Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = larval growth and protein degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6963 KiB  
Article
Microbiome Dynamics in Samia cynthia ricini: Impact of Growth Stage and Dietary Variations
by Biju Bharali, Pulakeswar Basumatary and Utpal Bora
Appl. Microbiol. 2025, 5(2), 40; https://doi.org/10.3390/applmicrobiol5020040 - 24 Apr 2025
Viewed by 1373
Abstract
This study investigates the gut microbiome of Samia cynthia ricini, a domesticated silkworm species in Assam and Northeast India that is known for its Eri-silk production. Samples were collected at various growth stages and under different dietary conditions, generating 6341 features. The [...] Read more.
This study investigates the gut microbiome of Samia cynthia ricini, a domesticated silkworm species in Assam and Northeast India that is known for its Eri-silk production. Samples were collected at various growth stages and under different dietary conditions, generating 6341 features. The 5th instar larvae of the Eri-fed group exhibited the highest feature count, while moths from the same group had the lowest. The microbiome was characterized by 11 dominant taxa, mainly Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Notable differences were observed between larval and moth samples, with adult moths—particularly Eri-fed females—having a higher abundance of Bacteroidetes. Specific taxa such as Oscillospira, Sutterella, Succinivibrionaceae, and Prevotella were more abundant in adult moths. Eri-fed samples exhibited greater microbiome diversity, while Kesseru-fed samples were rich in Bifidobacterium. Interaction networks revealed unique species correlations in moths, including Clostridiales, Firmicutes, Gallibacterium, and Lachnospiraceae. Functional analysis highlighted diet-related differences, whereby Kesseru-fed samples showed more carbohydrate metabolism pathways, while larval microbiomes had distinct pathways for aromatic compound degradation and detoxification. Moth samples exhibited increased biosynthesis pathways, protein absorption, RNA transport, and immunogenic functions. This research enhances the understanding of microbiome dynamics in silkworms, offering insights for improved growth conditions and pest management strategies for this economically and ecologically significant species. Full article
Show Figures

Figure 1

14 pages, 1439 KiB  
Article
Growth Rates and Specific Aminoacyl-tRNA Synthetases Activities in Clupea harengus Larvae
by Inma Herrera, Lidia Yebra, Ángelo Santana-del-Pino and Santiago Hernández-León
Oceans 2024, 5(4), 951-964; https://doi.org/10.3390/oceans5040054 - 6 Dec 2024
Viewed by 1565
Abstract
Gaining robust in situ estimates of the growth rate of marine fish larvae is essential for understanding processes controlling year-class success and developing sustainable management strategies to maintain good environmental status. We measured the growth rate of Atlantic herring (Clupea harengus) [...] Read more.
Gaining robust in situ estimates of the growth rate of marine fish larvae is essential for understanding processes controlling year-class success and developing sustainable management strategies to maintain good environmental status. We measured the growth rate of Atlantic herring (Clupea harengus) larvae in the laboratory and compared it to the activity of aminoacyl-tRNA synthetases (AARS). Larvae were reared under controlled conditions for 20 days at three temperatures (7, 12, and 17 °C) using different prey concentrations (0.1, 0.3, and 2 prey·mL−1) of the copepod Acartia tonsa. The relationship between specific growth rates (SGR) and specific AARS activities was best described by a linear function—SGR = −0.1031 + 0.0017 · spAARS, r2 = 0.71, p < 0.05—when only larvae fed ad libitum were considered regardless of the temperature. When larvae fed with low concentrations of food were included in the analysis, the relationship was SGR = −0.0332 + 0.0010 · spAARS, r2 = 0.42, p < 0.05. This latter slope was rather low compared to other studies performed in zooplankton. We suggest protein degradation during the early life stages of fish as the cause of this low slope. We also studied SGR under food deprivation and the effect on specific AARS activities. We found rather high specific AARS activities in small individuals of early stages of fish, also suggesting protein degradation. Further research about protein degradation and turnover rates is needed in order to use AARS activity as a proxy for growth rates in field-caught larvae. Full article
Show Figures

Figure 1

12 pages, 5180 KiB  
Article
Identification and Functions of JHE 6 Specifically Expressed in Bombyx mori Silk Gland
by Xia Zhang, Jikailang Zhang, Keli Wu, Hongguo Yang, Tingcai Cheng and Chun Liu
Insects 2023, 14(12), 908; https://doi.org/10.3390/insects14120908 - 27 Nov 2023
Cited by 1 | Viewed by 2016
Abstract
Juvenile hormone esterase (JHE) is the specific enzyme that degrades juvenile hormone (JH) and regulates the JH titer in insects. JH also regulates the development of the silk gland and the synthesis and secretion of silk proteins in Bombyx mori. Here, we [...] Read more.
Juvenile hormone esterase (JHE) is the specific enzyme that degrades juvenile hormone (JH) and regulates the JH titer in insects. JH also regulates the development of the silk gland and the synthesis and secretion of silk proteins in Bombyx mori. Here, we identified nine possible JHE family members, Bmjhe1–9. Notably, Bmjhe6 is specifically expressed in the silk gland. Using semi-quantitative, quantitative real-time RT-PCR and Western blot, it was confirmed that Bmjhe6 was specifically expressed in the middle silk gland (MSG) with high levels in the anterior region of the MSG (A-MSG). The immunofluorescence localization analysis revealed that Bmjhe6 is produced within cells, secreted into the gland lumen, and co-transported with silk proteins into the anterior silk gland (ASG). In vitro hormone induction experiments demonstrated that Bmjhe6 responds to a JH analog, increasing its expression after 12–24 h, whereas 20-hydroxyecdysone inhibited it. In addition, Bmjhe6 knockdown using dsBmjhe6 injections accelerated larval development, resulting in increased larval body and silk gland weight. This induced disordered sericin genes (Ser2, Ser3) expression, and key genes in the JH synthesis pathway (BmKr-h1 and BmMet1) were significantly upregulated along with the transcription factors (SGF-1 and Sage). These results indicate that Bmjhe6 plays an important role in silk gland growth and silk protein synthesis by modulating JH signal. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

14 pages, 3097 KiB  
Article
Mutual Influence between Polyvinyl Chloride (Micro)Plastics and Black Soldier Fly Larvae (Hermetia illucens L.)
by Siebe Lievens, Giulia Poma, Lotte Frooninckx, Tom Van der Donck, Jin Won Seo, Jeroen De Smet, Adrian Covaci and Mik Van Der Borght
Sustainability 2022, 14(19), 12109; https://doi.org/10.3390/su141912109 - 25 Sep 2022
Cited by 12 | Viewed by 3930
Abstract
Due to the expansion in the global population, there is an increase in animal protein demand and waste generation. Currently, food waste derived from supermarkets, etc., which is used to produce biogas, is collected separately and can contain (micro)plastics deriving from food packaging, [...] Read more.
Due to the expansion in the global population, there is an increase in animal protein demand and waste generation. Currently, food waste derived from supermarkets, etc., which is used to produce biogas, is collected separately and can contain (micro)plastics deriving from food packaging, imposing potential risks to the environment. A possible solution to address protein, waste and plastic concerns can potentially be achieved by rearing black soldier fly (BSF) larvae on such substrates. In this study, we investigated the effect of polyvinyl chloride (PVC) (micro)plastics on the growth, survival, and bioconversion of BSF larvae. On the other hand, the impact of the larvae on the polymer structure and degradation was also assessed. This was carried out by rearing BSF larvae on artificial food waste spiked with micro-, meso-, and macroplastics, while measuring larval growth, survival, and bioconversion parameters. The remaining plastics were collected and analysed upon changes and degradation of their polymer structure. Generally, BSF larvae were not affected in terms of growth performance (179.9–210.4 mg), survival (77.1–87.3%), and bioconversion (FCR: 4.65–5.53) by the presence of (micro)plastics in the substrates. Furthermore, the larvae were also unable to significantly alter the polymer structure of the used plastic. Full article
(This article belongs to the Collection Sustainable Insect Farming: Feed the Future)
Show Figures

Figure 1

23 pages, 3183 KiB  
Article
Diet Fermentation Leads to Microbial Adaptation in Black Soldier Fly (Hermetia illucens; Linnaeus, 1758) Larvae Reared on Palm Oil Side Streams
by Patrick Klüber, Dorothee Tegtmeier, Sabine Hurka, Janin Pfeiffer, Andreas Vilcinskas, Martin Rühl and Holger Zorn
Sustainability 2022, 14(9), 5626; https://doi.org/10.3390/su14095626 - 6 May 2022
Cited by 24 | Viewed by 5624
Abstract
Insects offer a promising alternative source of protein to mitigate the environmental consequences of conventional livestock farming. Larvae of the black soldier fly (Hermetia illucens; Linnaeus, 1758) efficiently convert a variety of organic side streams and residues into valuable proteins, lipids, [...] Read more.
Insects offer a promising alternative source of protein to mitigate the environmental consequences of conventional livestock farming. Larvae of the black soldier fly (Hermetia illucens; Linnaeus, 1758) efficiently convert a variety of organic side streams and residues into valuable proteins, lipids, and chitin. Here, we evaluated the suitability of two palm oil industry side streams—empty fruit bunches (EFB) and palm kernel meal (PKM)—as larval feed, and their impact on the larval gut microbiome. Among 69 fungal species we screened, Marasmius palmivorus, Irpex consors, and Bjerkandera adusta achieved the fastest growth and lignin degradation, so these fungi were used for the pretreatment of 7:3 mixtures of EFB and PKM. Larvae reared on the mixture pretreated with B. adusta (BAD) developed significantly more quickly and reached a higher final weight than those reared on the other pretreatments or the non-fermented reference (NFR). Amplicon sequencing of the BAD and NFR groups revealed major differences in the larval gut microbiome. The NFR group was dominated by facultatively anaerobic Enterobacteriaceae (typical of H. illucens larvae) whereas the BAD group favored obligately anaerobic, cellulolytic bacteria (Ruminococcaceae and Lachnospiraceae). We hypothesize that fungal lignin degradation led to an accumulation of mycelia and subsequent cellulolytic breakdown of fiber residues, thus improving substrate digestibility. Full article
(This article belongs to the Collection Sustainable Insect Farming: Feed the Future)
Show Figures

Figure 1

12 pages, 1629 KiB  
Article
Fungal Fermented Palm Kernel Expeller as Feed for Black Soldier Fly Larvae in Producing Protein and Biodiesel
by Chin Seng Liew, Chung Yiin Wong, Eman A. Abdelfattah, Ratchaprapa Raksasat, Hemamalini Rawindran, Jun Wei Lim, Worapon Kiatkittipong, Kunlanan Kiatkittipong, Mardawani Mohamad, Peter Nai Yuh Yek, Herma Dina Setiabudi, Chin Kui Cheng and Su Shiung Lam
J. Fungi 2022, 8(4), 332; https://doi.org/10.3390/jof8040332 - 23 Mar 2022
Cited by 21 | Viewed by 5249
Abstract
Being the second-largest country in the production of palm oil, Malaysia has a massive amount of palm kernel expeller (PKE) leftover. For that purpose, black soldier fly larvae (BSFL) are thus employed in this study to valorize the PKE waste. More specifically, this [...] Read more.
Being the second-largest country in the production of palm oil, Malaysia has a massive amount of palm kernel expeller (PKE) leftover. For that purpose, black soldier fly larvae (BSFL) are thus employed in this study to valorize the PKE waste. More specifically, this work elucidated the effects of the pre-fermentation of PKE via different amounts of Rhizopus oligosporus to enhance PKE palatability for the feeding of BSFL. The results showed that fermentation successfully enriched the raw PKE and thus contributed to the better growth of BSFL. BSFL grew to be 34% heavier at the optimum inoculum volume of 0.5 mL/10 g dry weight of PKE as compared to the control. Meanwhile, excessive fungal inoculum induced competition between BSFL and R. oligosporus, resulting in a reduction in BSFL weight. Under optimum feeding conditions, BSFL also registered the highest lipid yield (24.7%) and protein yield (44.5%). The biodiesel derived from BSFL lipid had also shown good compliance with the European biodiesel standard EN 14214. The high saturated fatty acid methyl esters (FAMEs) content (C12:0, C14:0, C16:0) in derived biodiesel made it highly oxidatively stable. Lastly, the superior degradation rate of PKE executed by BSFL further underpinned the sustainable conversion process in attaining valuable larval bioproducts. Full article
(This article belongs to the Special Issue New Opportunities in Fungal Biotechnology)
Show Figures

Figure 1

10 pages, 1132 KiB  
Article
RETRACTED: In-Situ Yeast Fermentation Medium in Fortifying Protein and Lipid Accumulations in the Harvested Larval Biomass of Black Soldier Fly
by Chung Yiin Wong, Yeek Chia Ho, Jun Wei Lim, Pau Loke Show, Siewhui Chong, Yi Jing Chan, Chii Dong Ho, Mardawani Mohamad, Ta Yeong Wu, Man Kee Lam and Guan Ting Pan
Processes 2020, 8(3), 337; https://doi.org/10.3390/pr8030337 - 14 Mar 2020
Cited by 16 | Viewed by 5489 | Retraction
Abstract
Recently, worldwide researchers have been focusing on exploiting of black soldier fly larval (BSFL) biomass to serve as the feed mediums for farmed animals, including aquaculture farming, in order to assuage the rising demands for protein sources. In this study, yeast was introduced [...] Read more.
Recently, worldwide researchers have been focusing on exploiting of black soldier fly larval (BSFL) biomass to serve as the feed mediums for farmed animals, including aquaculture farming, in order to assuage the rising demands for protein sources. In this study, yeast was introduced into coconut endosperm waste (CEW) whilst serving as the feeding medium to rear BSFL in simultaneously performed in situ fermentation. It was found that at a 2.5 wt% yeast concentration, the total biomass gained, growth rate and rearing time were improved to 1.145 g, 0.085 g/day and 13.5 days, respectively. In terms of solid waste reduction, the inoculation of yeast over 0.5 wt% in CEW was able to achieve more than 50% overall degradation, with the waste reduction indexes (WRIs) ranging from 0.038 to 0.040 g/day. Disregarding the concentration of yeast introduced, the protein productivity from 20 BSFL was enhanced from only 0.018 g/day (the control) to 0.025 g/day with the presence of yeast at arbitrary concentrations. On the other hand, the larval protein yield was fortified from the control (28%) to a highest value of 35% with the presence of a mere 0.02 wt% yeast concentration. To summarize, the inclusion of a minimal amount of yeast into CEW for in situ fermentation ultimately enhanced the growth of BSFL, as well as its protein yield and productivity. Full article
(This article belongs to the Special Issue Green Technologies: Bridging Conventional Practices and Industry 4.0)
Show Figures

Figure 1

24 pages, 3342 KiB  
Article
A First Attempt to Produce Proteins from Insects by Means of a Circular Economy
by Silvia Cappellozza, Maria Giovanna Leonardi, Sara Savoldelli, Domenico Carminati, Anna Rizzolo, Giovanna Cortellino, Genciana Terova, Enzo Moretto, Andrea Badaile, Giuseppe Concheri, Alessio Saviane, Daniele Bruno, Marco Bonelli, Silvia Caccia, Morena Casartelli and Gianluca Tettamanti
Animals 2019, 9(5), 278; https://doi.org/10.3390/ani9050278 - 24 May 2019
Cited by 101 | Viewed by 9244
Abstract
The worldwide growing consumption of proteins to feed humans and animals has drawn a considerable amount of attention to insect rearing. Insects reared on organic wastes and used as feed for monogastric animals can reduce the environmental impact and increase the sustainability of [...] Read more.
The worldwide growing consumption of proteins to feed humans and animals has drawn a considerable amount of attention to insect rearing. Insects reared on organic wastes and used as feed for monogastric animals can reduce the environmental impact and increase the sustainability of meat/fish production. In this study, we designed an environmentally closed loop for food supply in which fruit and vegetable waste from markets became rearing substrate for Hermetia illucens (BSF— black soldier fly). A vegetable and fruit-based substrate was compared to a standard diet for Diptera in terms of larval growth, waste reduction index, and overall substrate degradation. Morphological analysis of insect organs was carried out to obtain indications about insect health. Processing steps such as drying and oil extraction from BSF were investigated. Nutritional and microbiological analyses confirmed the good quality of insects and meal. The meal was then used to produce fish feed and its suitability to this purpose was assessed using trout. Earthworms were grown on leftovers of BSF rearing in comparison to a standard substrate. Chemical analyses of vermicompost were performed. The present research demonstrates that insects can be used to reduce organic waste, increasing at the same time the sustainability of aquaculture and creating interesting by-products through the linked bio-system establishment. Full article
(This article belongs to the Special Issue Insects: Alternative Protein Source for Animal Feed)
Show Figures

Figure 1

Back to TopTop