Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = laser Doppler vibrometry (LDV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7263 KiB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 758
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 3485 KiB  
Article
Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics
by Adam T. Waz, Marcin Masalski and Krzysztof Morawski
Photonics 2024, 11(12), 1152; https://doi.org/10.3390/photonics11121152 - 6 Dec 2024
Viewed by 1417
Abstract
Laser Doppler vibrometry (LDV) is an essential tool in assessing by evaluating ossicle vibrations. It is used in fundamental research to understand hearing physiology better and develop new surgical techniques and implants. It is also helpful for the intraoperative hearing assessment and evaluation [...] Read more.
Laser Doppler vibrometry (LDV) is an essential tool in assessing by evaluating ossicle vibrations. It is used in fundamental research to understand hearing physiology better and develop new surgical techniques and implants. It is also helpful for the intraoperative hearing assessment and evaluation of postoperative treatment results. Traditional volumetric LDVs require access in a straight line to the test object, which is challenging due to the structure of the middle ear and the way the auditory ossicles are accessible. Here, we demonstrate the usage of a fiber-based laser Doppler vibrometer (FLDV) for middle ear diagnostics. Compared to classical vibrometers, the main advantages of this device are the ability to analyze several arbitrarily selected points simultaneously and the flexibility achieved by employing fiber optics to perform analysis in hard-to-reach locations, which are particularly important during endoscopic ear surgery. The device also allows for a simple change in measuring probes depending on the application. In this work, we demonstrate the properties of the designed probe and show that using it together with the FLDV enables recording vibrations of the auditory ossicles of the human ear. The obtained signals enable hearing analysis. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

14 pages, 5035 KiB  
Article
An Influence of Actuator Gluing on Elastic Wave Excited in the Structure
by Dominika Ziaja and Michał Jurek
Materials 2024, 17(9), 2160; https://doi.org/10.3390/ma17092160 - 6 May 2024
Cited by 1 | Viewed by 1411
Abstract
In this article, the practical issues connected with guided wave measurement are studied: (1) the influence of gluing of PZT plate actuators (NAC2013) on generated elastic wave propagation, (2) the repeatability of PZT transducers attachment, and (3) the assessment of the possibility of [...] Read more.
In this article, the practical issues connected with guided wave measurement are studied: (1) the influence of gluing of PZT plate actuators (NAC2013) on generated elastic wave propagation, (2) the repeatability of PZT transducers attachment, and (3) the assessment of the possibility of comparing the results of Laser Doppler Vibrometry (LDV) measurement performed on different 2D samples. The consideration of these questions is crucial in the context of the assessment of the possibility of the application of the guided wave phenomenon to structural health-monitoring systems, e.g., in civil engineering. In the examination, laboratory tests on the web of steel I-section specimens were conducted. The size and shape of the specimens were developed in such a way that they were similar to the elements typically used in civil engineering structures. It was proved that the highest amplitude of the generated wave was obtained when the exciters were glued using wax. The repeatability and durability of this connection type were the weakest. Due to this reason, it was not suitable for practical use outside the laboratory. The permanent glue application gave a stable connection between the exciter and the specimen, but the generated signal had the lowest amplitude. In the paper, the new procedure dedicated to objective analysis and comparison of the elastic waves propagating on the surface of different specimens was proposed. In this procedure, the genetic algorithms help with the determination of a new coordinate system, in which the assessment of the quality of wave propagation in different directions is possible. Full article
(This article belongs to the Special Issue Nondestructive Evaluation for Comprehensive Material Characterization)
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Durability Assessment of Bonded Piezoelectric Wafer Active Sensors for Aircraft Health Monitoring Applications
by Jesús N. Eiras, Ludovic Gavérina and Jean-Michel Roche
Sensors 2024, 24(2), 450; https://doi.org/10.3390/s24020450 - 11 Jan 2024
Cited by 10 | Viewed by 2423
Abstract
This study conducted experimental and numerical investigations on piezoelectric wafer active sensors (PWASs) bonded to an aluminum plate to assess the impact of bonding degradation on Lamb wave generation. Three surface-bonded PWASs were examined, including one intentionally bonded with a reduced adhesive to [...] Read more.
This study conducted experimental and numerical investigations on piezoelectric wafer active sensors (PWASs) bonded to an aluminum plate to assess the impact of bonding degradation on Lamb wave generation. Three surface-bonded PWASs were examined, including one intentionally bonded with a reduced adhesive to create a defective bond. Thermal cyclic aging was applied, monitoring through laser Doppler vibrometry (LDV) and static capacitance measurements. The PWAS with the initially defective bond exhibited the poorest performance over aging cycles, emphasizing the significance of the initial bond condition. As debonding progressed, modifications in electromechanical behavior were observed, leading to a reduction in wave amplitude and distortion of the generated wave field, challenging the validity of existing analytical modeling of wave-tuning curves for perfectly bonded PWASs. Both numerical simulations and experimental observations substantiated this finding. In conclusion, this study highlights the imperative of a high-integrity bond for the proper functioning of a guided wave-based structural health monitoring (SHM) system, emphasizing ongoing challenges in assessing SHM performance. Full article
Show Figures

Figure 1

27 pages, 7343 KiB  
Article
A Novel Approach to Predict the Structural Dynamics of E-Bike Drive Units by Innovative Integration of Elastic Multi-Body-Dynamics
by Kevin Steinbach, Dominik Lechler, Peter Kraemer, Iris Groß and Dirk Reith
Vehicles 2023, 5(4), 1227-1253; https://doi.org/10.3390/vehicles5040068 - 23 Sep 2023
Viewed by 3189
Abstract
This paper presents a novel approach to address noise, vibration, and harshness (NVH) issues in electrically assisted bicycles (e-bikes) caused by the drive unit. By investigating and optimising the structural dynamics during early product development, NVH can decisively be improved and valuable resources [...] Read more.
This paper presents a novel approach to address noise, vibration, and harshness (NVH) issues in electrically assisted bicycles (e-bikes) caused by the drive unit. By investigating and optimising the structural dynamics during early product development, NVH can decisively be improved and valuable resources can be saved, emphasising its significance for enhancing riding performance. The paper offers a comprehensive analysis of the e-bike drive unit’s mechanical interactions among relevant components, culminating—to the best of our knowledge—in the development of the first high-fidelity model of an entire e-bike drive unit. The proposed model uses the principles of elastic multi body dynamics (eMBD) to elucidate the structural dynamics in dynamic-transient calculations. Comparing power spectra between measured and simulated motion variables validates the chosen model assumptions. The measurements of physical samples utilise accelerometers, contactless laser Doppler vibrometry (LDV) and various test arrangements, which are replicated in simulations and provide accessibility to measure vibrations onto rotating shafts and stationary structures. In summary, this integrated system-level approach can serve as a viable starting point for comprehending and managing the NVH behaviour of e-bikes. Full article
Show Figures

Figure 1

20 pages, 16920 KiB  
Article
An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy
by Xu Tian, Jun Ao, Zizhu Ma, Chunbo Ma and Junjie Shi
Entropy 2023, 25(7), 1034; https://doi.org/10.3390/e25071034 - 9 Jul 2023
Cited by 3 | Viewed by 1641
Abstract
Within the scope of concrete internal defect detection via laser Doppler vibrometry (LDV), the acquired signals frequently suffer from low signal-to-noise ratios (SNR) due to the heterogeneity of the concrete’s material properties and its rough surface structure. Consequently, these factors make the defect [...] Read more.
Within the scope of concrete internal defect detection via laser Doppler vibrometry (LDV), the acquired signals frequently suffer from low signal-to-noise ratios (SNR) due to the heterogeneity of the concrete’s material properties and its rough surface structure. Consequently, these factors make the defect signal characteristics challenging to discern precisely. In response to this challenge, we propose an internal defect detection algorithm that incorporates local mean decomposition-singular value decomposition (LMD-SVD) and weighted spatial-spectral entropy (WSSE). Initially, the LDV vibration signal undergoes denoising via LMD and the SVD algorithms to reduce noise interference. Subsequently, the distribution of each frequency in the scan plane is analyzed utilizing the WSSE algorithm. Since the vibrational energy of the frequencies caused by the defect resonance is concentrated in the defect region, its energy distribution in the scan plane is non-uniform, resulting in a significant difference between the defect resonance frequencies’ SSE values and the other frequencies’ SSE values. This feature is used to estimate the resonant frequencies of internal defects. Ultimately, the defects are characterized based on the modal vibration patterns of the defect resonant frequencies. Tests were performed on two concrete blocks with simulated cavity defects, using an ultrasonic transducer as the excitation device to generate ultrasonic vibrations directly from the back of the blocks and applying an LDV as the acquisition device to collect vibration signals from their front sides. The results demonstrate the algorithm’s capacity to effectively pinpoint the information on the location and shape of shallow defects within the concrete, underscoring its practical significance for concrete internal defect detection in practical engineering scenarios. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

14 pages, 2950 KiB  
Article
Scalable and High-Throughput In Vitro Vibratory Platform for Vocal Fold Tissue Engineering Applications
by Andreea Biehl, Ramair Colmon, Anastasia Timofeeva, Ana Maria Gracioso Martins, Gregory R. Dion, Kara Peters and Donald O. Freytes
Bioengineering 2023, 10(5), 602; https://doi.org/10.3390/bioengineering10050602 - 17 May 2023
Cited by 4 | Viewed by 2446
Abstract
The vocal folds (VFs) are constantly exposed to mechanical stimulation leading to changes in biomechanical properties, structure, and composition. The development of long-term strategies for VF treatment depends on the characterization of related cells, biomaterials, or engineered tissues in a controlled mechanical environment. [...] Read more.
The vocal folds (VFs) are constantly exposed to mechanical stimulation leading to changes in biomechanical properties, structure, and composition. The development of long-term strategies for VF treatment depends on the characterization of related cells, biomaterials, or engineered tissues in a controlled mechanical environment. Our aim was to design, develop, and characterize a scalable and high-throughput platform that mimics the mechanical microenvironment of the VFs in vitro. The platform consists of a 24-well plate fitted with a flexible membrane atop a waveguide equipped with piezoelectric speakers which allows for cells to be exposed to various phonatory stimuli. The displacements of the flexible membrane were characterized via Laser Doppler Vibrometry (LDV). Human VF fibroblasts and mesenchymal stem cells were seeded, exposed to various vibratory regimes, and the expression of pro-fibrotic and pro-inflammatory genes was analyzed. Compared to current bioreactor designs, the platform developed in this study can incorporate commercial assay formats ranging from 6- to 96-well plates which represents a significant improvement in scalability. This platform is modular and allows for tunable frequency regimes. Full article
Show Figures

Graphical abstract

16 pages, 5264 KiB  
Article
Lead Zirconate Titanate Transducers Embedded in Composite Laminates: The Influence of the Integration Method on Ultrasound Transduction
by Nina Kergosien, Ludovic Gavérina, Guillemette Ribay, Florence Saffar, Pierre Beauchêne, Olivier Mesnil and Olivier Bareille
Materials 2023, 16(8), 3057; https://doi.org/10.3390/ma16083057 - 12 Apr 2023
Cited by 4 | Viewed by 2303
Abstract
In the context of an embedded structural health monitoring (SHM) system, two methods of transducer integration into the core of a laminate carbon fiber-reinforced polymer (CFRP) are tested: cut-out and between two plies. This study focuses on the effect of integration methods on [...] Read more.
In the context of an embedded structural health monitoring (SHM) system, two methods of transducer integration into the core of a laminate carbon fiber-reinforced polymer (CFRP) are tested: cut-out and between two plies. This study focuses on the effect of integration methods on Lamb wave generation. For this purpose, plates with an embedded lead zirconate titanate (PZT) transducer are cured in an autoclave. The embedded PZT insulation, integrity, and ability to generate Lamb waves are checked with electromechanical impedance, X-rays, and laser Doppler vibrometry (LDV) measurements. Lamb wave dispersion curves are computed by LDV using two-dimensional fast Fourier transform (Bi-FFT) to study the quasi-antisymmetric mode (qA0) excitability in generation with the embedded PZT in the frequency range of 30 to 200 kHz. The embedded PZT is able to generate Lamb waves, which validate the integration procedure. The first minimum frequency of the embedded PZT shifts to lower frequencies and its amplitude is reduced compared to a surface-mounted PZT. Full article
(This article belongs to the Special Issue Organic Matrix Composites and Multifunctional Materials)
Show Figures

Figure 1

25 pages, 13854 KiB  
Article
Operational Modal Analysis of Historical Buildings and Finite Element Model Updating Using α Laser Scanning Vibrometer
by Costas P. Providakis, Maria G. Mousteraki and Georgia C. Providaki
Infrastructures 2023, 8(2), 37; https://doi.org/10.3390/infrastructures8020037 - 18 Feb 2023
Cited by 9 | Viewed by 3427
Abstract
Without affecting the integrity or stability of the heritage monuments, vibration-based techniques provide useful solutions for acquiring global information about them. By studying the dynamic response to suitable excitation sources, it is feasible to define the mechanical characteristics of structures and identify and [...] Read more.
Without affecting the integrity or stability of the heritage monuments, vibration-based techniques provide useful solutions for acquiring global information about them. By studying the dynamic response to suitable excitation sources, it is feasible to define the mechanical characteristics of structures and identify and locate defects in their global behaviour. Laser Doppler vibrometry (LDV), which enables non-contact measurements of the vibration velocity of moving surfaces using a focused laser beam, is a highly desirable technique for qualitative dynamic characterisation and damage assessment. LDV is a simple and non-intrusive approach. It permits remote measurements and has a high degree of sensitivity and frequency adaptation. In addition, the system is entirely computer controlled, providing simple data storage, processing, and analysis. LDV has been originally researched and developed for structural and modal shape analysis of physical prototypes, in-service devices (e.g., machinery components), medical imaging applications, and damage detection and analysis relevant to small-scale non-destructive testing (NDT), and evaluation of micro to meso-targets (e.g., fracture detection and mapping in composites, modal shape and vibration analysis of objects, etc.). In spite of several successful applications in the case of bridges and thin structures, ambient vibration testing in an integrated form that includes dynamic identification, sensitivity analysis, and numerical modelling update employing modern sensor non-contact technologies is still uncommon. In this paper, the authors intend to explore further the possibility of combining ambient vibrations and OMA in combination with the non-contact LDV sensing technique in order to remotely acquire mechanical waves travelling in historical structures, track the actual behaviour of such structures, and calibrate their finite element numerical models. Full article
(This article belongs to the Special Issue Advances in Structural Dynamics and Earthquake Engineering)
Show Figures

Figure 1

12 pages, 8623 KiB  
Article
Resonant Adaptive MEMS Mirror
by Amr Kamel, Samed Kocer, Lyazzat Mukhangaliyeva, Resul Saritas, Ahmet Gulsaran, Alaa Elhady, Mohamed Basha, Parsin Hajireza, Mustafa Yavuz and Eihab Abdel-Rahman
Actuators 2022, 11(8), 224; https://doi.org/10.3390/act11080224 - 5 Aug 2022
Cited by 3 | Viewed by 4096
Abstract
A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias [...] Read more.
A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes. Full article
(This article belongs to the Special Issue Micro/Nano Electromechanical Sensors and Actuators)
Show Figures

Figure 1

25 pages, 5309 KiB  
Review
Miniaturization of Laser Doppler Vibrometers—A Review
by Yanlu Li, Emiel Dieussaert and Roel Baets
Sensors 2022, 22(13), 4735; https://doi.org/10.3390/s22134735 - 23 Jun 2022
Cited by 27 | Viewed by 12210
Abstract
Laser Doppler vibrometry (LDV) is a non-contact vibration measurement technique based on the Doppler effect of the reflected laser beam. Thanks to its feature of high resolution and flexibility, LDV has been used in many different fields today. The miniaturization of the LDV [...] Read more.
Laser Doppler vibrometry (LDV) is a non-contact vibration measurement technique based on the Doppler effect of the reflected laser beam. Thanks to its feature of high resolution and flexibility, LDV has been used in many different fields today. The miniaturization of the LDV systems is one important development direction for the current LDV systems that can enable many new applications. In this paper, we will review the state-of-the-art method on LDV miniaturization. Systems based on three miniaturization techniques will be discussed: photonic integrated circuit (PIC), self-mixing, and micro-electrochemical systems (MEMS). We will explain the basics of these techniques and summarize the reported miniaturized LDV systems. The advantages and disadvantages of these techniques will also be compared and discussed. Full article
(This article belongs to the Special Issue Laser Doppler Sensors)
Show Figures

Figure 1

13 pages, 3662 KiB  
Article
Process Control Monitor (PCM) for Simultaneous Determination of the Piezoelectric Coefficients d31 and d33 of AlN and AlScN Thin Films
by Hao Zhang, Yang Wang, Lihao Wang, Yichen Liu, Hao Chen and Zhenyu Wu
Micromachines 2022, 13(4), 581; https://doi.org/10.3390/mi13040581 - 7 Apr 2022
Cited by 25 | Viewed by 4331
Abstract
Accurate and efficient measurements of the piezoelectric properties of AlN and AlScN films are very important for the design and simulation of micro-electro-mechanical system (MEMS) sensors and actuator devices. In this study, a process control monitor (PCM) structure compatible with the device manufacturing [...] Read more.
Accurate and efficient measurements of the piezoelectric properties of AlN and AlScN films are very important for the design and simulation of micro-electro-mechanical system (MEMS) sensors and actuator devices. In this study, a process control monitor (PCM) structure compatible with the device manufacturing process is designed to achieve accurate determination of the piezoelectric coefficients of MEMS devices. Double-beam laser interferometry (DBLI) and laser Doppler vibrometry (LDV) measurements are applied and combined with finite element method (FEM) simulations, and values of the piezoelectric parameters d33 and d31 are simultaneously extracted. The accuracy of d31 is verified directly by using a cantilever structure, and the accuracy of d33 is verified by in situ synchrotron radiation X-ray diffraction; the comparisons confirm the viability of the results obtained by the novel combination of LDV, DBLI and FEM techniques in this study. Full article
Show Figures

Figure 1

15 pages, 2619 KiB  
Article
Laser Vibration Characteristics of Marble Specimens and Failure Criterion
by Qiang Xie, Jun Duan, Yuxin Ban, Xiang Fu and Shilin Liu
Appl. Sci. 2022, 12(4), 2223; https://doi.org/10.3390/app12042223 - 21 Feb 2022
Cited by 4 | Viewed by 1829
Abstract
Rock failure and instability usually lead to significant engineering disasters. This paper aims to establish an experimental failure criterion to predict rock failure via testing the laser vibration characteristics of marble specimens. Uniaxial compression tests and Brazilian tests were carried out on marble [...] Read more.
Rock failure and instability usually lead to significant engineering disasters. This paper aims to establish an experimental failure criterion to predict rock failure via testing the laser vibration characteristics of marble specimens. Uniaxial compression tests and Brazilian tests were carried out on marble specimens coupled with acoustic emission technology and laser Doppler vibrometry measurement technology. The whole laser vibration waveform of the marble specimen was divided into elastic stage, plastic stage, and failure stage. Although different frequency spectrum characteristics were identified in different waveform phases, a wide frequency spectrum was always present prior to rock failure. Furthermore, the wide frequency band frequency spectra characteristics took place 30.9 s and 21.3 s earlier than the rapid increase of the acoustic emission counts in the uniaxial compression test and Brazilian test, respectively. Taking the wide frequency spectrum as a failure criterion for the failure of loaded marble is quick, convenient, and reasonable. Using laser Doppler vibrometry measurement has the advantages of being remote, non-contacting, and earlier warning. This research can provide a reference for the further study of forecasting rock failure. Full article
Show Figures

Figure 1

16 pages, 2275 KiB  
Article
Speckle Noise Detection and Removal for Laser Speech Measurement Systems
by Yahui Wang, Wenxi Zhang, Zhou Wu, Xinxin Kong and Hongxin Zhang
Appl. Sci. 2021, 11(21), 9870; https://doi.org/10.3390/app11219870 - 22 Oct 2021
Cited by 9 | Viewed by 2994
Abstract
Laser speech measurement is a new sound capture technology based on Laser Doppler Vibrometry (LDV). It avoids the need for contact, is easily concealed and is ideal for remote speech acquisition, which has led to its wide-scale adoption for military and security applications. [...] Read more.
Laser speech measurement is a new sound capture technology based on Laser Doppler Vibrometry (LDV). It avoids the need for contact, is easily concealed and is ideal for remote speech acquisition, which has led to its wide-scale adoption for military and security applications. However, lasers are easily affected by complex detection environments. Thus, speckle noise often appears in the measured speech, seriously affecting its quality and intelligibility. This paper examines all of the characteristics of impulsive noise in laser measured speech and proposes a novel automatic impulsive noise detection and removal method. This method first foregrounds noise using decorrelation based on a linear prediction (LP) model that improves the noise-to-signal ratio (NSR) of the measured signal. This makes it possible to detect the position of noise through a combination of the average short-time energy and kurtosis. The method not only precisely locates small clicks (with a duration of just a few samples), but also finds the location of longer bursts and scratches (with a duration of up to a hundred samples). The located samples can then be replaced by more appropriate samples whose coding is based on the LP model. This strategy avoids unnecessary processing and obviates the need to compromise the quality of the relatively large fraction of samples that are unaffected by speckle noise. Experimental results show that the proposed automatic speckle noise detection and removal method outperforms other related methods across a wide range of degraded audio signals. Full article
(This article belongs to the Special Issue Advance in Digital Signal Processing and Its Implementation)
Show Figures

Figure 1

16 pages, 13214 KiB  
Article
Signal Diversity for Laser-Doppler Vibrometers with Raw-Signal Combination
by Marvin Schewe and Christian Rembe
Sensors 2021, 21(3), 998; https://doi.org/10.3390/s21030998 - 2 Feb 2021
Cited by 16 | Viewed by 4170
Abstract
The intensity of the reflected measuring beam is greatly reduced for laser-Doppler vibrometer (LDV) measurements on rough surfaces since a considerable part of the light is scattered and cannot reach the photodetector (laser speckle effect). The low intensity of the reflected laser beam [...] Read more.
The intensity of the reflected measuring beam is greatly reduced for laser-Doppler vibrometer (LDV) measurements on rough surfaces since a considerable part of the light is scattered and cannot reach the photodetector (laser speckle effect). The low intensity of the reflected laser beam leads to a so-called signal dropout, which manifests as noise peaks in the demodulated velocity signal. In such cases, no light reaches the detector at a specific time and, therefore, no signal can be detected. Consequently, the overall quality of the signal decreases significantly. In the literature, first attempts and a practical implementation to reduce this effect by signal diversity can be found. In this article, a practical implementation with four measuring heads of a Multipoint Vibrometer (MPV) and an evaluation and optimization of an algorithm from the literature is presented. The limitations of the algorithm, which combines velocity signals, are shown by evaluating our measurements. We present a modified algorithm, which generates a combined detector signal from the raw signals of the individual channels, reducing the mean noise level in our measurement by more than 10 dB. By comparing the results of our new algorithm with the algorithms of the state-of-the-art, we can show an improvement of the noise reduction with our approach. Full article
(This article belongs to the Special Issue Laser Doppler Sensors)
Show Figures

Figure 1

Back to TopTop