength, ductility, and fatigue resistance, have become increasingly important in aerospace and automotive industries. These alloys are often fabricated using advanced processing techniques such as laser welding, electron beam melting, and controlled cooling, which induce spatial gradients in grain size and optimize material properties by overcoming the traditional strength–ductility trade-off. In this study, a deep learning-based inversion framework combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is proposed to efficiently predict key constitutive parameters, such as the initial critical resolved shear stress and hardening modulus, in alloy gradient-grained structures. The model integrates spatial features extracted from strain-field sequences and grain morphology images with temporal features from loading sequences, providing a comprehensive solution for path-dependent mechanical behavior modeling. Trained on high-fidelity Crystal Plasticity Finite Element Method (CPFEM) simulation data, the proposed framework demonstrates high prediction accuracy for the constitutive parameters. The model achieves an error margin of less than 5%. This work highlights the potential of deep learning techniques for the efficient and physically consistent identification of constitutive parameters in alloy gradient-grained structures, offering valuable insights for alloy design and optimization. Full article
(This article belongs to the Special Issue Research Progress of Crystal in Metallic Materials)
Show Figures

Figure 1

20 pages, 8006 KB  
Article
Correlating Microstructural and Mechanical Property Alteration with Process Parameters Using Thermal Signature Monitoring of Laser-Welded Inconel 625 Superalloy
by Gulshad Nawaz Ahmad, Mohammad Shahid Raza, Barun Haldar, Indrajeet Kumar, Nirmal Kumar Singh and Abdullah A. Elfar
Crystals 2025, 15(12), 1009; https://doi.org/10.3390/cryst15121009 - 24 Nov 2025
Viewed by 896
Abstract
Inconel 625 is widely employed in high-temperature and corrosive environments, where the integrity of welded joints critically influences component performance. This study systematically investigates how laser beam welding (LBW) heat input governs cooling behaviour, microstructure evolution, elemental segregation, and the mechanical performance of [...] Read more.
Inconel 625 is widely employed in high-temperature and corrosive environments, where the integrity of welded joints critically influences component performance. This study systematically investigates how laser beam welding (LBW) heat input governs cooling behaviour, microstructure evolution, elemental segregation, and the mechanical performance of Inconel 625 weld joints aiming to become sustainable joints. A single-spot monochromatic non-contact type infrared pyrometer is used to monitor the thermal cycles of the molten weld pool and the cooling rate and melt pool lifetime were determined based on the thermal cycle data. The impact of cooling rate and melt pool lifetime on weld geometry, microstructure, micro-segregation, and mechanical properties were thoroughly investigated. The findings revealed that the fibre laser welding produced sound, defect-free joints across all experimental heat-input conditions and the weld quality was fairly dictated by cooling rate during solidification. Reducing heat input (by using faster laser scan speeds) increased the cooling rate (1.45 × 103 to 3.65 × 103 °C/s), resulting in a shortened melt-pool lifetime and altered weld bead geometry from hourglass to truncated-cone profiles. Eventually, the fusion-zone microstructure transitioned from coarse cellular/columnar dendrites at high heat inputs to refined dendrites at low heat inputs. The EDS analysis revealed pronounced Nb and Mo segregation in slowly cooled welds and Laves phase formation due to insufficient time for solute redistribution and γ-Ni matrixes were consistent noted with XRD-observed peaks. The presence of the brittle Laves phase adversely affects the microhardness and tensile strength of the weld joints. Mechanical testing confirmed that decreasing heat input (in faster laser scan speeds) enhanced micro-hardness and tensile strength due to grain refinement and solute entrapment in the γ matrix. The highest joint strength (989.3 ± 10.4 MPa) and elongation (40.3 ± 1.8%) approached those of the work material, and these findings establish processing parameter–structure–property relationships for the LBW of Inconel 625. The co-relation in the present manuscript can be used in the future for process monitoring and for controlling the mechanical properties of laser welding and may provide a practical guidance for optimizing weld quality in advanced industrial applications. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

39 pages, 2270 KB  
Review
Laser Technologies of Welding, Surfacing and Regeneration of Metals with HCP Structure (Mg, Ti, Zr): State of the Art, Challenges and Prospects
by Adam Zwoliński, Sylwester Samborski and Jakub Rzeczkowski
Materials 2025, 18(22), 5237; https://doi.org/10.3390/ma18225237 - 19 Nov 2025
Viewed by 779
Abstract
Metals with a hexagonal close-packed (HCP) structure such as magnesium, titanium and zirconium constitute key structural materials in the aerospace, automotive, biomedical and nuclear energy industries. Their welding and regeneration by conventional methods is hindered due to the limited number of slip systems, [...] Read more.
Metals with a hexagonal close-packed (HCP) structure such as magnesium, titanium and zirconium constitute key structural materials in the aerospace, automotive, biomedical and nuclear energy industries. Their welding and regeneration by conventional methods is hindered due to the limited number of slip systems, high reactivity and susceptibility to the formation of defects. Laser technologies offer precise energy control, minimization of the heat-affected zone and the possibility of producing joints and coatings of high quality. This article constitutes a comprehensive review of the state of knowledge concerning laser welding, cladding and regeneration of HCP metals. The physical mechanisms of laser beam interactions are discussed including the dynamics of the keyhole channel, Marangoni flows and the formation of gas defects. The characteristics of the microstructure of joints are presented including the formation of α′ martensite in titanium, phase segregation in magnesium and hydride formation in zirconium. Particular attention is devoted to residual stresses, techniques of cladding protective coatings for nuclear energy with Accident Tolerant Fuel (ATF) and advanced numerical modeling using artificial intelligence. The perspectives for the development of technology are indicated including the concept of the digital twin and intelligent real-time process control systems. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Properties of Metal Alloys)
Show Figures

Graphical abstract

14 pages, 6050 KB  
Article
On Combined Tensile-Shear Performance of Laser-Welded Dissimilar Overlap Joints Made of Austenitic Stainless Steel and Low-Carbon Steel
by Patricia Santos, Mihaela Iordachescu, Maricely De Abreu, Andrés Valiente and Elena Scutelnicu
J. Manuf. Mater. Process. 2025, 9(11), 351; https://doi.org/10.3390/jmmp9110351 - 27 Oct 2025
Viewed by 752
Abstract
This paper addresses the mechanical characterization of dissimilar overlap joints made by autogenous laser welding between thin sheets of low-carbon steel (CS) and austenitic stainless steel (SS) with an optimized welding technology able to produce sound overlap joints. This involved applying the laser [...] Read more.
This paper addresses the mechanical characterization of dissimilar overlap joints made by autogenous laser welding between thin sheets of low-carbon steel (CS) and austenitic stainless steel (SS) with an optimized welding technology able to produce sound overlap joints. This involved applying the laser beam from the CS-side to reduce the SS overheating. The research is focused on the analysis of combined tensile-shear behavior of the weld and of the heat-affected zones. During testing, the applied tensile-shear load rotates the weld connecting the CS and SS plates. The rotation angle transmitted to the free ends of the plates, together with relevant strain fields, were measured by using a digital image correlation system, VIC-2D. Thus, it was found that the weld acts as a non-linear hinge which experiences a sudden loss of stiffness when strain concentrations develop from the weld ligament edges towards the loaded sides of the plates. The welded joint fails by yielding localization and necking in the CS plate, far from the weld. This mode of failure is a consequence of the weld and heat-affected zone strength mismatches of 1.09 and 1.33, respectively. These values are consistent with the hardness profile and the documented microstructural heterogeneities. Full article
(This article belongs to the Special Issue Progress in Laser Materials Processing)
Show Figures

Figure 1

24 pages, 7207 KB  
Article
YOLO–LaserGalvo: A Vision–Laser-Ranging System for High-Precision Welding Torch Localization
by Jiajun Li, Tianlun Wang and Wei Wei
Sensors 2025, 25(20), 6279; https://doi.org/10.3390/s25206279 - 10 Oct 2025
Viewed by 814
Abstract
A novel closed loop visual positioning system, termed YOLO–LaserGalvo (YLGS), is proposed for precise localization of welding torch tips in industrial welding automation. The proposed system integrates a monocular camera, an infrared laser distance sensor with a galvanometer scanner, and a customized deep [...] Read more.
A novel closed loop visual positioning system, termed YOLO–LaserGalvo (YLGS), is proposed for precise localization of welding torch tips in industrial welding automation. The proposed system integrates a monocular camera, an infrared laser distance sensor with a galvanometer scanner, and a customized deep learning detector based on an improved YOLOv11 model. In operation, the vision subsystem first detects the approximate image location of the torch tip using the YOLOv11-based model. Guided by this detection, the galvanometer steers the IR laser beam to that point and measures the distance to the torch tip. The distance feedback is then fused with the vision coordinates to compute the precise 3D position of the torch tip in real-time. Under complex illumination, the proposed YLGS system exhibits superior robustness compared with color-marker and ArUco baselines. Experimental evaluation shows that the system outperforms traditional color-marker and ArUco-based methods in terms of accuracy, robustness, and processing speed. This marker-free method provides high-precision torch positioning without requiring structured lighting or artificial markers. Its pedagogical implications in engineering education are also discussed. Potential future work includes extending the method to full 6-DOF pose estimation and integrating additional sensors for enhanced performance. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

15 pages, 4711 KB  
Article
Experimental and Numerical Study of Laser Beam Welding of PBT-G30 for Electronic Housings in Automotive Applications
by Luiz R. R. Silva, Paulo D. P. Nunes, Eduardo A. S. Marques, Ricardo J. C. Carbas and Lucas F. M. da Silva
Polymers 2025, 17(19), 2662; https://doi.org/10.3390/polym17192662 - 1 Oct 2025
Viewed by 742
Abstract
This study investigates the application of laser spot welding to join protective housing components in the automotive electronics industry. The PBT GF 30 components were joined using two primary configurations: a purely overlapping joint and a top-overlap joint, both autogenous (i.e., without filler [...] Read more.
This study investigates the application of laser spot welding to join protective housing components in the automotive electronics industry. The PBT GF 30 components were joined using two primary configurations: a purely overlapping joint and a top-overlap joint, both autogenous (i.e., without filler material). To complement the experimental analysis, a numerical model, previously validated for a simpler joint configuration, was adapted and applied to configurations beyond the overlapping and top-overlap joint, more representative of practical automotive industry components. The results demonstrated that butt-overlap joints exhibited significantly higher strength (85% increase) than purely overlapping joints. This enhancement is attributed to the combined effect of normal and shear stresses in the top-overlap configuration, whereas purely overlapping joints rely solely on shear stress. The validated numerical model accurately predicted the experimental results, including displacement and force values. While minor deviations were observed, the numerical model’s predictions converged within the average experimental values and standard deviation, demonstrating that such a model can be used to precisely design laser-welded joints for similar applications. Full article
Show Figures

Figure 1

17 pages, 10023 KB  
Article
Research on Hybrid Blue Diode-Fiber Laser Welding Process of T2 Copper
by Xiangkuan Wu, Na Qi, Shengxiang Liu, Qiqi Lv, Qian Fu, Yue Kang, Min Jin and Miaosen Yang
Metals 2025, 15(9), 1058; https://doi.org/10.3390/met15091058 - 22 Sep 2025
Viewed by 1062
Abstract
This research proposes a non-penetration lap welding process for joining T2 copper power module terminals in high-frequency and high-power electronic applications, using a hybrid laser system combining a 445 nm blue diode laser and a 1080 nm fiber laser. The composite laser beam, [...] Read more.
This research proposes a non-penetration lap welding process for joining T2 copper power module terminals in high-frequency and high-power electronic applications, using a hybrid laser system combining a 445 nm blue diode laser and a 1080 nm fiber laser. The composite laser beam, formed by coupling a circular blue laser beam with a spot-shaped fiber laser beam, was oscillated along circular, sinusoidal, and 8-shaped trajectories to control weld geometry and joint quality. Results indicate that all trajectories produced U-shaped weld cross-sections with smooth toe transitions and good surface quality. Specifically, the circular trajectory provided uniform energy distribution and stable weld formation; the 8-shaped trajectory achieved a balanced width-to-depth ratio; and the sinusoidal trajectory exhibited sensitivity to welding speed, often resulting in uneven fusion width. Increased welding speed promoted grain refinement, but excessive speed led to porosity and poor surface quality in both 8-shaped and sinusoidal trajectories. Oscillating laser welding facilitated equiaxed grain formation, with the circular and 8-shaped trajectories yielding more uniform microstructures. The circular trajectory maintained consistent weld dimensions and hardness distribution, while the 8-shaped trajectory exhibited superior tensile strength. This work highlights the potential of circular and 8-shaped trajectories in hybrid laser welding for regulating weld microstructure, enhancing mechanical performance and ensuring weld stability. Full article
(This article belongs to the Special Issue Advanced Laser Welding and Joining of Metallic Materials)
Show Figures

Figure 1

23 pages, 15884 KB  
Article
Controlling Residual Stress and Microstructure Distribution in an Invar Alloy Joint Fabricated by Oscillating Laser Welding
by Yi Jiang, Xing Liu, Suming Chen, Kun Zhou, Yanqiu Zhao and Xiaohong Zhan
Materials 2025, 18(17), 4099; https://doi.org/10.3390/ma18174099 - 1 Sep 2025
Viewed by 933
Abstract
The efficient and high-quality welding for joining Invar alloy parts is imperative for the fabrication of composite material forming molds. The residual stress distributions and microstructural evolution during oscillating welding of Invar alloy remain inadequately characterized in the current literature, necessitating further comprehensive [...] Read more.
The efficient and high-quality welding for joining Invar alloy parts is imperative for the fabrication of composite material forming molds. The residual stress distributions and microstructural evolution during oscillating welding of Invar alloy remain inadequately characterized in the current literature, necessitating further comprehensive investigation. In this paper, laser oscillating welding with circle mode is carried out for 5 mm thick plates of Invar alloy. A finite element model for the laser oscillation welding process of Invar alloy has been established. The numerical simulations and experimental methodologies are synthetically carried out to investigate the influence of oscillating parameters on temperature field, residual stress field, and microstructure characteristics. Furthermore, the microstructural evolution of laser oscillating-welded Invar alloy is elucidated by correlating it with the characteristic distribution of the temperature field. Simulation results showed that the residual stress significantly decreases under the action of the oscillating laser. The increasing of the oscillation frequency and amplitude results in a more uniform distribution of the residual stress, and the stress peak shows a downward trend. It is indicated that the oscillation of the beam resulted in the formation of numerous fragmented fine crystals within the weld seam. Consequently, the tensile strength and elongation of the oscillating welded joint exhibit respective enhancements of 15.0% and 36.6% compared to the non-oscillating condition. Full article
(This article belongs to the Special Issue Advanced Laser Welding Technology of Metallic Materials)
Show Figures

Figure 1

Back to TopTop