Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = large yellow croaker Larimichthys crocea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 3500 KiB  
Article
Adaptive Responses of Large Yellow Croaker Larimichthys crocea to Ocean Acidification: Integrative Analysis of Gill and Kidney Transcriptomics and Antioxidant Enzyme Activities
by Ting Ye, Xiaoyan Zhang, Feng Liu, Xiao Liang, Dandan Guo, Bao Lou and Zhigang Xie
Antioxidants 2025, 14(7), 872; https://doi.org/10.3390/antiox14070872 - 16 Jul 2025
Viewed by 412
Abstract
Anthropogenic acidification is a long-term challenge to marine ecosystems. Though coastal acidification is intensifying, the large yellow croaker (Larimichthys crocea) exhibits good adaptability to pH fluctuations, the underlying mechanisms of which remain poorly understood. This study investigated the morphology, antioxidant enzyme [...] Read more.
Anthropogenic acidification is a long-term challenge to marine ecosystems. Though coastal acidification is intensifying, the large yellow croaker (Larimichthys crocea) exhibits good adaptability to pH fluctuations, the underlying mechanisms of which remain poorly understood. This study investigated the morphology, antioxidant enzyme activity, and gene expression of L. crocea under varying acidification conditions (pH 8.1 (H group), 7.8 (M group), and 7.4 (L group)). Water pH fluctuations were also monitored to explore the physiological responses and potential adaptive molecular mechanisms of L. crocea under various acidified environments. The results indicated that the water pH decreased in the H group, significantly increased in the L group (p < 0.05), and remained stable in the M group during the experiment. The lowest MDA content and the highest antioxidant enzyme activities (CAT, SOD, GSH-Px) were observed in L. crocea at pH 7.8, suggesting pH 7.8 was optimal for L. crocea. Transcriptomic analysis revealed distinct gene expression patterns between the gills and kidneys under acidification stress. Differentially expressed genes (DEGs) in the gills were primarily observed between the M and L groups (62.3%), whereas in the kidneys, the majority of DEGs were observed between the M and H groups (43.2%). These findings suggested that the gills play a critical role in adapting to low pH in L. crocea, while the kidneys were more responsive to high pH. Enrichment analysis identified critical pathways, including vasopressin-regulated water reabsorption, mineral reabsorption, and aldosterone-regulated sodium reabsorption, which are associated with water and ion metabolism. These pathways play a pivotal role in the acid–base homeostasis and metabolism of L. crocea. These results provide insights into the adaptive mechanisms of L. crocea to acidified environments, with implications for aquaculture management and future ocean acidification adaptation. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

26 pages, 2761 KiB  
Review
Seedling Selection of the Large Yellow Croaker (Larimichthys crocea) for Sustainable Aquaculture: A Review
by Xinran Han, Shengmao Zhang, Yabing Wang, Hui Fang, Shiming Peng, Shenglong Yang and Zuli Wu
Appl. Sci. 2025, 15(13), 7307; https://doi.org/10.3390/app15137307 - 28 Jun 2025
Viewed by 315
Abstract
The large yellow croaker (Larimichthys crocea) is one of China’s most economically important marine fish species, with its cage culture production leading the nation for many years. However, the rapid expansion of aquaculture has brought challenges such as germplasm degradation, reduced [...] Read more.
The large yellow croaker (Larimichthys crocea) is one of China’s most economically important marine fish species, with its cage culture production leading the nation for many years. However, the rapid expansion of aquaculture has brought challenges such as germplasm degradation, reduced disease resistance, inconsistent product quality, and low adoption of improved strains, which have hindered the sustainable development of the industry. The primary objective of this review is to summarize the current practices and challenges in seedling selection for L. crocea. The secondary objectives include discussing the influence of genetic, physiological, and environmental factors on growth performance and proposing future research directions for sustainable breeding programs. This review covers key topics including morphological screening, growth performance evaluation, genetic diversity conservation, disease resistance improvement, and adaptation to environmental stress. It also explores the application of modern technologies such as marker-assisted selection, intelligent monitoring, environmental control, precision feeding, and disease prevention. Moreover, it highlights core issues in current breeding practices, such as over-reliance on single-trait selection and insufficient integration of environmental adaptability and disease resistance. Finally, future trends are discussed, emphasizing the integration of genomic tools with artificial intelligence to promote intelligent, precise, and sustainable breeding approaches. These insights aim to enhance aquaculture productivity while supporting long-term ecological balance and industry sustainability. Full article
Show Figures

Figure 1

18 pages, 3115 KiB  
Article
Comparative Analysis of Different Body Composition, Mucus Biochemical Indices, and Body Color in Five Strains of Larimichthys crocea
by Hongjin Deng, Quanyou Guo, Banghong Wei, Jiehui Zhong, Mengyao Zheng, Yao Zheng, Na Lin and Shengyang Zheng
Fishes 2025, 10(7), 305; https://doi.org/10.3390/fishes10070305 - 25 Jun 2025
Viewed by 290
Abstract
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow [...] Read more.
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow croakers (body weight: 347.01 ± 5.86 g). To conduct genetic diversity analyses of the populations, a total of 50 tailfin samples were randomly chosen from the following populations of large yellow croakers: wild (LYC1), Dai-qu population (LYC2), Yongdai 1 (LYC3), Min-yuedong population (LYC4), and Fufa 1 (LYC5). The findings demonstrated that the LYC3 group’s pigment contents, crude protein, crude lipid, and chromatic values were comparable to those of the LYC1 group (p > 0.05). There was no significant difference between the LYC1 and LYC5 groups’ mucus superoxide dismutase (SOD) and catalase (CAT) activities (p > 0.05). The alkaline phosphatases (ALP), acid phosphatases (ACP), and lysozyme (LYS) activities of the mucus in the LYC1 group were not significantly different from the LYC3 group (p > 0.05). The back skin mRNA expressions of tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), dopachrome tautomerase (dct), microphtalmia-associated transcription factor (mitf), and melanocortin 1 receptor (mc1r) were significantly up-regulated in the LYC2 and LYC4 groups compared to the LYC1, LYC3, and LYC5 groups (p < 0.05). Forkhead box d3 (foxd3), paired box 3 (pax3), purine nucleoside phosphorylase 4a (pnp4a), aristaless-like homeobox 4a (alx4a), cAMP dependent protein kinase (pka), anaplastic lymphoma kinase (alk), leukocyte receptor tyrosine kinase (ltk), and colony stimulating factor (fms) were among the mRNA expressions of the abdominal skin in the LYC1, LYC3, and LYC5 groups significantly higher than those in the LYC2 and LYC4 groups (p < 0.05). In conclusion, the LYC3 group’s crude protein, crude lipid, carotenoid, and lutein contents were most similar to those of the large yellow croaker found in the wild. Furthermore, the molecular mechanism underlying the variations in body color among the various strains of large yellow croakers was supplied for additional research. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

13 pages, 3600 KiB  
Article
The Effects of Water Flow on the Swimming Behavior of the Large Yellow Croaker (Larimichthys crocea) in a Large Sea Cage
by Xiaorun Zhang, Yong Tang, Xinyi Hu, Chonghuan Liu, Yonghu Liu, Xin Zhuang, Guang Xu and Jing Liu
Fishes 2025, 10(6), 250; https://doi.org/10.3390/fishes10060250 - 26 May 2025
Viewed by 324
Abstract
This study aims to clarify the influence of water flow on the behavior of the large yellow croaker (Larimichthys crocea). Although L. crocea is a key species in marine cage aquaculture, and the industry is increasingly adopting large-scale sea cages, the [...] Read more.
This study aims to clarify the influence of water flow on the behavior of the large yellow croaker (Larimichthys crocea). Although L. crocea is a key species in marine cage aquaculture, and the industry is increasingly adopting large-scale sea cages, the behavioral adaptations of this species under such conditions remain insufficiently characterized. To solve this problem, the study implemented an ultrasonic biotelemetry system to monitor the in situ swimming behavior of L. crocea across varying current velocities and tidal phases. The results indicated that the tagged fish predominantly occupied water depths of 1 to 2.6 m, with no observable circular swimming behavior along the cage periphery. Additionally, the spatial distribution of L. crocea within the large-scale cage seemed to correlate with the direction of the current. Furthermore, both the frequency of appearance and swimming speed of L. crocea were higher in the center of the cage compared to the peripheral regions during flood and ebb tides, whereas the opposite trend was observed during slack water. This study provides novel insights into the behavioral ecology of L. crocea in large-scale aquaculture systems. Full article
(This article belongs to the Section Fishery Facilities, Equipment, and Information Technology)
Show Figures

Figure 1

17 pages, 2383 KiB  
Article
Comparative Analysis of Genetic Structure and Diversity in Larimichthys polyactis, Larimichthys crocea, and Their Reciprocal Hybrids Based on Microsatellite Loci
by Zehui Wang, Dandan Guo, Qingping Xie, Fuliang Wei, Lin Jiang, Feng Liu, Ting Ye and Bao Lou
Animals 2025, 15(10), 1360; https://doi.org/10.3390/ani15101360 - 8 May 2025
Viewed by 522
Abstract
In this study, we compared the genetic diversity and structure of small yellow croaker (Larimichthys polyactis, LP), large yellow croaker (Larimichthys crocea, LC), and their reciprocal hybrids (LP ♀ × LC ♂ (LCP) and LC ♀ × LP ♂ [...] Read more.
In this study, we compared the genetic diversity and structure of small yellow croaker (Larimichthys polyactis, LP), large yellow croaker (Larimichthys crocea, LC), and their reciprocal hybrids (LP ♀ × LC ♂ (LCP) and LC ♀ × LP ♂ (LPC)) using 14 microsatellite loci. Our results revealed that genetic diversity was highest in LCP, followed by LP and LPC, with LC exhibiting the lowest level. Additionally, among the two hybrid progenies, the number of loci in LCP deviating from Hardy–Weinberg equilibrium was lower. This suggests that LCP is a more appropriate choice as breeding material and has the potential to enhance germplasm resources. Based on the analysis of 14 microsatellite loci, we observed that both hybrid species clustered with their respective maternal parents. Specifically, LPC exhibited a closer genetic relationship to its maternal parent than LCP did. Furthermore, the majority of genes in LPC were inherited from its maternal parent (LP). In the LCP population, approximately 63% of individuals possessed gene profiles similar to those observed in LPC, while the remaining individuals displayed a mix from both parents. This study provides a strategic direction for the efficient utilization and management of novel germplasm resources in hybrid yellow croaker. Hybrid yellow croaker serves as an intermediate breeding material, playing a significant role in the genetic improvement of Larimichthys crocea and Larimichthys polyactis. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

25 pages, 4243 KiB  
Article
Effects of Different Water Contents on the Quality Characteristics of Roasted Large Yellow Croaker (Larimichthys crocea) Fillets
by Shuting Huang, Shuji Liu, Ping Wen, Xiangyang Lin, Xiaoting Chen, Yongchang Su, Yuping Xie, Huawei Zheng, Yihui Chen and Zhiyu Liu
Foods 2025, 14(9), 1638; https://doi.org/10.3390/foods14091638 - 7 May 2025
Cited by 1 | Viewed by 619
Abstract
This study investigated the effect of the water content of large yellow croaker fillets on their quality characteristics after roasting. The large yellow croaker fillets were randomly divided into groups, namely, the fresh group (BMC-77), the 3% salt-cured group (BMC-70), and groups cured [...] Read more.
This study investigated the effect of the water content of large yellow croaker fillets on their quality characteristics after roasting. The large yellow croaker fillets were randomly divided into groups, namely, the fresh group (BMC-77), the 3% salt-cured group (BMC-70), and groups cured with 3% salt followed by hot air drying to obtain different moisture contents (BMC-65, BMC-60, and BMC-55). Then, the fillets were roasted at 220 °C for 20 min. There were four replicates for each group. Various indicators, including color, texture, thiobarbituric acid-reactive substance (TBARS) content, total volatile basic nitrogen (TVB-N) content, water distribution, volatile components, and myofibrillar proteins were determined, and a sensory evaluation was carried out. The results showed that as the water content decreased, the lightness (L*) of the roasted fillets significantly decreased (p < 0.05), while the redness (a*) and yellowness (b*) increased. The hardness, shear force, TBARS, and TVB-N values all increased significantly (p < 0.05). The proportion of immobile water decreased, while the proportions of tightly bound water, free water, and loosely bound water increased. The electronic nose, electronic tongue, and GC-MS analyses revealed that there were significant differences in odor, taste, and volatile components among fillets with different water contents. A comprehensive analysis of all the indicators demonstrated that the fillets with an initial water content of 65% (BMC-65) achieved the best sensory qualities after roasting in terms of taste and flavor. An appropriate reduction in the initial water content helped to improve the texture and appearance of the fillets while delaying the degradation of proteins and lipids. This study provides a theoretical foundation for optimizing the roasting process of large yellow croaker fillets. Future research could explore the synergistic effects of the roasting conditions and water content to achieve more accurate quality control. Full article
(This article belongs to the Special Issue Innovative Technology of Aquatic Product Processing)
Show Figures

Figure 1

18 pages, 6289 KiB  
Article
Regulation of Immune-Related Gene Expression by Salinity-Induced HPI Axis in Large Yellow Croaker, Larimichthys crocea
by Jia Cheng, Zhengjia Lou, Huijie Feng, Yu Zhang, Honghui Li, Wuying Chu and Liangyi Xue
Int. J. Mol. Sci. 2025, 26(9), 4298; https://doi.org/10.3390/ijms26094298 - 1 May 2025
Viewed by 448
Abstract
Large yellow croaker is one of the most popular economic fish species in China. There are studies on the effects of salinity on the growth and development of large yellow croaker (Larimichthys crocea), but the effects of the hypothalamic–pituitary–interrenal axis (HPI), [...] Read more.
Large yellow croaker is one of the most popular economic fish species in China. There are studies on the effects of salinity on the growth and development of large yellow croaker (Larimichthys crocea), but the effects of the hypothalamic–pituitary–interrenal axis (HPI), HPI axis-related genes, and immune-related gene expression and its mechanisms have not been reported. This study analyzed the comparative transcriptomics of brain tissue in large yellow croaker under different salinity (12, 24, and 36 ppt) treatments for 4 weeks. The results showed that there were 1568 differential expression genes in the high salinity (HB) and normal salinity (NB) groups, including 494 up-regulated and 1074 down-regulated transcripts, and 1720 differential expression genes in the low salinity (LB) and normal salinity (NB) groups, including 486 up-regulated and 1234 down-regulated transcripts. Some pathways were significantly enriched, including the adrenergic signaling pathway of cardiomyocytes, oxidative phosphorylation, aldosterone synthesis and secretion, chemokine signaling pathway, and cyclic adenosine monophosphate (cAMP) signaling pathway. Quantitative Real-time polymerase chain reaction (qPCR) analysis further confirmed changes in the expression levels of HPI axis-related genes (β2-ADR, GH, and PRL) and significant changes in the expression levels of immune-related genes (IL6st, IL6, CXCL12, CD40, IFNAR1, SOCS2, SOCS6, and IRF1). In summary, this experiment demonstrates that salinity stress can activate the HPI axis and influence its immune function in large yellow croaker. Furthermore, the expression of immune factors during the immune response is regulated by the upstream genes of the HPI axis. The findings of this study are significant for understanding the physiological and immune responses of large yellow croaker to salinity stress. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3977 KiB  
Article
Characterization and Functional Analysis of Trim38 in the Immune Response of the Large Yellow Croaker (Larimichthys crocea) Against Pseudomonas plecoglossicida Infection
by Qiaoying Li, Hongling Wu, Ying Huang, Dinaer Yekefenhazi, Wenzheng Zou and Fang Han
Int. J. Mol. Sci. 2025, 26(9), 4150; https://doi.org/10.3390/ijms26094150 - 27 Apr 2025
Viewed by 476
Abstract
The large yellow croaker (Larimichthys crocea) is a cornerstone species in Chinese marine aquaculture, yet bacterial infections—particularly visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida—severely compromise its production. This study aimed to elucidate the immunoregulatory mechanisms of tripartite motif-containing [...] Read more.
The large yellow croaker (Larimichthys crocea) is a cornerstone species in Chinese marine aquaculture, yet bacterial infections—particularly visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida—severely compromise its production. This study aimed to elucidate the immunoregulatory mechanisms of tripartite motif-containing protein 38 in the large yellow croaker (Lctrim38) during bacterial infections, with an emphasis on host–pathogen interactions involving P. plecoglossicida, to evaluate its potential for disease-resistant breeding applications. The full-length cDNA of Lctrim38 was cloned and characterized, with structural analysis revealing a conserved domain architecture comprising RING, B-box, coiled-coil, and PRY-SPRY motifs. Functional characterization through Lctrim38 overexpression in large yellow croaker kidney cells (PCK cells) demonstrated significant modulation of key immune-related pathways, including TGF-β, PI3K-Akt, IL-17, and PPAR. Notably, Lctrim38-mediated inhibition of NF-κB signaling was shown to downregulate pro-inflammatory cytokines (TNF-α, IL-6, IFN-γ), establishing its role as a negative regulator of inflammatory responses. These findings provide insights into the immune mechanisms of Trim38 in large yellow croakers and highlight its potential as a molecular target for disease resistance breeding. Future research should explore its broader functions, including its antiviral potential. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 5727 KiB  
Article
Immune Response Analysis of Head Kidney in Large Yellow Croaker (Larimichthys crocea) Following Nocardia seriolae Infection
by Lu Yuan, Ziqi Ban, Kejing Huang, Rongrong Ma, Suming Zhou, Jianhu Jiang, Chenjie Fei and Jiasong Xie
Fishes 2025, 10(4), 167; https://doi.org/10.3390/fishes10040167 - 8 Apr 2025
Viewed by 528
Abstract
The large yellow croaker (Larimichthys crocea), one of the most economically valuable marine fish species in China, suffers significant economic losses in aquaculture due to infectious diseases caused by marine pathogens, such as Nocardia seriolae. The pathogenic mechanisms underlying N. [...] Read more.
The large yellow croaker (Larimichthys crocea), one of the most economically valuable marine fish species in China, suffers significant economic losses in aquaculture due to infectious diseases caused by marine pathogens, such as Nocardia seriolae. The pathogenic mechanisms underlying N. seriolae infection in L. crocea and the host immune responses remain inadequately characterized. To investigate the molecular mechanisms of this infection, we conducted transcriptome sequencing on the head kidney tissues of L. crocea at 1, 3, 7, and 14 days post-infection with N. seriolae. In total, 421, 1052, 3215, and 2459 upregulated genes, along with 1853, 1777, 3718, and 3134 downregulated genes were identified, respectively. KEGG enrichment analysis revealed that differentially expressed genes were predominantly associated with immune and metabolic pathways. Notably, pathways involved in Toll-like receptor signaling, ECM–receptor interaction, cytokine–cytokine receptor interaction, and focal adhesion were significantly enriched, highlighting an immune response to N. seriolae infection in L. crocea. In addition, significant enrichment of the citrate cycle (TCA cycle) and oxidative phosphorylation pathways in metabolic processes suggests an upregulated ATP synthesis to meet the heightened energy demand associated with the immune response to infection. These findings contribute to a deeper understanding of the immune defense mechanisms in the head kidney of L. crocea against N. seriolae infection and elucidate aspects of N. seriolae pathogenicity. Full article
(This article belongs to the Section Fish Pathology and Parasitology)
Show Figures

Figure 1

18 pages, 7734 KiB  
Article
Characterization and Immune Functions of LcβLectin from Large Yellow Croaker (Larimichthys crocea): A Potential Antiviral Defense Molecule
by Jiawei Zhang, Hongling Wu, Ying Huang, Yao Yang, Dinaer Yekefenhazi, Wenzheng Zou and Fang Han
Int. J. Mol. Sci. 2025, 26(7), 3251; https://doi.org/10.3390/ijms26073251 - 31 Mar 2025
Viewed by 547
Abstract
Large yellow croaker iridovirus (LYCIV) poses a significant threat to the large yellow croaker (Larimichthys crocea) aquaculture industry due to its rapid transmission and high lethality. Galectins, as evolutionarily conserved carbohydrate-binding lectins and pattern recognition receptors (PRRs) in the innate immune [...] Read more.
Large yellow croaker iridovirus (LYCIV) poses a significant threat to the large yellow croaker (Larimichthys crocea) aquaculture industry due to its rapid transmission and high lethality. Galectins, as evolutionarily conserved carbohydrate-binding lectins and pattern recognition receptors (PRRs) in the innate immune system, play crucial roles in immune responses. In this study, we characterized the beta-galactoside-binding lectin from large yellow croaker (LcβLectin) and explored its potential as a disease resistance gene against LYCIV. The full-length cDNA of LcβLectin was cloned and found to contain conserved elements, such as β-galactoside-binding motifs, HNPR, and WCEEHR domains. Using L. crocea head-kidney macrophages (LCM10), we demonstrated that recombinant LcβLectin significantly inhibits LYCIV-induced cytopathic effects and reduces macrophage apoptosis, highlighting its key role in viral defense. Moreover, the overexpression of LcβLectin in LCM10 cells followed by transcriptomic analysis revealed its substantial regulatory effects on key immune-related signaling pathways, including C-type lectin signaling, p53 signaling, and Toll-like receptor signaling pathways. Collectively, our findings suggest that LcβLectin enhances fish resistance to viral diseases by augmenting immune system function and activating immune-related pathways, providing valuable insights into the innate immune mechanisms of aquatic species and potential strategies for disease prevention in aquaculture. Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
Show Figures

Figure 1

24 pages, 5617 KiB  
Article
Effects of Coatings on Antioxidant Enzyme Activities, Histopathology, and Transcriptome Profiles of Kidney Tissue in Larimichthys crocea
by Xuan Xu, Huayu Song, Lu Zhang, Chonghui Chen, Xiaoxu Zhang, Yiying Liu, Chao Li and Qiang Fu
Genes 2025, 16(4), 392; https://doi.org/10.3390/genes16040392 - 29 Mar 2025
Viewed by 564
Abstract
Background: As an innovative approach to deep-sea aquaculture, fish farm vessels offer a dual benefit by alleviating the pressure on offshore fishing resources while providing an additional high-quality protein source. However, the potential impacts of vessel coatings on farmed fish remain poorly understood. [...] Read more.
Background: As an innovative approach to deep-sea aquaculture, fish farm vessels offer a dual benefit by alleviating the pressure on offshore fishing resources while providing an additional high-quality protein source. However, the potential impacts of vessel coatings on farmed fish remain poorly understood. Methods: In this study, to investigate the effects of vessel coatings on the large yellow croaker (Larimichthys crocea), we established four experimental groups with coating concentrations at 1-fold, 10-fold, 20-fold, and 80-fold levels. Antioxidant enzyme activities in kidney tissues were measured across all groups, while histological and transcriptome analyses were specifically conducted for the 1-fold and 80-fold concentration groups. Results: Firstly, significant alterations in antioxidant enzyme activity were observed in the 80-fold concentration group. Moreover, histological analysis demonstrated more severe pathological changes in kidney tissue at the higher concentration, including interstitial hemorrhage and tubular epithelial cell fatty degeneration. In addition, we identified 11,902 differentially expressed genes (DEGs) by high-throughput sequencing. KEGG pathway enrichment analysis revealed that the DEGs were predominantly involved in critical biological processes, including endoplasmic reticulum protein processing, oxidative phosphorylation, cytokine–cytokine receptor interactions, cell cycle regulation, DNA replication, and PPAR signaling pathways. Finally, the validation of nine selected DEGs through quantitative real-time PCR (qRT-PCR) showed significant correlation with RNA-Seq data, confirming the reliability of our transcriptome analysis. Conclusions: This study provides preliminary insights into the antioxidant stress response mechanisms of L. crocea to coating exposure and establishes a theoretical foundation for optimizing healthy fish farming practices in aquaculture vessels. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 7556 KiB  
Article
A Hypothetical Protein Fragment from Large Yellow Croaker (Larimichthys crocea) Demonstrates Significant Activity Against Both Bacterial and Parasite
by Chunmei Yan, Meiling Chen, Hao Xu, Jian Jin, Xiande Liu, Zhiyong Wang and Dongling Zhang
Fishes 2025, 10(3), 109; https://doi.org/10.3390/fishes10030109 - 4 Mar 2025
Viewed by 777
Abstract
Antimicrobial peptides (AMPs) are biocompatible and biodegradable, making them an attractive alternative to traditional antimicrobial agents and chemical preservatives. Here, a novel α-helix amphiphilic anionic AMP Lc149 was screened from a large yellow croaker (Larimichthys crocea) using a Bacillus subtilis expression [...] Read more.
Antimicrobial peptides (AMPs) are biocompatible and biodegradable, making them an attractive alternative to traditional antimicrobial agents and chemical preservatives. Here, a novel α-helix amphiphilic anionic AMP Lc149 was screened from a large yellow croaker (Larimichthys crocea) using a Bacillus subtilis expression system. Lc149 is a hypothesized protein fragment not annotated in the genome of a large yellow croaker. Both extracellular protein and recombinant Lc149 (rLc149) exhibited significant killing effects against Gram-negative Escherichia coli and Vibrio harveyi. Scanning and transmission electron microscopy revealed that rLc149 had the ability to disrupt bacterial cell membranes, causing irregular cell morphology, severe cell membrane damage, cytoplasm agglutination, and intracellular content leakage. Confocal laser scanning microscopy and flow cytometry further confirmed bacterial cell destruction and mortality rates of over 80%. Gel retardation assays and SDS-PAGE electrophoresis showed that rLc149 was unable to bind to bacterial DNA, but did reduce bacterial protein contents. Additionally, rLc149 maintained antibacterial activity against E. coli and V. harveyi upon exposure to temperatures of 25–100 °C, UV radiation time of 0–60 min, pH levels of 3–12, and different proteases. Biosafety assays revealed low hemolytic toxicity to erythrocytes of large yellow croaker, rabbit, and shrimp, and low cytotoxicity to large yellow croaker kidney cells and HEK 293T cells. More deeply, rLc149 also possessed significant killing activity against parasites. Therefore, rLc149 can be considered an antibacterial and antiparasitic drug in fisheries. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Figure 1

13 pages, 1549 KiB  
Article
Boat Noise Increases the Oxygen Consumption Rate of the Captive Juvenile Large Yellow Croaker, Larimichthys crocea
by Ruijie Xu, Shouguo Yang, Yiyu Li, Xuguang Zhang and Xianming Tang
Animals 2025, 15(5), 714; https://doi.org/10.3390/ani15050714 - 2 Mar 2025
Cited by 1 | Viewed by 921
Abstract
Anthropogenic noise pollution is increasingly acknowledged as a major threat to marine ecosystems, especially for sound-sensitive species, such as the large yellow croaker (Larimichthys crocea). While the effects of underwater noise on fish behavior and physiology have been well-documented, its influence [...] Read more.
Anthropogenic noise pollution is increasingly acknowledged as a major threat to marine ecosystems, especially for sound-sensitive species, such as the large yellow croaker (Larimichthys crocea). While the effects of underwater noise on fish behavior and physiology have been well-documented, its influence on oxygen metabolism across varying temperatures remains poorly understood. This study examines the impact of boat noise on the oxygen consumption rate (OCR) of juvenile large yellow croakers at different temperatures, a key factor in their metabolic activity. The underwater noise generated by a fishing boat spans a broad frequency range, with a peak spectrum level of 130 dB re 1 µPa at low frequencies between 100 and 200 Hz. Our findings reveal that boat noise significantly elevates the OCR of juvenile fish, with mass-specific OCR increasing by 65.0%, 35.3%, and 28.9% at 18 °C, 25 °C, and 30 °C, respectively. Similarly, individual OCR rose by 60.7%, 35.3%, and 17.1% at these temperatures. These results demonstrate that boat noise triggers a stress response in fish, resulting in heightened metabolic demands across different seasonal conditions. Notably, the impact of boat noise on respiratory metabolism is most significant at lower temperatures. In aquatic environments with stable oxygen levels, the noise-induced rise in oxygen consumption could lead to hypoxia and provoke maladaptive behavioral changes in fish. Full article
Show Figures

Figure 1

13 pages, 3554 KiB  
Article
Comparison of Volatile and Non-Volatile Compounds of Ice-Stored Large Yellow Croaker (Larimichthys crocea) Affected by Different Post-Harvest Handling Methods
by Yao Zheng, Yuan Ma, Na Lin, Xu Yang, Junjie Wu and Quanyou Guo
Foods 2025, 14(3), 431; https://doi.org/10.3390/foods14030431 - 28 Jan 2025
Cited by 2 | Viewed by 994
Abstract
To compare the impact of different post-harvest handling methods on volatile and non-volatile compounds, a total of 54 live large yellow croakers were subjected to commercial slaughter (CS), spinal cord cutting (SCC), or spinal cord cutting and bleeding (SCCB). The fish samples were [...] Read more.
To compare the impact of different post-harvest handling methods on volatile and non-volatile compounds, a total of 54 live large yellow croakers were subjected to commercial slaughter (CS), spinal cord cutting (SCC), or spinal cord cutting and bleeding (SCCB). The fish samples were ice-stored for 72 h, followed by the analysis of volatile compounds using gas chromatography–ion mobility spectrometry and non-volatile compounds using LC-MS-based untargeted metabolomics. The results revealed the detection of a total of 28 volatile organic compounds, with 23 being successfully identified, predominantly including alcohols, aldehydes, esters, ketones, and heterocyclic compounds. Substances such as (E)-2-nonenal and 2-butanone are highly sensitive to post-harvest handling methods during ice storage. Furthermore, 943 non-volatile metabolites were identified, showing significant differences in 180, 100, 117, and 186 metabolites across comparisons of SCC 0 h/CS 0 h, SCCB 0 h/CS 0 h, SCC 72 h/CS 72 h, and SCCB 72 h/CS 72 h, respectively. Notably, the altered metabolic pathways mainly involved fatty acid and amino acid metabolism, including pathways like glycerophospholipid metabolism and arginine biosynthesis. This study revealed the potential mechanisms underlying the enhancement of fish quality through spinal cord cutting and bleeding. Full article
(This article belongs to the Special Issue Quality Changes of Blue Food During Preservation and Processing)
Show Figures

Figure 1

Back to TopTop