Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = large-area Perovskite photovoltaic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10621 KiB  
Review
Strategies and Methods for Upscaling Perovskite Solar Cell Fabrication from Lab-Scale to Commercial-Area Fabrication
by Mengna Sun, Zhiqiang Jiao, Peng Wang, Xiaohu Li and Guangcai Yuan
Molecules 2025, 30(10), 2221; https://doi.org/10.3390/molecules30102221 - 20 May 2025
Viewed by 743
Abstract
Perovskite, as a promising candidate for the next generation of photovoltaic materials, has attracted extensive attention. To date, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has reached 26.7%, which is competitive with that of commercial silicon cells. However, high PCE [...] Read more.
Perovskite, as a promising candidate for the next generation of photovoltaic materials, has attracted extensive attention. To date, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has reached 26.7%, which is competitive with that of commercial silicon cells. However, high PCE is usually achieved in devices with a small surface area fabricated by the spin-coating method. Perovskite thin films, as the most important layer, suffer from poor uniformity and crystallization caused by the large-area fabrication process, which leads to a dramatic drop in efficiency and exhibits poor reproducibility. Here, we summarize common architectures of PSC and perovskite solar modules (PSMs), as well as analyzing the reasons for efficiency loss on the modules. Subsequently, the review describes the mechanism of perovskite growth in detail, and then sums up recent research on small-to-large-area perovskite devices. Large-area fabrication methods mainly include blade coating, slot-die coating, spray-coating, inkjet printing, and screen printing. Moreover, we compare the advantages and disadvantages of each method and their corresponding mechanisms and research progress. The review aims to provide potential logical conclusions and directions for the commercial large-area perovskite fabrication process. Full article
Show Figures

Figure 1

25 pages, 5650 KiB  
Article
Efficiency and Sustainability in Solar Photovoltaic Systems: A Review of Key Factors and Innovative Technologies
by Luis Angel Iturralde Carrera, Margarita G. Garcia-Barajas, Carlos D. Constantino-Robles, José M. Álvarez-Alvarado, Yoisdel Castillo-Alvarez and Juvenal Rodríguez-Reséndiz
Eng 2025, 6(3), 50; https://doi.org/10.3390/eng6030050 - 6 Mar 2025
Cited by 4 | Viewed by 3691
Abstract
PSS (Photovoltaic Solar Systems) are a key technology in energy transition, and their efficiency depends on multiple interrelated factors. This study uses a systematic review based on the PRISMA methodology to identify four main categories affecting performance: technological, environmental, design and installation, and [...] Read more.
PSS (Photovoltaic Solar Systems) are a key technology in energy transition, and their efficiency depends on multiple interrelated factors. This study uses a systematic review based on the PRISMA methodology to identify four main categories affecting performance: technological, environmental, design and installation, and operational factors. Notably, technological advances in materials such as perovskites and emerging technologies like tandem and bifacial cells significantly enhance conversion efficiency, fostering optimism in the field. Environmental factors, including solar radiation, temperature, and contaminants, also substantially impact system performance. Design and installation play a crucial role, particularly in panel orientation, solar tracking systems, and the optimization of electrical configurations. Maintenance, material degradation, and advanced monitoring systems are essential for sustaining efficiency over time. This study provides a comprehensive understanding of the field by reviewing 113 articles and analyzing three key areas—materials, application of sizing technologies, and optimization—from 2018 to 2025. The paper also explores emerging trends, such as the development of energy storage systems and the integration of smart grids, which hold promise for enhancing photovoltaic module (PM) performance. The findings highlight the importance of integrating technological innovation, design strategies, and effective operational management to maximize the potential of PM systems, providing a solid foundation for future research and applications across residential, industrial, and large-scale contexts. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

8 pages, 1717 KiB  
Article
Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation
by Heng Li, Yongtao Huang, Muyan Zhu, Pingyuan Yan and Chuanxiang Sheng
Nanomaterials 2025, 15(4), 286; https://doi.org/10.3390/nano15040286 - 13 Feb 2025
Cited by 2 | Viewed by 970
Abstract
The perovskite solar cell (PSC) is undergoing intense study to meet sustainable energy and environmental demands. However, large-sized solar cells will degrade the power conversion efficiency, thus concentrating light on small-size devices would be a solution. Here, we report the performance of a [...] Read more.
The perovskite solar cell (PSC) is undergoing intense study to meet sustainable energy and environmental demands. However, large-sized solar cells will degrade the power conversion efficiency, thus concentrating light on small-size devices would be a solution. Here, we report the performance of a p–i–n structured device using CH3NH3PbI3 (MAPbI3) as the active layer with an area of 6 mm2. We prove that the power output would be up to 4.2 mW under 10 Suns compared to the 0.9 mW obtained under 1 Sun; however, this results in an actual efficiency drop of the PSC. Further, using a SCAPS device simulation, we found that the intrinsic properties, such as mobility and defect density, of MAPbI3 has no profound influence on the relationship between light intensity and power conversion efficiency (PCE), but the series resistance is the dominant limiting factor on the performance of the PSC under high illumination intensities. Our work suggests the potential of perovskite in concentrating photovoltaics and makes recommendations for future development. Full article
Show Figures

Figure 1

29 pages, 10223 KiB  
Review
Advancements in Manufacturing of High-Performance Perovskite Solar Cells and Modules Using Printing Technologies
by Shohreh Soltani and Dawen Li
Energies 2024, 17(24), 6344; https://doi.org/10.3390/en17246344 - 17 Dec 2024
Viewed by 1487
Abstract
Perovskite photovoltaic technology carries immense opportunity for the solar industries because of its remarkable efficiency and prospect for cost-effective production. However, the successful deployment of perovskite solar modules (PSMs) in the solar market necessitates tackling stability-based obstacles, scalability, and environmental considerations. This paper [...] Read more.
Perovskite photovoltaic technology carries immense opportunity for the solar industries because of its remarkable efficiency and prospect for cost-effective production. However, the successful deployment of perovskite solar modules (PSMs) in the solar market necessitates tackling stability-based obstacles, scalability, and environmental considerations. This paper unveils a comprehensive examination of the cutting-edge advancements in the manufacturing of perovskite solar cells (PSCs) and modules, with an emphasis on high-speed, large-area printing. The paper underscores the substantial progress achieved in printed PSCs and PSMs, demonstrating promising electrical performance and long-term device durability. This review paper categorizes printing techniques compatible with large-area high-speed manufacturing into three distinct families: blade coating, slot die coating, and screen printing, as these common printing practices offer precise control, scalability, cost-effectiveness, high resolution, and efficient material usage. Additionally, this paper presents an in-depth investigation and comparison of superior PSCs and PSMs fabricated by printing on power conversion efficiency (PCE), stability, and scalability. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

17 pages, 4026 KiB  
Review
Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating
by Yitong Wang, Zetong Cheng, Junguo Li, Kuanxin Lv, Zhenzhen Li and Hang Zhao
Molecules 2024, 29(20), 4976; https://doi.org/10.3390/molecules29204976 - 21 Oct 2024
Viewed by 3191
Abstract
Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area [...] Read more.
Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area of high-efficiency PSCs is typically limited to about 0.1 cm2 in laboratory settings, with efficiency decreasing as the area increases. The limitation poses a major obstacle to commercialization, as large-area, high-quality perovskite films are crucial for commercial applications. This paper reviews current techniques for producing large-area perovskites, focusing on slot-die coating, a method that has attracted attention for its revolutionary potential in PSC manufacturing. Slot-die coating allows for precise control over film thickness and is compatible with roll-to-roll systems, making it suitable for large-scale applications. The paper systematically outlines the characteristics of slot-die coating, along with its advantages and disadvantages in commercial applications, suggests corresponding optimization strategies, and discusses future development directions to enhance the scalability and efficiency of PSCs, paving the way for broader commercial deployment. Full article
(This article belongs to the Special Issue Chemical Properties of Photoelectric Materials)
Show Figures

Figure 1

12 pages, 3152 KiB  
Article
Controllable Crystallization of Perovskite Films during the Blade-Coating Fabrication Process for Efficient and Stable Solar Cells
by Zhaoyi Jiang, Jiaqi Li, Kun Li, Rui Zhang, Zhenxing Qin, Yufei Zhang, Boheng Wu, Qiang Ma, Yulong Zhang and Weijia Zhang
Coatings 2024, 14(9), 1113; https://doi.org/10.3390/coatings14091113 - 2 Sep 2024
Viewed by 2591
Abstract
The scalable production of high-quality perovskite thin films is pivotal for the industrialization of perovskite thin film solar cells. Consequently, the solvent system employed for the fabrication of large-area perovskite films via coating processes has attracted significant attention. In this study, a solvent [...] Read more.
The scalable production of high-quality perovskite thin films is pivotal for the industrialization of perovskite thin film solar cells. Consequently, the solvent system employed for the fabrication of large-area perovskite films via coating processes has attracted significant attention. In this study, a solvent system utilizing a volatile solvent as the primary reagent has been developed to facilitate the rapid nucleation of volatile compounds. While adding the liquid Lewis base dimethylformamide (DMF) can help to improve the microstructure of perovskite films, its slow volatilization renders the crystal growth process uncontrollable. Based on the solvent system containing DMF and ethanol (EtOH), introducing a small amount of NH4Cl increases the proportion of the intermediate phase in the precursor films. This not only results in a controllable growth process for the perovskite crystals but also contributes to the improvement of the film microstructure. Under the simulated illumination (AM1.5, 1000 W/m2), the photoelectric conversion efficiency (PCE) of the inverted solar cells has been improved to 20.12%. Furthermore, after 500 hours of continuous illumination, the photovoltaic device can retain 95.6 % of the initial, indicating that the solvent system is suitable for the scalable fabrication of high-quality FAPbI3 thin films. Full article
Show Figures

Figure 1

43 pages, 17688 KiB  
Review
Recent Advancements on Slot-Die Coating of Perovskite Solar Cells: The Lab-to-Fab Optimisation Process
by Vera C. M. Duarte and Luísa Andrade
Energies 2024, 17(16), 3896; https://doi.org/10.3390/en17163896 - 7 Aug 2024
Cited by 8 | Viewed by 4964
Abstract
Perovskite solar cells (PSCs) are the most rapidly advancing photovoltaic technology in terms of power conversion efficiency. An efficiency of 26.1% was achieved in a decade, which is on par with the efficiency of very mature silicon panels. However, PSC commercialisation is partly [...] Read more.
Perovskite solar cells (PSCs) are the most rapidly advancing photovoltaic technology in terms of power conversion efficiency. An efficiency of 26.1% was achieved in a decade, which is on par with the efficiency of very mature silicon panels. However, PSC commercialisation is partly hindered by the difficulty of scaling these devices without efficiency loss, mostly due to the increasing sheet resistance of the transparent conductive layer substrates and the nonuniformity of the layers when deposited across large areas. Therefore, it is crucial for the commercialisation of PSCs to implement easily scalable deposition processes with low material waste and compatibility with roll-to-roll (R2R) processes to reduce manufacturing costs. Slot-die coating can meet all these requirements, allowing for great uniformity over large areas. The most recent developments in PSC upscaling using slot-die coating as the main deposition process, along with its extension to the R2R process, are reviewed, including a thorough discussion of the slot-die coating process and the theory behind its operating limits. In fact, R2R coating is a very promising strategy for PSC industrialisation, since all processing steps use low-cost materials and scalable processes at temperatures lower than 120 °C, allowing the cost-effective and high-throughput production of PSC devices. Full article
(This article belongs to the Special Issue Advanced Technologies of Solar Cells)
Show Figures

Figure 1

19 pages, 2936 KiB  
Review
Self-Assembled Monolayer-Based Hole-Transporting Materials for Perovskite Solar Cells
by Doyeong Yeo, Juyeon Shin, Dabit Kim, Jae Yun Jaung and In Hwan Jung
Nanomaterials 2024, 14(2), 175; https://doi.org/10.3390/nano14020175 - 12 Jan 2024
Cited by 18 | Viewed by 8294
Abstract
Ever since self-assembled monolayers (SAMs) were adopted as hole-transporting layers (HTL) for perovskite solar cells (PSCs), numerous SAMs for HTL have been synthesized and reported. SAMs offer several unique advantages including relatively simple synthesis, straightforward molecular engineering, effective surface modification using small amounts [...] Read more.
Ever since self-assembled monolayers (SAMs) were adopted as hole-transporting layers (HTL) for perovskite solar cells (PSCs), numerous SAMs for HTL have been synthesized and reported. SAMs offer several unique advantages including relatively simple synthesis, straightforward molecular engineering, effective surface modification using small amounts of molecules, and suitability for large-area device fabrication. In this review, we discuss recent developments of SAM-based hole-transporting materials (HTMs) for PSCs. Notably, in this article, SAM-based HTMs have been categorized by similarity of synthesis to provide general information for building a SAM structure. SAMs are composed of head, linker, and anchoring groups, and the selection of anchoring groups is key to design the synthetic procedure of SAM-based HTMs. In addition, the working mechanism of SAM-based HTMs has been visualized and explained to provide inspiration for finding new head and anchoring groups that have not yet been explored. Furthermore, both photovoltaic properties and device stabilities have been discussed and summarized, expanding reader’s understanding of the relationship between the structure and performance of SAMs-based PSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

11 pages, 2385 KiB  
Article
Investigation of Post-Treatment Improving Perovskite Solar Cells Initial Performances and Study of Its Impact on the Durability
by Lara Perrin, Lionel Flandin, Cynthia Farha, Stéphanie Narbey, David Martineau and Emilie Planès
Energies 2023, 16(14), 5254; https://doi.org/10.3390/en16145254 - 8 Jul 2023
Cited by 7 | Viewed by 1799
Abstract
Among alternative perovskite device architectures, mesoporous scaffolds based on metal oxide and carbon look highly promising due to their inherent high stability. In this study, the perovskite deposition has been realized on a 1.5 cm2 active surface area using inkjet infiltration through [...] Read more.
Among alternative perovskite device architectures, mesoporous scaffolds based on metal oxide and carbon look highly promising due to their inherent high stability. In this study, the perovskite deposition has been realized on a 1.5 cm2 active surface area using inkjet infiltration through the mesoporous scaffold, affording a clean industrial process for large-scale and stable perovskite devices. A spectacular enhancement of photovoltaic performances from 10% to 14% was then obtained through the implementation of a maturation step. A study of the occurring mechanisms was conducted using a full set of characterization techniques including J-V measurements, UV–visible and PL spectroscopies, LBIC and PL imaging, XRD, and surface roughness measurements. In addition, the impact of this maturation step on the durability of the performances was investigated. Full article
(This article belongs to the Special Issue Advances on Solar Energy Materials and Solar Cells)
Show Figures

Figure 1

43 pages, 5142 KiB  
Review
Recent Progress in Perovskite Tandem Solar Cells
by Steponas Ašmontas and Muhammad Mujahid
Nanomaterials 2023, 13(12), 1886; https://doi.org/10.3390/nano13121886 - 19 Jun 2023
Cited by 44 | Viewed by 13252
Abstract
Tandem solar cells are widely considered the industry’s next step in photovoltaics because of their excellent power conversion efficiency. Since halide perovskite absorber material was developed, it has been feasible to develop tandem solar cells that are more efficient. The European Solar Test [...] Read more.
Tandem solar cells are widely considered the industry’s next step in photovoltaics because of their excellent power conversion efficiency. Since halide perovskite absorber material was developed, it has been feasible to develop tandem solar cells that are more efficient. The European Solar Test Installation has verified a 32.5% efficiency for perovskite/silicon tandem solar cells. There has been an increase in the perovskite/Si tandem devices’ power conversion efficiency, but it is still not as high as it might be. Their instability and difficulties in large-area realization are significant challenges in commercialization. In the first part of this overview, we set the stage by discussing the background of tandem solar cells and their development over time. Subsequently, a concise summary of recent advancements in perovskite tandem solar cells utilizing various device topologies is presented. In addition, we explore the many possible configurations of tandem module technology: the present work addresses the characteristics and efficacy of 2T monolithic and mechanically stacked four-terminal devices. Next, we explore ways to boost perovskite tandem solar cells’ power conversion efficiencies. Recent advancements in the efficiency of tandem cells are described, along with the limitations that are still restricting their efficiency. Stability is also a significant hurdle in commercializing such devices, so we proposed eliminating ion migration as a cornerstone strategy for solving intrinsic instability problems. Full article
(This article belongs to the Special Issue Nanomaterials and Thin Films for Perovskite Solar Cells)
Show Figures

Figure 1

15 pages, 5068 KiB  
Article
Slot-Die Coated Copper Indium Disulfide as Hole-Transport Material for Perovskite Solar Cells
by Sajjad Mahmoodpour, Mahsa Heydari, Leyla Shooshtari, Rouhallah Khosroshahi, Raheleh Mohammadpour and Nima Taghavinia
Sustainability 2023, 15(8), 6562; https://doi.org/10.3390/su15086562 - 12 Apr 2023
Cited by 3 | Viewed by 2720
Abstract
Perovskite photovoltaics have the potential to significantly lower the cost of producing solar energy. However, this depends on the ability of the perovskite thin film and other layers in the solar cell to be deposited using large-scale techniques such as slot-die coating without [...] Read more.
Perovskite photovoltaics have the potential to significantly lower the cost of producing solar energy. However, this depends on the ability of the perovskite thin film and other layers in the solar cell to be deposited using large-scale techniques such as slot-die coating without sacrificing efficiency. In perovskite solar cells (PSCs), Spiro-OMeTAD, a small molecule-based organic semiconductor, is commonly used as the benchmark hole transport material (HTL). Despite its effective performance, the multi-step synthesis of Spiro-OMeTAD is complex and expensive, making large-scale printing difficult. Copper indium disulfide (CIS) was chosen in this study as an alternative inorganic HTL for perovskite solar cells due to its ease of fabrication, cost-effectiveness, and improvements to the economic feasibility of cell production. In this study, all layers of perovskite solar cell were printed and compared to a spin-coating-based device. Various parameters affecting the layer quality and thickness were then analyzed, including substrate temperature, print head temperature, printing speed, meniscus height, shim thickness, and ink injection flow rate. The small print area achieved spin-coating quality, which bodes well for large-scale printing. The printed cell efficiencies were comparable to the reference cell, having a 9.9% and 11.36% efficiency, respectively. Full article
(This article belongs to the Special Issue Toward Cost-Effective and Efficient Alternatives to Si Photovoltaics)
Show Figures

Figure 1

12 pages, 10868 KiB  
Article
Slot-Die-Coated Active Layer for Printed Flexible Back-Contact Perovskite Solar Cells
by Hryhorii P. Parkhomenko, Mayuribala Mangrulkar and Askhat N. Jumabekov
Coatings 2023, 13(3), 550; https://doi.org/10.3390/coatings13030550 - 3 Mar 2023
Cited by 6 | Viewed by 3987
Abstract
Perovskites have already shown potential as active layers in photovoltaic applications. Furthermore, a low-cost and simple solution processing technology allows perovskites to be used in flexible and printed electronics. Perovskite solar cells (PSC) with a back-contact (BC) structure, in which the electrode system [...] Read more.
Perovskites have already shown potential as active layers in photovoltaic applications. Furthermore, a low-cost and simple solution processing technology allows perovskites to be used in flexible and printed electronics. Perovskite solar cells (PSC) with a back-contact (BC) structure, in which the electrode system is based on a quasi-interdigitated back-contact (QIBC) design, promise to increase the power conversion efficiency (PCE) of devices beyond those that can be obtained using PSCs with a traditional sandwich structure. While the spin-coating technique is used to deposit the perovskite layer of lab-scale BC PSCs, the application of large-area printing techniques to deposit the perovskite layer of such devices is yet to be explored. Therefore, this work demonstrates an application of the slot-die coating technique to print the perovskite active layer of BC PSCs with QIBC electrodes on flexible polymer substrates. The morphology of the obtained perovskite films on QIBC electrodes are investigated and the primary photoelectric parameters of the resulting BC PSCs are measured. The charge carrier recombination processes in the fabricated BC PSCs are investigated and the dominant mechanism for carrier loss in the devices is determined. The findings of the work give an insight into the properties of the slot-die-coated perovskite active layer of BC PSCs and points to exciting new research opportunities in this direction. Full article
Show Figures

Figure 1

14 pages, 1996 KiB  
Review
Upscaling of Carbon-Based Perovskite Solar Module
by Maurizio Stefanelli, Luigi Vesce and Aldo Di Carlo
Nanomaterials 2023, 13(2), 313; https://doi.org/10.3390/nano13020313 - 12 Jan 2023
Cited by 24 | Viewed by 6688
Abstract
Perovskite solar cells (PSCs) and modules are driving the energy revolution in the coming photovoltaic field. In the last 10 years, PSCs reached efficiency close to the silicon photovoltaic technology by adopting low-cost solution processes. Despite this, the noble metal (such as gold [...] Read more.
Perovskite solar cells (PSCs) and modules are driving the energy revolution in the coming photovoltaic field. In the last 10 years, PSCs reached efficiency close to the silicon photovoltaic technology by adopting low-cost solution processes. Despite this, the noble metal (such as gold and silver) used in PSCs as a counter electrode made these devices costly in terms of energy, CO2 footprint, and materials. Carbon-based perovskite solar cells (C-PSCs) and modules use graphite/carbon-black-based material as the counter electrode. The formulation of low-cost carbon-based inks and pastes makes them suitable for large area coating techniques and hence a solid technology for imminent industrialization. Here, we want to present the upscaling routes of carbon-counter-electrode-based module devices in terms of materials formulation, architectures, and manufacturing processes in order to give a clear vision of the scaling route and encourage the research in this green and sustainable direction. Full article
(This article belongs to the Special Issue Bio-Inspired Functional Nanomaterials)
Show Figures

Figure 1

18 pages, 2203 KiB  
Review
Improvement Strategies for Stability and Efficiency of Perovskite Solar Cells
by Hongliang Liu, Ling Xiang, Peng Gao, Dan Wang, Jirui Yang, Xinman Chen, Shuti Li, Yanli Shi, Fangliang Gao and Yong Zhang
Nanomaterials 2022, 12(19), 3295; https://doi.org/10.3390/nano12193295 - 22 Sep 2022
Cited by 24 | Viewed by 7450
Abstract
Recently, perovskites have garnered great attention owing to their outstanding characteristics, such as tunable bandgap, rapid absorption reaction, low cost and solution-based processing, leading to the development of high-quality and low-cost photovoltaic devices. However, the key challenges, such as stability, large-area processing, and [...] Read more.
Recently, perovskites have garnered great attention owing to their outstanding characteristics, such as tunable bandgap, rapid absorption reaction, low cost and solution-based processing, leading to the development of high-quality and low-cost photovoltaic devices. However, the key challenges, such as stability, large-area processing, and toxicity, hinder the commercialization of perovskite solar cells (PSCs). In recent years, several studies have been carried out to overcome these issues and realize the commercialization of PSCs. Herein, the stability and photovoltaic efficiency improvement strategies of perovskite solar cells are briefly summarized from several directions, such as precursor doping, selection of hole/electron transport layer, tandem solar cell structure, and graphene-based PSCs. According to reference and analysis, we present our perspective on the future research directions and challenges of PSCs. Full article
Show Figures

Figure 1

23 pages, 2442 KiB  
Review
Humidity Sensing Applications of Lead-Free Halide Perovskite Nanomaterials
by Kevin Tambwe, Natasha Ross, Priscilla Baker, Thanh-Tuân Bui and Fabrice Goubard
Materials 2022, 15(12), 4146; https://doi.org/10.3390/ma15124146 - 10 Jun 2022
Cited by 19 | Viewed by 4201
Abstract
Over the past decade, perovskite-based nanomaterials have gained notoriety within the scientific community and have been used for a variety of viable applications. The unique structural properties of these materials, namely good direct bandgap, low density of defects, large absorption coefficient, high sensitivity, [...] Read more.
Over the past decade, perovskite-based nanomaterials have gained notoriety within the scientific community and have been used for a variety of viable applications. The unique structural properties of these materials, namely good direct bandgap, low density of defects, large absorption coefficient, high sensitivity, long charge carrier lifetime, good selectivity, acceptable stability at room temperature, and good diffusion length have prompted researchers to explore their potential applications in photovoltaics, light-emitting devices, transistors, sensors, and other areas. Perovskite-based devices have shown very excellent sensing performances to numerous chemical and biological compounds in both solid and liquid mediums. When used in sensing devices, Perovskite nanomaterials are for the most part able to detect O2, NO2, CO2, H2O, and other smaller molecules. This review article looks at the use of lead-free halide perovskite materials for humidity sensing. A complete description of the underlying mechanisms and charge transport characteristics that are necessary for a thorough comprehension of the sensing performance will be provided. An overview of considerations and potential recommendations for the creation of new lead-free perovskite nanostructure-based sensors is presented. Full article
Show Figures

Figure 1

Back to TopTop