Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = large interlayer spacing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6798 KB  
Article
Feasibility and Optimization Study on the Replacement of Core Rock Columns with Temporary Steel Supports in the Construction of Large-Section Subway Tunnels in Interbedded Rock Masses
by Dunwen Liu, Yupeng Zhang, Jimin Zhong and Yuhui Jin
Appl. Sci. 2025, 15(17), 9616; https://doi.org/10.3390/app15179616 - 31 Aug 2025
Viewed by 464
Abstract
With the development of subway transportation, how to excavate large-section tunnels and find more convenient and reliable support methods has become an issue that cannot be ignored. This paper addresses issues such as low construction efficiency of core rock columns during the construction [...] Read more.
With the development of subway transportation, how to excavate large-section tunnels and find more convenient and reliable support methods has become an issue that cannot be ignored. This paper addresses issues such as low construction efficiency of core rock columns during the construction of large-section subway tunnels in sandstone–mudstone interbedded geological conditions. It proposes an optimized support scheme that replaces traditional core rock columns with temporary steel supports (steel columns). Finite element analysis was used to compare the deformation of the surrounding rock when retaining the core rock columns, using temporary steel columns to replace the core rock columns, and not providing additional support. Five interlayer positions and four interlayer angles were analyzed to identify the most dangerous geological conditions. Based on this analysis, the reasonable spacing of the temporary steel columns was investigated. The results indicate that temporary steel columns and core rock columns can effectively reduce vertical deformation of the surrounding rock, with steel columns showing slightly better results. Replacing core rock columns with steel columns is feasible. To control tunnel rock mass deformation, this project should ensure that the spacing between temporary steel columns is maintained between 21.88 m and 56.80 m. However, in construction sections with good rock mass conditions, the spacing can be extended as long as safety is ensured. Full article
Show Figures

Figure 1

18 pages, 1861 KB  
Article
Clay Nanomaterials Sorbents for Cleaner Water: A Sustainable Application for the Mining Industry
by María Molina-Fernández, Albert Santos Silva, Rodrigo Prado Feitosa, Edson C. Silva-Filho, Josy A. Osajima, Santiago Medina-Carrasco and María del Mar Orta Cuevas
Nanomaterials 2025, 15(15), 1211; https://doi.org/10.3390/nano15151211 - 7 Aug 2025
Viewed by 678
Abstract
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large [...] Read more.
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large amounts of toxic substances such as organic matter, metal ions and inorganic anions, posing risks to both public health and the environment. This study evaluated the effectiveness of clay-based nanomaterials in the treatment of contaminated industrial wastewater from the mining sector. The materials tested included montmorillonite, high-loading expandable synthetic mica, and their organically functionalized forms (MMT, Mica-Na-4, C18-MMT, and C18-Mica-4). The experimental results show that these clays had minimal impact on the pH of the water, while a notable decrease in the chemical oxygen demand (COD) was observed. Ion chromatography indicated an increase in nitrogen and sulfur compounds with higher oxidation states. Inductively coupled plasma analysis revealed a significant reduction in the calcium concentration and an increase in the sodium concentration, likely due to cation exchange mechanisms. However, the removal of copper and iron was ineffective, possibly due to competitive interactions with other cations in the solution. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the structural modifications and interlayer spacing changes in the clay materials upon exposure to contaminated water. These findings demonstrate the potential of clay minerals as effective and low-cost materials for the remediation of industrial wastewater. Full article
(This article belongs to the Special Issue Eco-Friendly Nanomaterials: Innovations in Sustainable Applications)
Show Figures

Figure 1

16 pages, 4935 KB  
Article
Interlayer-Spacing-Modification of MoS2 via Inserted PANI with Fast Kinetics for Highly Reversible Aqueous Zinc-Ion Batteries
by Shuang Fan, Yangyang Gong, Suliang Chen and Yingmeng Zhang
Micromachines 2025, 16(7), 754; https://doi.org/10.3390/mi16070754 - 26 Jun 2025
Viewed by 817
Abstract
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, [...] Read more.
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, and insufficient structural stability during cycling. These limitations are primarily attributed to their narrow interlayer spacing, strong electrostatic interactions, the large ionic hydration radius, and their high binding energy of Zn2+ ions. To address these restrictions, an in situ organic polyaniline (PANI) intercalation strategy is proposed to construct molybdenum disulfide (MoS2)-based cathodes with extended layer spacing, thereby improving the zinc storage capabilities. The intercalation of PANI effectively enhances interplanar spacing of MoS2 from 0.63 nm to 0.98 nm, significantly facilitating rapid Zn2+ diffusion. Additionally, the π-conjugated electron structure introduced by PANI effectively shields the electrostatic interaction between Zn2+ ions and the MoS2 host, thereby promoting Zn2+ diffusion kinetics. Furthermore, PANI also serves as a structural stabilizer, maintaining the integrity of the MoS2 layers during Zn-ion insertion/extraction processes. Furthermore, the conductive conjugated PANI boosts the ionic and electronic conductivity of the electrodes. As expected, the PANI–MoS2 electrodes exhibit exceptional electrochemical performance, delivering a high specific capacity of 150.1 mA h g−1 at 0.1 A g−1 and retaining 113.3 mA h g−1 at 1 A g−1, with high capacity retention of 81.2% after 500 cycles. Ex situ characterization techniques confirm the efficient and reversible intercalation/deintercalation of Zn2+ ions within the PANI–MoS2 layers. This work supplies a rational interlayer engineering strategy to optimize the electrochemical performance of MoS2-based electrodes. By addressing the structural and kinetic limitations of TMDs, this approach offers new insights into the development of high-performance AZIBs for energy storage applications. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

15 pages, 16145 KB  
Article
Microscopic Distribution of Quaternary Ammonium Salt Organic Modifiers in the Interlayer Space of Montmorillonite: Molecular Simulation Study
by Wenxi Yu, Xijian Yi, Jianwei Yan, Juan Cheng, Siyu Ou and Qiong Xue
Materials 2025, 18(10), 2338; https://doi.org/10.3390/ma18102338 - 17 May 2025
Viewed by 636
Abstract
This study employs molecular dynamics simulations to construct designed unit cells of organic montmorillonite (OMMT) modified with four types of quaternary ammonium salts. The effects of modifier type and quantity on the basal spacing of montmorillonite (MMT) were analyzed. Molecular motion, morphology, interaction [...] Read more.
This study employs molecular dynamics simulations to construct designed unit cells of organic montmorillonite (OMMT) modified with four types of quaternary ammonium salts. The effects of modifier type and quantity on the basal spacing of montmorillonite (MMT) were analyzed. Molecular motion, morphology, interaction energy (Eint), and hydrogen bonding interactions were investigated to elucidate the molecular-level mechanisms between modifiers and MMT. The results indicate that the organic modification of MMT proceeds in three distinct stages: the filled stage, saturated stage, and supersaturated stage. During the filled stage, the basal spacing remains largely unchanged while Eint increases rapidly. In the saturated stage, the basal spacing expands as the growth rate of Eint slows. In the supersaturated stage, the basal spacing continues to increase while Eint stabilizes. The transition from the filled to saturated stage is governed by the van der Waals space occupied by the modifiers. Within the MMT interlayer, the modifiers adopt a bilayer morphology, with the nitrogen atom heads adhering to the MMT surfaces and the tails self-assembling. These findings provide theoretical insights into the basal spacing expansion and organic modification mechanisms of MMT, thereby facilitating improved material compatibility. Full article
Show Figures

Figure 1

9 pages, 1696 KB  
Article
Interactions Between Trivalent Elements Enable Ultrastable LDH Cathode for High-Performance Zinc Battery
by Junhua Zeng, Jinlei Gao, Wenyao Lu, Jiashuo Feng and Ting Deng
Batteries 2025, 11(5), 170; https://doi.org/10.3390/batteries11050170 - 23 Apr 2025
Viewed by 513
Abstract
Layered double hydroxides (LDHs) are one class of two-dimensional materials, with tunable chemical composition and large interlayer spacing, that is a potential cathode material candidate for aqueous zinc-ion batteries (AZIBs). Nevertheless, the low conductivity and fragile structure of LDH have impeded their practical [...] Read more.
Layered double hydroxides (LDHs) are one class of two-dimensional materials, with tunable chemical composition and large interlayer spacing, that is a potential cathode material candidate for aqueous zinc-ion batteries (AZIBs). Nevertheless, the low conductivity and fragile structure of LDH have impeded their practical application in AZIBs. Herein, a ternary CoMnAl LDH is synthesized via the facile coprecipitation method as the cathode material for AZIB. The interaction between trivalent Al3+ and Mn3+ not only lowers the redox energy barrier but also enhances the electronic structure, as proved by EIS analysis and DFT simulation. As a result, the synthesized CoMnAl LDH displays a high specific capacity of 238.9 mAh g−1 at 0.5 A g−1, an outstanding rate performance (138.8 mAh g−1 at 5 A g−1), and a stable cyclability (92% capacity retention after 2000 cycles). Full article
Show Figures

Graphical abstract

10 pages, 5857 KB  
Article
Lithium Intercalation Chemistry in TaS2 Nanosheets for Lithium-Ion Batteries Anodes
by Xuelian Wang, Jin Bai, Xian Zhang, Xiaobo Shen, Zhengrong Xia and Haijun Yu
Nanomaterials 2025, 15(8), 626; https://doi.org/10.3390/nano15080626 - 19 Apr 2025
Viewed by 620
Abstract
Exploring novel two-dimensional layered transitional metal dichalcogenides and elucidating their reaction mechanism are critical to designing promising anode materials for lithium-ion batteries (LIBs). Herein, a novel layered TaS2 nanosheet was obtained via a typical solid-phase reaction method followed by a simple ball-milling [...] Read more.
Exploring novel two-dimensional layered transitional metal dichalcogenides and elucidating their reaction mechanism are critical to designing promising anode materials for lithium-ion batteries (LIBs). Herein, a novel layered TaS2 nanosheet was obtained via a typical solid-phase reaction method followed by a simple ball-milling treatment, and first explored experimentally as an anode for LIBs. The TaS2 nanosheet anode delivered an excellent cycling stability, with 234.6 mAh g−1 after 500 cycles at 1 A g−1. The optimized performance could be attributed to the large interlayer spacing, high conductivity, and reduced size of the TaS2 nanosheet, which effectively alleviated the volume change during the reaction process and accelerated the Li+ or e transport. Especially, the TaS2 nanosheet anode presented an unusual intercalation reaction mechanism, accompanied with a reversible phase transition from the 2H to the 1T phase during the first de-lithiation process, which is evidenced by the multiple ex situ characterizations, further revealing the enhanced electrochemical performance results from the 1T phase with the larger interlayer spacing and higher electrical conductivity. This work provides a novel insight into the intercalation reaction mechanism of TaS2, which shows potential in high-performance LIBs. Full article
(This article belongs to the Special Issue High Performance of Nanomaterials in Metal-Ion Batteries)
Show Figures

Figure 1

20 pages, 13636 KB  
Article
Cross-Linked Self-Standing Graphene Oxide Membranes: A Pathway to Scalable Applications in Separation Technologies
by Juan A. G. Carrio, Vssl Prasad Talluri, Swamy T. Toolahalli, Sergio G. Echeverrigaray and Antonio H. Castro Neto
Membranes 2025, 15(1), 31; https://doi.org/10.3390/membranes15010031 - 15 Jan 2025
Viewed by 2002
Abstract
The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as Fe2O3, Al2 [...] Read more.
The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as Fe2O3, Al2O3, CaSO4, Nb2O5, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties. The membranes were prepared by casting aqueous suspensions of GO and SiC or oxide powders onto substrates, followed by drying and detachment to yield self-standing films. This method enabled precise control over membrane thickness and the formation of laminated microstructures with interlayer spacings ranging from 0.8 to 1.2 nm. The resulting self-standing membranes, with areas between 0.002 m2 and 0.090 m2 and thicknesses from 0.6 μm to 20 μm, exhibit excellent flexibility and retain their chemical and physical integrity during prolonged testing in direct contact with ethanol/water and methanol/water mixtures in both liquid and vapour phases, with stability demonstrated over 24 h and up to three months. Gas permeation and chemical characterisation tests evidence their suitability for gas separation applications. The interactions promoted by the oxides and carbide with the functional groups of GO confer great stability and unique mass transport properties—the Nb2O5 cross-linked membranes present distinct performance characteristics—creating the potential for scalable advancements in cross-linked 2D material membranes for separation technologies. Full article
Show Figures

Figure 1

15 pages, 3138 KB  
Article
Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation
by Yixuan Fu, Shuai Wang, Huiquan Liu, Ke Zhang, Lunxiang Zhang, Yongchen Song and Zheng Ling
Membranes 2025, 15(1), 25; https://doi.org/10.3390/membranes15010025 - 13 Jan 2025
Cited by 3 | Viewed by 1530
Abstract
The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer [...] Read more.
The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation. In this work, a novel sepiolite/vermiculite membrane was fabricated using Meyer rod-coating and naturally occurring clay. The intercalation of sepiolite Nanofibers between vermiculite Nanosheets provides additional transport nanochannels and forms looser permeable networks, producing composite membranes with remarkably enhanced flux. As a result, the optimized membranes with 80% sepiolite exhibit remarkable flux as high as 78.12 LMH bar−1, outstanding dye rejection (Congo Red~98.26%), and excellent selectivity of dye/salt of 10.41. In addition, this novel all-clay composite membrane demonstrates stable separation performance under acidity, alkalinity and prolonged operation conditions. The large-scale sepiolite/vermiculite membranes made by the simple proposed method using low-cost materials provide new strategies for efficient and environmentally-friendly dye/salt separation. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

24 pages, 13065 KB  
Review
Crystal Chemistry and Structural Complexity of the Uranyl Vanadate Minerals and Synthetic Compounds
by Ivan V. Kuporev, Sophia A. Kalashnikova and Vladislav V. Gurzhiy
Crystals 2025, 15(1), 43; https://doi.org/10.3390/cryst15010043 - 30 Dec 2024
Cited by 1 | Viewed by 1266
Abstract
This paper reviews perhaps one of the most enigmatic groups of secondary uranium minerals. The number of uranyl vanadate mineral species does not reach even 20, and they do not display a large range of structural diversity, but those natural phases form rather [...] Read more.
This paper reviews perhaps one of the most enigmatic groups of secondary uranium minerals. The number of uranyl vanadate mineral species does not reach even 20, and they do not display a large range of structural diversity, but those natural phases form rather massive deposits that can be mined as uranium ores. The number of synthetic uranyl vanadates is three times higher than natural phases, and most of them were obtained using hydrothermal and solid-state techniques. Diversity is also evident in their structural parts. The majority of synthetic compounds, both pure inorganic or organically templated, have their structures based upon mineral-like substructural units of francevillite, uranophane, U3O8, and other common topological types, and not even one compound among 57 studied was obtained from simple aqueous solutions at room temperature. This allows us to assume that even under natural conditions, elevated temperatures are required for the formation of isotypic uranyl vanadate minerals, especially in the case of industrially developed thick strata. The structural complexity parameters for natural uranyl vanadates directly depend on the unit cell volume. Keeping in mind that all minerals possess layered structural architecture, it means that structural complexity increases with the increase in the interlayer spacing, which, in turn, depends on the size of cations or water–cationic complexes arranged in the interlayer space. This tendency similarly works for organic molecules, which are incorporated into the uranyl vanadate frameworks. It can also be concluded that the architecture of the uranyl vanadate substructural units defines the complexity of the entire crystal structure. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

18 pages, 8164 KB  
Article
Study on the Structural Instability Characteristics of Interlayer Rock Strata During Mining Under Interval Goaf in Shallow Coal Seams
by Bin Wang, Jie Zhang, Haifei Lin, Dong Liu and Tao Yang
Appl. Sci. 2024, 14(24), 11870; https://doi.org/10.3390/app142411870 - 19 Dec 2024
Cited by 1 | Viewed by 764
Abstract
In order to study the instability characteristics of interlayer rock strata (IRS) in shallow buried close-distance coal seams under insufficient mining areas, based on the background of interval mining under goaf in Nanliang Coal Mine, this paper studies the instability characteristics of interlayer [...] Read more.
In order to study the instability characteristics of interlayer rock strata (IRS) in shallow buried close-distance coal seams under insufficient mining areas, based on the background of interval mining under goaf in Nanliang Coal Mine, this paper studies the instability characteristics of interlayer strata in interval mining under goaf by means of similar simulation, numerical simulation, and field measurement. The results indicated that the first weighting interval of the main roof during mining in the lower coal seam was 49 m, while small and large periodic weightings with intervals of 10–14 m and 15–19 m were identified. During periodic weighting, the support resistance ranged from 6813 to 10,935 kN, with a dynamic load factor of 1.07–1.74, and the peak abutment pressure in front of the working face was 5.85–9.85 MPa. The mining under the interval coal pillar (ICP) was the ‘stress increase zone’, and the mining under the temporary coal pillars (TCPs) and the interval goaf was the ‘stress release zone’. During the working face mining out of the ICP, the support resistance reached 10,934 kN, the dynamic load factor reached 1.74, and the abutment pressure (AP) reached 9.85 MPa, which was 60% higher than the AP mining under the “stress release zone”. Analysis suggests that the cutting instability of the IRS was the root cause of the increased AP in the working face of the lower coal seam. A numerical simulation was performed to verify the instability characteristics of the IRS in the interval goaf. The relationship between support strength and roof subsidence during the period of the working face leaving the coal pillar was established. A dynamic pressure prevention method involving pre-splitting and pressure relief of the ICP was proposed and yields superior field application performance. The findings of the study provide a reference for rock strata control during mining under the subcritical mining area in shallow and closely spaced coal seams. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

13 pages, 7666 KB  
Article
Polarization-Insensitive Metasurface with High-Gain Large-Angle Beam Deflection
by Huanran Qiu, Liang Fang, Rui Xi, Yajie Mu, Jiaqi Han, Qiang Feng, Ying Li, Long Li and Bin Zheng
Materials 2024, 17(23), 5688; https://doi.org/10.3390/ma17235688 - 21 Nov 2024
Cited by 1 | Viewed by 1395
Abstract
Metasurfaces have shown great potential in achieving low-cost and low-complexity signal enhancement and redirection. Due to the low transmission power and high attenuation issues of current high-frequency communication technology, it is necessary to explore signal redirection technology based on metasurfaces. This paper presents [...] Read more.
Metasurfaces have shown great potential in achieving low-cost and low-complexity signal enhancement and redirection. Due to the low transmission power and high attenuation issues of current high-frequency communication technology, it is necessary to explore signal redirection technology based on metasurfaces. This paper presents an innovative metasurface for indoor signal enhancement and redirection, featuring thin thickness, high gain, and wide-angle deflection. The metasurface integrates the design principles of a Fabry–Perot cavity (FPC) theory with a Phase Gradient Partially Reflective Metasurface (PGPRM). Its unit is a fishnet structure with a substrate only 1/33 λ thin. Based on the precise phase control of the dual-layer PGPRM (with an inter-layer distance of 8 mm), the proposed metasurface can obtain phase coverage as small as 78° while achieving high-gain beam deflection as large as 47°. Simulation results show that within the band 8.6–9.2 GHz (6.7%), a single-layer metasurface can deflect the beam to 29° with a maximum gain of 16.9 dBi. In addition, it is also 360° polarization-insensitive in the xoy plane at 9 GHz with large-angle deflection characteristic retained. Moreover, cascading PGPRM can effectively improve the beam deflection angle. After analysis, the scheme with a double-layer spacing of 8 mm was ultimately selected. Simulation results show a double-layer metasurface can deflect the beam to 47° with a maximum gain of 16.4 dBi. This design provides an efficient and cost-effective solution for large-angle beam deflection with gain enhancement for indoor wireless communication. Full article
(This article belongs to the Special Issue Advances in Metamaterials: Structure, Properties and Applications)
Show Figures

Figure 1

14 pages, 3920 KB  
Article
Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance
by Zhen Wu, Wenfeng He, Renjie Xie, Xuan Xiong, Zihan Wang, Lei Zhou, Fen Qiao, Junfeng Wang, Yan Zhou, Xinlei Wang, Jiajia Yuan, Tian Tang, Chenyao Hu, Wei Tong, Lubin Ni, Xin Wang and Yongsheng Fu
Molecules 2024, 29(20), 4968; https://doi.org/10.3390/molecules29204968 - 21 Oct 2024
Cited by 1 | Viewed by 2051
Abstract
Lithium–sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS2-NG composite, where MoS2 nanoflowers were uniformly grown on [...] Read more.
Lithium–sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS2-NG composite, where MoS2 nanoflowers were uniformly grown on graphene oxide (GO) through PANI modification, resulting in an increased interlayer spacing of MoS2. This expanded spacing exposed more active sites, enhancing polysulfide adsorption and catalytic conversion. The composite was used to prepare MoS2-NG/PP separators for Li-S batteries, which achieved a high specific capacity of 714 mAh g−1 at a 3 C rate and maintained a low capacity decay rate of 0.085% per cycle after 500 cycles at 0.5 C. The larger MoS2 interlayer spacing was key to improving redox reaction kinetics and suppressing the shuttle effect, making the MoS2-NG composite a promising material for enhancing the performance and stability of Li-S batteries. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

18 pages, 32081 KB  
Article
Monitoring and Law Analysis of Secondary Deformation on the Surface of Multi-Coal Seam Mining in Closed Mines
by Xiaofei Liu, Jiangtao Wang, Sen Du, Kazhong Deng, Guoliang Chen and Xipeng Qin
Remote Sens. 2024, 16(17), 3223; https://doi.org/10.3390/rs16173223 - 30 Aug 2024
Cited by 1 | Viewed by 1375
Abstract
A large number of mines have been closed due to resource depletion, failure to meet safety production requirements, and other reasons. To effectively ensure the safety of the ecological environment above these closed mines along with the safety of engineering construction, it is [...] Read more.
A large number of mines have been closed due to resource depletion, failure to meet safety production requirements, and other reasons. To effectively ensure the safety of the ecological environment above these closed mines along with the safety of engineering construction, it is necessary to monitor the secondary deformation of closed mines. Based on TerraSAR-X, Sentinel-1A data, and InSAR technology, this study obtained high-density secondary surface deformation data on the Jiahe Coal Mine and Pangzhuang Coal Mine in the western Xuzhou area. Combining mining geological data, we analyzed the spatiotemporal variation patterns and mechanisms of secondary deformation in multi-seam mining of closed mines. It was found that when mining multiple seams involves large interlayer spacing, the secondary deformation pattern shows a “W” shape. In this situation, the deformation can be divided into five stages: subsidence, uplift, re-subsidence, re-uplift, and relative stability. This study provides technical support for the evaluation and prevention of secondary deformation hazards in closed mines. Full article
Show Figures

Figure 1

13 pages, 4856 KB  
Article
Steam-Assisted Synthesis of Hectorite Loaded with Fe2O3 and Its Catalytic Fenton Degradation of Phenol
by Xia Liu, Haihui Xu, Xing Fu and Jinyang Chen
Catalysts 2024, 14(8), 521; https://doi.org/10.3390/catal14080521 - 12 Aug 2024
Cited by 3 | Viewed by 1639
Abstract
Fe2O3 loaded in the interlayer of hectorite was synthesized using a steam-assisted one-pot method to replace the traditional high-temperature and high-pressure hydrothermal method. The samples were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron [...] Read more.
Fe2O3 loaded in the interlayer of hectorite was synthesized using a steam-assisted one-pot method to replace the traditional high-temperature and high-pressure hydrothermal method. The samples were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and N2 adsorption–desorption isotherms. Fe2O3/hectorite had a layered hectorite structure. Due to the insertion of Fe2O3, the interlayer spacing increased and had a large specific surface area and pore size, benefiting catalytic reactions. Fe2O3/hectorite was used as a catalyst to degrade phenol in wastewater via the Fenton reaction. With this catalyst, the optimal Fenton reaction conditions were determined with an orthogonal test: pH, 3; temperature, 60 °C; and catalyst dosage, 0.5 g dm−3. Under these optimal reaction conditions, the degradation rate of phenol (200 mg dm–3) was 99.27% in 3 h. After five cycles, the degradation rate reached 95.72%, indicating the excellent reusability of this catalyst. In the temperature range 303–330 K, the catalytic degradation kinetics were studied as a pseudo-first-order reaction, and the apparent activation energy was 30.71 kJ/mol. Full article
Show Figures

Figure 1

12 pages, 5183 KB  
Article
Tailoring Alkalized and Oxidized V2CTx as Anode Materials for High-Performance Lithium Ion Batteries
by Yuxuan Zhang, Lin Gao, Minglei Cao and Shaohui Li
Materials 2024, 17(14), 3516; https://doi.org/10.3390/ma17143516 - 16 Jul 2024
Cited by 12 | Viewed by 1395
Abstract
V2CTx MXenes have gained considerable attention in lithium ion batteries (LIBs) owing to their special two-dimensional (2D) construction with large lithium storage capability. However, engineering high-capacity V2CTx MXenes is still a great challenge due to the limited [...] Read more.
V2CTx MXenes have gained considerable attention in lithium ion batteries (LIBs) owing to their special two-dimensional (2D) construction with large lithium storage capability. However, engineering high-capacity V2CTx MXenes is still a great challenge due to the limited interlayer space and poor surface terminations. In view of this, alkalized and oxidized V2CTx MXenes (OA-V2C) are envisaged. SEM characterization confirms the accordion-like layered morphology of OA-V2C. The XPS technique illustrates that undergoing alkalized and oxidized treatment, V2CTX MXene replaces -F and -OH with -O groups, which are more conducive to pseudocapacitive properties as well as Na ion diffusion, providing more active sites for ion storage in OA-V2C. Accordingly, the electrochemical performance of OA-V2C as anode materials for LIBs is evaluated in this work, showing excellent performance with high reversible capacity (601 mAh g−1 at 0.2 A g−1 over 500 cycles), competitive rate performance (222.2 mAh g−1 and 152.8 mAh g−1 at 2 A g−1 and 5 A g−1), as well as durable long-term cycling property (252 mAh g−1 at 5 A g−1 undergoing 5000 cycles). It is noted that the intercalation of Na+ ions and oxidation co-modification greatly reduces F surface termination and concurrently increases interlayer spacing in OA-V2C, significantly expediting ion/electron transportation and providing an efficient way to maximize the performance of MXenes in LIBs. This innovative refinement methodology paves the way for building high-performance V2CTx MXenes anode materials in LIBs. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

Back to TopTop