On Combined Tensile-Shear Performance of Laser-Welded Dissimilar Overlap Joints Made of Austenitic Stainless Steel and Low-Carbon Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Welding Procedure
2.2. Testing Methods
3. Results and Discussion
3.1. Microstructural Features of the CS–SS Overlap Welded Joint
3.2. Microhardness Analysis of the CS-SS Overlap Welded Joint
3.3. Combined Tensile-Shear Performance of the CS-SS Overlap Welded Joint
3.4. Fracture Features of the CS-SS Overlap Joint
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aqeel, M.; Gautam, J.P.; Shariff, S.M. Comparative study on autogenous diode laser, CO2 laser-MIG hybrid and multi-pass TIG welding of 10-mm thick Inconel 617 superalloy. Mater. Sci. Eng. A 2022, 856, 143967. [Google Scholar] [CrossRef]
- Goyal, R.; El-zein, M. Influence of laser weld shape on mechanical and fatigue behavior of single lap laser welded joints. J. Adv. Join. Process 2020, 1, 100018. [Google Scholar] [CrossRef]
- Derakhshan, E.D.; Yazdian, N.; Craft, B.; Smith, S.; Kovacevic, R. Numerical simulation and experimental validation of residual stress and welding distortion induced by laser-based welding processes of thin structural steel plates in butt joint configuration. Opt. Laser Technol. 2018, 104, 170–182. [Google Scholar] [CrossRef]
- Iordachescu, D.; Scutelnicu, E.; Iordachescu, M.; Valiente, A.; Ruiz-Hervias, J.; Ocaña, J.L. Specific properties of ferritic/austenitic dissimilar metals welded joints. Weld. World 2011, 55, 2–11. [Google Scholar] [CrossRef]
- Rominiyi, A.L.; Mashinini, P.M. A critical review of microstructure and mechanical properties of laser welded similar and dissimilar titanium alloy joints. J. Adv. Join. Process. 2024, 9, 100191. [Google Scholar] [CrossRef]
- Hamada, A.; Khosravifard, A.; Ali, M.; Ghosh, S.; Jaskari, M.; Hietala, M.; Jarvenp, A.; Newishy, M. Micromechanical analysis and finite element modelling of laser-welded 5-mm-thick dissimilar joints between 316L stainless steel and low-alloyed ultra-high-strength steel. Mater. Sci. Eng. A 2024, 882, 145442. [Google Scholar] [CrossRef]
- Scutelnicu, E.; Iordachescu, M.; Rusu, C.C.; Mihailescu, D.; Ocaña, J.L. Metallurgical and mechanical characterization of low carbon steel-stainless steel dissimilar joints made by laser autogenous welding. Metals 2021, 11, 810. [Google Scholar] [CrossRef]
- Iordachescu, M.; Iordachescu, D.; Scutelnicu, E.; Ruiz-Hervias, J.; Valiente, A.; Caballero, L. Influence of heating source position and dilution rate in achieving overmatched dissimilar welded joints. Sci. Technol. Weld. Join. 2010, 15, 378–385. [Google Scholar] [CrossRef]
- Kenda, M.; Klobčar, D.; Nagode, A.; Bračun, D. Analysis and prevention of weld crater cracking in circumferential laser micro welding of automotive pressure sensors. Eng. Fail. Anal. 2021, 128, 105579. [Google Scholar] [CrossRef]
- Li, Z.; Rostam, K.; Panjehpour, A.; Akbari, M.; Karimipour, A.; Rostami, S. Experimental and numerical study of temperature field and molten pool dimensions in dissimilar thickness laser welding of Ti6Al4V alloy. J. Manuf. Process. 2020, 49, 438–446. [Google Scholar] [CrossRef]
- Biswas, A.R.; Banerjee, N.; Sen, A.; Maity, S.R.; Bains, P.S.; Sharma, S.; Kalyani, T.; Abbas, M. Advancements in laser beam welding for dissimilar material joining exploring weldability assessment, challenges, parametric influences on the mechanical–microstructural properties in steel-alloyed metal combination. Steel Res. Int. 2025, 96, 2400485. [Google Scholar] [CrossRef]
- Iordachescu, D.; Blasco, M.; Lopez, R.; Cuesta, A.; Iordachescu, M.; Ocaña, J.L. Recent achievements and trends in laser welding of thin plates. J. Optoelectron. Adv. Mater. 2011, 13, 981–985. [Google Scholar]
- Jayanthi, A.; Venkataramanan, K.; Kumar, K.S. An overview of the experimental techniques for characterization of laser-welded metal joints. Mater. Today Proc. 2021, 39, 572–581. [Google Scholar] [CrossRef]
- Pakmanesh, M.R.; Shamanian, M. Optimization of pulsed laser welding process parameters in order to attain minimum underfill and undercut defects in thin 316L stainless steel foils. Opt. Laser Technol. 2018, 99, 30–38. [Google Scholar] [CrossRef]
- Hietala, M.; Ali, M.; Khosravifard, A.; Keskitalo, M.; Järvenpää, A.; Hamada, A. Optimization of the tensile-shear strength of laser-welded lap joints of ultra-high strength abrasion resistance steel. J. Mater. Res. Technol. 2021, 11, 1434–1442. [Google Scholar] [CrossRef]
- Gua, X.; Zhua, K.; Wua, S.; Duanb, Z.; Zhua, L. Effect of welding parameters on weld formation quality and tensile-shear property of laser welded SUS301L stainless steel lap filet weld. J. Mater. Res. Technol. 2020, 9, 4840–4854. [Google Scholar] [CrossRef]
- Hietala, M.; Hamada, A.; Keskitalo, M.; Jaskari, M.; Järvenpää, A. Mechanical characterization of laser-welded double-lap joints in ultra-high and low strength steels for sandwich panel applications. Mater. Today Proc. 2020, 28, 455–460. [Google Scholar] [CrossRef]
- Keskitalo, M.; Hietala, M.; Mäntyjärvi, K. The normal and shear strength properties of laser lap weld. Procedia Manuf. 2019, 36, 224–231. [Google Scholar] [CrossRef]
- Horváth, G.; Körmöczi, A.; Szörényi, T.; Geretovszky, Z. Improvement of electrical and mechanical properties of laser welded lap joints via dimensional optimization. Int. J. Adv. Manuf. Technol. 2024, 130, 1843–1854. [Google Scholar] [CrossRef]
- Heydari, H.; Akbari, M. Investigating the effect of process parameters on the temperature field and mechanical properties in pulsed laser welding of Ti6Al4V alloy sheet using response surface methodology. Infrared Phys. Technol. 2020, 106, 103267. [Google Scholar] [CrossRef]
- Califano, A.; Giannella, V.; Caiazzo, F.; Berto, F.; Sepe, R. Mechanical behavior of Ti6Al4V laser welded single lap joints. Procedia Struct. Integr. 2023, 47, 842–848. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Kim, J.; Kim, Y.; Kim, D.; Kang, S.; Pyo, C.A. A Study on lap joint welding of thin plate ASTM F1684 using fiber laser welding. Processes 2021, 9, 428. [Google Scholar] [CrossRef]
- Hietala, M.; Järvenpää, A.; Keskitalo, M.; Jaskari, M.; Mantyjarvi, K. Tensile and fatigue properties of laser-welded ultra-high-strength stainless spring steel lap joints. Procedia Manuf. 2019, 36, 131–137. [Google Scholar] [CrossRef]
- Benasciutti, D.; Lanzutti, A.; Rupil, G.; Fraenkel Haeberle, E. Microstructural and mechanical characterization of laser-welded lap joints with linear and circular beads in thin low carbon steel sheets. Mater. Des. 2014, 62, 205–216. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Furusako, S. Tensile shear strength of laser welded lap joints. Nippon Steel Tech. Rep. 2007, 95, 28–34. [Google Scholar]
- Lee, J.; Asim, K.; Pan, J. Modeling of failure mode of laser welds in lap-shear specimens of HSLA steel sheets. Eng. Fract. Mech. 2011, 78, 374–396. [Google Scholar] [CrossRef]
- Ha, J.; Huh, H. Failure characterization of laser welds under combined loading conditions. Int. J. Mech. Sci. 2013, 69, 40–58. [Google Scholar] [CrossRef]
- Sinha, A.K.; Kim, D.Y.; Ceglare, D. Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel. Opt. Lasers Eng. 2013, 51, 1143–1152. [Google Scholar] [CrossRef]
- Guo, X.; Liu, W.; Li, X.; Shi, H.; Song, Z. Fatigue resistance and failure behavior of penetration and non-penetration laser welded lap joints. Chin. J. Mech. Eng. 2021, 34, 39. [Google Scholar] [CrossRef]
- VIC-2D Measure with Confidence, Correlated Solutions. Available online: https://www.correlatedsolutions.com/vic-2d (accessed on 1 October 2022).
- Valiente, A.; Guerrero, M.P.; Iordachescu, M. New testing method for assessing the cracking sensibility of stressed tendon rods in aggressive environments. Eng. Fail. Anal. 2016, 68, 244–253. [Google Scholar] [CrossRef]
- Valiente, A.; Iordachescu, M.; De Abreu, M.; Aznar, A. Damage tolerance of the prestressing steel in a bridge stay-cable after thirty years of service in a graded, extremely adverse environment. Constr. Build. Mater. 2021, 285, 122945. [Google Scholar] [CrossRef]
- ASTM E3-11; Standard Guide for Preparation of Metallographic Specimens. ASTM: West Conshohocken, PA, USA, 2017.
- ISO 6507-1:2018; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. ISO: Geneva, Switzerland, 2018.
- ASTM E407-07; Standard Practice for Microetching Metals and Alloys. ASTM: West Conshohocken, PA, USA, 2015.
- Giudice, F.; Missori, S.; Scolaro, C.; Sili, A. A review on fusion welding of dissimilar ferritic/austenitic steels: Processing and weld zone metallurgy. J. Manuf. Mater. Process. 2024, 8, 96. [Google Scholar] [CrossRef]
- Giudice, F.; Missori, S.; Sili, A. Dissimilar welding of thick ferritic/austenitic steels plates using two simultaneous laser beams in a single pass. J. Manuf. Mater. Process. 2024, 8, 134. [Google Scholar] [CrossRef]
- Inoue, H.; Koseki, T. Classification of Solidification Behaviors in Austenitic Stainless Steels Based on Welding Process. Nippon Steel Tech. Rep. 2007, 95, 62–70. [Google Scholar]
- Suutala, N.; Takalo, T.; Moisio, T. Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metall. Trans. A 1980, 11, 717–725. [Google Scholar] [CrossRef]
- Giudice, F.; Sili, A. Weld Metal Microstructure Prediction in Laser Beam Welding of Austenitic Stainless Steel. Appl. Sci. 2021, 11, 1463. [Google Scholar] [CrossRef]
- Aberkane, S.; Mehdi, B.; Badji, R.; Merabti, H.; Khereddine, A.Y. Microstructure and Mechanical Properties of Delta Ferrite Morphologies in Wire Arc Additive Manufacturing 316LSi Austenitic Stainless Steel. Metallogr. Microstruct. Anal. 2025, 14, 297–311. [Google Scholar] [CrossRef]
- Delong, W.T. Ferrite in Austenitic Stainless Steel Weld Metal. Indian Weld. J. 1975, 7, 75–83. [Google Scholar]
- Voiculescu, I.; Geanta, V.; Stefanescu, E.V.; Simion, G.; Scutelnicu, E. Effect of diffusion on dissimilar welded joint between Al0.8CoCrFeNi high-entropy alloy and S235JR structural steel. Metals 2022, 12, 548. [Google Scholar] [CrossRef]











| C | Mn | Si | Cr | Cu | Ni | S | P | N | Al | Fe | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| EN 1.0330 | 0.12 | 0.55 | 0.03 | - | 0.02 | - | 0.045 | 0.03 | 0.008 | 0.02 | bal. |
| EN 1.4307 | 0.03 | 1.98 | 1.00 | 19.45 | - | 10.48 | 0.015 | 0.045 | 0.10 | - | bal. |
| Welding Parameters | |
|---|---|
| Laser spot diameter, mm | 0.5 |
| Laser power, W | 900 |
| Welding Speed, mm/s | 20 |
| Shielding gas Ar, L/min | 15 |
| Tilting/working angle, ° | 5 |
| Steel Grade | Elastic Modulus [GPa] | Yield Strength [MPa] | Tensile Strength [MPa] | Max. Uniform Elongation [%] |
|---|---|---|---|---|
| CS: EN 1.0330 | 197 | 302 | 428 | 22 |
| SS: EN 1.4307 | 200 | 310 | 680 | 65 |
| Yield Strength, Rp0.2 [MPa] | Tensile Strength, Rm [MPa] | Elastic Modulus, E [GPa] | Max. Uniform Elongation [%] | Strength Mismatch M | |
|---|---|---|---|---|---|
| CS plate (Table 1) | 302 | 428 | 197 | 22 | - |
| CS plate from the welded joint | 302 ± 11 | 425 ± 11 | 198 | n.a. | 1 |
| SS plate (Table 1) | 310 | 680 | 202 | 65 | 1.03 |
| SS plate from the welded joint | 310 ± 8 | 675 ± 8 | 202 | n.a. | 1.03 ± 0.07 |
| CS–HAZ (transverse direction) | 329 ± 10 | >436 | n.a. | n.a. | 1.09 ± 0.09 |
| Welded joint (transverse direction) | 398 ± 8 | >436 | n.a. | n.a. | 1.32 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, P.; Iordachescu, M.; De Abreu, M.; Valiente, A.; Scutelnicu, E. On Combined Tensile-Shear Performance of Laser-Welded Dissimilar Overlap Joints Made of Austenitic Stainless Steel and Low-Carbon Steel. J. Manuf. Mater. Process. 2025, 9, 351. https://doi.org/10.3390/jmmp9110351
Santos P, Iordachescu M, De Abreu M, Valiente A, Scutelnicu E. On Combined Tensile-Shear Performance of Laser-Welded Dissimilar Overlap Joints Made of Austenitic Stainless Steel and Low-Carbon Steel. Journal of Manufacturing and Materials Processing. 2025; 9(11):351. https://doi.org/10.3390/jmmp9110351
Chicago/Turabian StyleSantos, Patricia, Mihaela Iordachescu, Maricely De Abreu, Andrés Valiente, and Elena Scutelnicu. 2025. "On Combined Tensile-Shear Performance of Laser-Welded Dissimilar Overlap Joints Made of Austenitic Stainless Steel and Low-Carbon Steel" Journal of Manufacturing and Materials Processing 9, no. 11: 351. https://doi.org/10.3390/jmmp9110351
APA StyleSantos, P., Iordachescu, M., De Abreu, M., Valiente, A., & Scutelnicu, E. (2025). On Combined Tensile-Shear Performance of Laser-Welded Dissimilar Overlap Joints Made of Austenitic Stainless Steel and Low-Carbon Steel. Journal of Manufacturing and Materials Processing, 9(11), 351. https://doi.org/10.3390/jmmp9110351

