Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = lanthanide ion emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3912 KiB  
Review
Pr3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications
by Miroslav D. Dramićanin, Mikhail G. Brik, Željka Antić, Radu Bănică, Cristina Mosoarca, Tatjana Dramićanin, Zoran Ristić, George Daniel Dima, Tom Förster and Markus Suta
Nanomaterials 2025, 15(7), 562; https://doi.org/10.3390/nano15070562 - 6 Apr 2025
Cited by 5 | Viewed by 1367
Abstract
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in [...] Read more.
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in these processes. We describe the electronic and optical properties of the Pr3+ ion, emphasizing the conditions the host material must meet to obtain broad and intense emission in the UVC from parity-allowed transitions from the 4f5d levels and provide a list of materials that fulfill these conditions. This paper also delineates lanthanide-based upconversion, focusing on Pr3+ blue to UVC upconversion via the 3P0 and 1D2 intermediate states, and suggests routes for improving the quantum efficiency of the process. We review literature related to the use of upconversion materials in antimicrobial photodynamic treatments and for the blue to UVC upconversion germicidal effects. Further, we propose the spectral overlap between the UVC emission of Pr3+ materials and the germicidal effectiveness curve as a criterion for assessing the potential of these materials in antimicrobial applications. Finally, this paper briefly assesses the toxicity of materials commonly used in the preparation of upconversion materials. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

13 pages, 3701 KiB  
Article
Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands
by Paula Mediavilla, Antonio Ribeiro, Ángel Gutiérrez, Santiago Herrero and Mari Carmen Torralba
Inorganics 2025, 13(3), 93; https://doi.org/10.3390/inorganics13030093 - 19 Mar 2025
Viewed by 494
Abstract
Three new asymmetrically coordinated lanthanide derivatives based on the bicompartmental salen-type ligands N,N′-bis(3-ethoxysalicylidene)propylene-1,3-diamine (H2EtOsalpr) and 3-ethoxysalicylaldehyde (HEtvain) have been synthesized and structurally and photophysically characterized. All the compounds show dimeric structures of the [...] Read more.
Three new asymmetrically coordinated lanthanide derivatives based on the bicompartmental salen-type ligands N,N′-bis(3-ethoxysalicylidene)propylene-1,3-diamine (H2EtOsalpr) and 3-ethoxysalicylaldehyde (HEtvain) have been synthesized and structurally and photophysically characterized. All the compounds show dimeric structures of the general formula [Ln(H2EtOsalpr)(NO3)2(Etvain)]2 (Ln = Nd, Eu, Dy), with each salen-type ligand bridging two lanthanide ions. The Etvain ligand comes from the H2EtOsalpr decomposition being coordinated to the corresponding lanthanide. The Nd(III) derivative shows fluorescence emission in the NIR region, but for the Eu(III) and Dy(III) compounds, only a broad band, attributed to the ligand emission, was observed. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

19 pages, 9394 KiB  
Article
Dual Visible and NIR Emission, Mechanoluminescence, and Magnetic Properties of PPh4[LnL4] Chelates with Diphenyl-N-Benzoylamidophosphate
by Nataliia Kariaka, Dmytro Panasiuk, Viktor Trush, Sergii Smola, Nataliia Rusakova, Viktoriya Dyakonenko, Svitlana Shishkina, Aneta Lipa, Alina Bienko, Justyna Nasalska, Paula Gawryszewska and Volodymyr Amirkhanov
Molecules 2025, 30(6), 1245; https://doi.org/10.3390/molecules30061245 - 10 Mar 2025
Viewed by 870
Abstract
The design, synthesis, and study of lanthanide coordination compounds with luminescent and magnetic properties attractive in modern technologies is still a pressing and challenging task. In the present work, a series of coordination compounds of tetrakis-carbacylamidophosphate PPh4[LnL4] [...] Read more.
The design, synthesis, and study of lanthanide coordination compounds with luminescent and magnetic properties attractive in modern technologies is still a pressing and challenging task. In the present work, a series of coordination compounds of tetrakis-carbacylamidophosphate PPh4[LnL4] (where HL = diphenyl-N-benzoylamidophosphate) with several lanthanide ions such as NdIII, SmIII, DyIII, and TmIII was prepared and studied by X-ray analysis and luminescence spectroscopy at 293 and 77 K, as well as by magnetic measurements. Coordination compounds are not isostructural, but the type of coordination is the same. All of them have intense sensitized emission. PPh4[SmL4], PPh4[DyL4], and PPh4[TmL4] chelates are characterized by dual visible and infrared emission and mechanoluminescence. In addition, PPh4[DyL4] has multifunctional properties such as Vis and NIR emissions, brilliant mechanoluminescence and single-ion molecular magnet (SIM) properties. This type of compound holds great promise in multifunctional magnetic radiation converters. Full article
(This article belongs to the Special Issue Synthesis and Crystal Structure of Rare-Earth Metal Compounds)
Show Figures

Graphical abstract

40 pages, 9873 KiB  
Review
Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications
by Ziqin Song, Yuanqiang Hao, Yunfei Long, Peisheng Zhang, Rongjin Zeng, Shu Chen and Wansong Chen
Molecules 2025, 30(2), 396; https://doi.org/10.3390/molecules30020396 - 18 Jan 2025
Cited by 4 | Viewed by 1904
Abstract
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu3+, Tb3+, Ce3+) with the structural flexibility and tunability of coordination polymers. These materials are widely used in biological [...] Read more.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu3+, Tb3+, Ce3+) with the structural flexibility and tunability of coordination polymers. These materials are widely used in biological and chemical sensing, environmental monitoring, and medical diagnostics due to their narrow-band emission, long fluorescence lifetimes, and excellent resistance to photobleaching. This review focuses on the composition, sensing mechanisms, and applications of ratiometric Ln-CPs. The ratiometric fluorescence mechanism relies on two distinct emission bands, which provides a self-calibrating, reliable, and precise method for detection. The relative intensity ratio between these bands varies with the concentration of the target analyte, enabling real-time monitoring and minimizing environmental interference. This ratiometric approach is particularly suitable for detecting trace analytes and for use in complex environments where factors like background noise, temperature fluctuations, and light intensity variations may affect the results. Finally, we outline future research directions for improving the design and synthesis of ratiometric Ln-CPs, such as incorporating long-lifetime reference luminescent molecules, exploring near-infrared emission systems, and developing up-conversion or two-photon luminescent materials. Progress in these areas could significantly broaden the scope of ratiometric Ln-CP applications, especially in biosensing, environmental monitoring, and other advanced fields. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications—2nd Edition)
Show Figures

Figure 1

12 pages, 1481 KiB  
Article
Thiophenyl Anilato-Based NIR-Emitting Lanthanide (LnIII = Er, Yb) Dinuclear Complexes
by Fabio Manna, Mariangela Oggianu, Valentina Mameli, Stefano Lai, Angelica Simbula, Francesco Quochi, Narcis Avarvari and Maria Laura Mercuri
Molecules 2024, 29(23), 5804; https://doi.org/10.3390/molecules29235804 - 9 Dec 2024
Cited by 1 | Viewed by 937
Abstract
By combining ErIII and YbIII ions with 3,6-dithiophene-anilate (Th2An) and scorpionate hydrotris(pyrazol-1-yl)borate (HBpz3) ligands new luminescent dinuclear complexes are obtained. The two materials formulated as [((HB(pz)3)2Yb)2(μ-th2An)]·4DCM·1.3H2O [...] Read more.
By combining ErIII and YbIII ions with 3,6-dithiophene-anilate (Th2An) and scorpionate hydrotris(pyrazol-1-yl)borate (HBpz3) ligands new luminescent dinuclear complexes are obtained. The two materials formulated as [((HB(pz)3)2Yb)2(μ-th2An)]·4DCM·1.3H2O 1Yb and [((HB(pz)3)2Er)2(μ-th2An)]·4DCM·1.8H2O 1Er, respectively, have been structurally characterized by SC-XRD and PXRD studies. This study presents a comprehensive investigation of the photophysical properties of the Th2An ligand for the first time. Our findings reveal the crucial role of the thiophene anilate as an effective optical antenna, which sensitizes near-infrared (NIR)-emitting lanthanide ions, specifically ErIII and YbIII. The significant impact of vibrational quenching on the LnIII NIR emission efficiency has been also highlighted. Full article
Show Figures

Graphical abstract

33 pages, 18599 KiB  
Review
High Quantum Yields and Biomedical Fluorescent Imaging Applications of Photosensitized Trivalent Lanthanide Ion-Based Nanoparticles
by Tirusew Tegafaw, Dejun Zhao, Ying Liu, Huan Yue, Abdullah Khamis Ali Al Saidi, Ahrum Baek, Jihyun Kim, Yongmin Chang and Gang Ho Lee
Int. J. Mol. Sci. 2024, 25(21), 11419; https://doi.org/10.3390/ijms252111419 - 24 Oct 2024
Cited by 2 | Viewed by 2161
Abstract
In recent years, significant advances in enhancing the quantum yield (QY) of trivalent lanthanide (Ln3+) ion-based nanoparticles have been achieved through photosensitization, using host matrices or capping organic ligands as photosensitizers to absorb incoming photons and transfer energy to the Ln [...] Read more.
In recent years, significant advances in enhancing the quantum yield (QY) of trivalent lanthanide (Ln3+) ion-based nanoparticles have been achieved through photosensitization, using host matrices or capping organic ligands as photosensitizers to absorb incoming photons and transfer energy to the Ln3+ ions. The Ln3+ ion-based nanoparticles possess several excellent fluorescent properties, such as nearly constant transition energies, atomic-like sharp transitions, long emission lifetimes, large Stokes shifts, high photostability, and resistance to photobleaching; these properties make them more promising candidates as next-generation fluorescence probes in the visible region, compared with other traditional materials such as organic dyes and quantum dots. However, their QYs are generally low and thus need to be improved to facilitate and extend their applications. Considerable efforts have been made to improve the QYs of Ln3+ ion-based nanoparticles through photosensitization. These efforts include the doping of Ln3+ ions into host matrices or capping the nanoparticles with organic ligands. Among the Ln3+ ion-based nanoparticles investigated in previous studies, this review focuses on those containing Eu3+, Tb3+, and Dy3+ ions with red, green, and yellow emission colors, respectively. The emission intensities of Eu3+ and Tb3+ ions are stronger than those of other Ln3+ ions; therefore, the majority of the reported studies focused on Eu3+ and Tb3+ ion-based nanoparticles. This review discusses the principles of photosensitization, several examples of photosensitized Ln3+ ion-based nanoparticles, and in vitro and in vivo biomedical fluorescent imaging (FI) applications. This information provides valuable insight into the development of Ln3+ ion-based nanoparticles with high QYs through photosensitization, with future potential applications in biomedical FI. Full article
(This article belongs to the Special Issue The Application of Nanoparticles in Biomedicine)
Show Figures

Figure 1

14 pages, 3205 KiB  
Article
Lanthanide-Containing Polyoxometalate Crystallized with Bolaamphiphile Surfactants as Inorganic–Organic Hybrid Phosphors
by Rieko Ishibashi, Ruka Koike, Yoriko Suda, Tatsuhiro Kojima, Toshiyuki Sumi, Toshiyuki Misawa, Kotaro Kizu, Yosuke Okamura and Takeru Ito
Inorganics 2024, 12(6), 146; https://doi.org/10.3390/inorganics12060146 - 23 May 2024
Cited by 1 | Viewed by 1750
Abstract
Lanthanide elements such as europium exhibit distinctive emissions due to the transitions of inner-shell 4f electrons. Inorganic materials containing lanthanide elements have been widely used as phosphors in conventional displays. The hybridization of lanthanide ions with organic components enables to control of the [...] Read more.
Lanthanide elements such as europium exhibit distinctive emissions due to the transitions of inner-shell 4f electrons. Inorganic materials containing lanthanide elements have been widely used as phosphors in conventional displays. The hybridization of lanthanide ions with organic components enables to control of the material’s shapes and properties and broadens the possibility of lanthanide compounds as inorganic–organic materials. Lanthanide ion-containing polyoxometalate anions (Ln-POM) are a promising category as an inorganic component to design and synthesize inorganic–organic hybrids. Several inorganic–organic Ln-POM systems have been reported by hybridizing with cationic surfactants as luminescent materials. However, single-crystalline ordering has not been achieved in most cases. Here, we report syntheses and structures of inorganic–organic hybrid crystals of lanthanide-based POM and bolaamphiphile surfactants with two hydrophilic heads in one molecule. An emissive decatungstoeuropate ([EuW10O36]9−, EuW10) anion was employed as a lanthanide source. The bolaamphiphile counterparts are 1,8-octamethylenediammonium ([H3N(CH2)8NH3]2+, C8N2) and 1,10-decamethylenediammonium ([H3N(CH2)10NH3]2+, C10N2). Both hybrid crystals of C8N2-EuW10 and C10N2-EuW10 were successfully obtained as single crystals, and their crystal structures were unambiguously determined using X-ray diffraction measurements. The photoluminescence properties of C8N2-EuW10 and C10N2-EuW10 were investigated by means of steady-state and time-resolved spectroscopy. The characteristic emission derived from the EuW10 anion was retained after the hybridization process. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials)
Show Figures

Figure 1

12 pages, 3508 KiB  
Article
Upconversion Emission and Dual-Mode Sensing Characteristics of NaYF4:Yb3+/Er3+ Microcrystals at High and Ultralow Temperatures
by Xinyi Xu, Zhaojin Wang, Jin Hou, Tian Zhang, Xin Zhao, Siyi Di and Zijie Li
Nanomaterials 2024, 14(10), 871; https://doi.org/10.3390/nano14100871 - 17 May 2024
Cited by 6 | Viewed by 1353
Abstract
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and [...] Read more.
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and ultralow temperatures. We explore the relationship between temperature and the upconversion luminescence (UCL) spectra in both frequency and time domains. Our findings highlight the strong dependence of these spectral characteristics of lanthanide-doped NaYF4 crystals on temperature. Furthermore, we introduce a dual-mode luminescence temperature measurement technique, leveraging the upconversion emission intensity ratio for both green and red emissions. This study also examines the correlation between temperature sensing, energy level disparities, and thermal coupling in Er3+ ions across various temperature scales. Our research contributes to advancing the understanding and application of lanthanide-doped materials, setting a foundation for future innovations in temperature sensing across diverse fields. Full article
Show Figures

Figure 1

22 pages, 11398 KiB  
Article
Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics
by Maria Rita Cicconi, Hongyi Deng, Takahito Otsuka, Aadhitya Telakula Mahesh, Neamul Hayet Khansur, Tomokatsu Hayakawa and Dominique de Ligny
Materials 2024, 17(10), 2283; https://doi.org/10.3390/ma17102283 - 11 May 2024
Cited by 2 | Viewed by 2087
Abstract
In this study, the photoluminescence (PL) behavior of two aluminosilicate glass series containing alkali-niobates ranging from 0.4 to 20 mol% was investigated. The glasses exhibit an intense visible emission centered at ~18,400 cm−1 for the peralkaline series and at higher energies (~19,300 [...] Read more.
In this study, the photoluminescence (PL) behavior of two aluminosilicate glass series containing alkali-niobates ranging from 0.4 to 20 mol% was investigated. The glasses exhibit an intense visible emission centered at ~18,400 cm−1 for the peralkaline series and at higher energies (~19,300 cm−1) for the metaluminous glasses. However, the photoluminescence emission intensity varies significantly with the niobate content and the bulk chemistry. PL and fluorescence lifetime measurements indicate that the broad emission bands result from the overlap of different niobate populations, whose distribution changes with niobate content. The distinct PL behavior in the two glass series was related to the structural evolution of the niobate units upon niobium addition. An enhancement of the visible emission was observed for a higher fraction of distorted [NbO6] units. Eu-doping was carried out as a structural probe of the glass network, and also to determine if these glasses could be used as potential rare earth element (REE) activators. The crystal field strength around Eu ions is strongly dependent on the bulk chemistry and the niobate content. Furthermore, the peralkaline series showed energy transfer from the host [NbO6] to Eu3+, confirming the feasibility of exploring niobate glasses and glass-ceramics as lanthanide ion-activated luminescent materials. In addition, glass-ceramics (GCs) containing alkali-niobate phases with a perovskite-like structure were developed and studied to verify the optical performance of these materials. It was verified that the bulk chemistry influences crystallization behavior, and also the photoluminescence response. The transparent GC from the metaluminous series exhibits a quenching of the Eu3+ emission, whereas an enhanced emission intensity is observed for the peralkaline GC. The latter shows a strong excitation-dependent PL emission, suggesting energy transfer and migration of electronic excitation from one Eu population to another. Additionally, Eu3+ emissions arising from the D15 and D25 excited states were observed, highlighting the low phonon energy achievable in niobo-aluminosilicate hosts. Full article
Show Figures

Figure 1

37 pages, 768 KiB  
Article
Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII
by Sultana N. Nahar
Atoms 2024, 12(4), 24; https://doi.org/10.3390/atoms12040024 - 17 Apr 2024
Cited by 2 | Viewed by 1775
Abstract
The broad emission bump in the electromagnetic spectra observed following the detection of gravitational waves created during the kilonova event of the merging of two neutron stars in August 2017, named GW170817, has been linked to the heavy elements of lanthanides (Z = [...] Read more.
The broad emission bump in the electromagnetic spectra observed following the detection of gravitational waves created during the kilonova event of the merging of two neutron stars in August 2017, named GW170817, has been linked to the heavy elements of lanthanides (Z = 57–71) and a new understanding of the creation of heavy elements in the r-process. The initial spectral emission bump has a wavelength range of 3000–7000 Å, thus covering the region of ultraviolet (UV) to optical (O) wavelengths, and is similar to those seen for lanthanides. Most lanthanides have a large number of closely lying energy levels, which introduce extensive sets of radiative transitions that often form broad regions of lines of significant strength. The current study explores these broad features through the photoabsorption spectroscopy of 25 lanthanide ions, Ho I-III, Er I-IV, Tm I-V, Yb I-VI, and Lu I-VII. With excitation only to a few orbitals beyond the ground configurations, we find that most of these ions cover a large number of bound levels with open 4f orbitals and produce tens to hundreds of thousands of lines that may form one or multiple broad features in the X-ray to UV, O, and infrared (IR) regions. The spectra of 25 ions are presented, indicating the presence, shapes, and wavelength regions of these features. The accuracy of the atomic data used to interpret the merger spectra is an ongoing problem. The present study aims at providing improved atomic data for the energies and transition parameters obtained using relativistic Breit–Pauli approximation implemented in the atomic structure code SUPERSTRUCTURE and predicting possible features. The present data have been benchmarked with available experimental data for the energies, transition parameters, and Ho II spectrum. The study finds that a number of ions under the present study are possible contributors to the emission bump of GW170817. All atomic data will be made available online in the NORAD-Atomic-Data database. Full article
(This article belongs to the Special Issue Photoionization of Atoms)
Show Figures

Figure 1

17 pages, 746 KiB  
Article
Enhancement of the NORAD-Atomic-Data Database in Plasma
by Sultana N. Nahar and Guillermo Hinojosa-Aguirre
Atoms 2024, 12(4), 22; https://doi.org/10.3390/atoms12040022 - 9 Apr 2024
Cited by 2 | Viewed by 1887
Abstract
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially [...] Read more.
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially for the latest works, of the international collaborations of the Opacity Project and the Iron Project. The contents of the database are calculated values for energies, oscillator strengths, radiative decay rates, lifetimes, cross-sections for photoionization, electron-ion recombination cross-sections, and recombination rate coefficients. We have recently expanded NORAD-Atomic-Data with several enhancements over those reported earlier. They are as follows: (i) We continue to add energy levels, transition parameters, cross-sections, and recombination rates for atoms and ions with their publications. (ii) Recently added radiative atomic data contain a significant amount of transition data for photo-absorption spectral features corresponding to the X-ray resonance fluorescence effect, showing prominent wavelength regions of bio-signature elements, such as phosphorus ions, and emission bumps of heavy elements, such as of lanthanides, which may be created in a kilonova event. We are including (iii) collisional data for electron-impact-excitation, (iv) experimental data for energies and oscillator strengths for line formation, (v) experimental cross-sections for photoionization that can be applied for benchmarking and other applications, and (vi) the introduction of a web-based interactive feature to calculate spectral line ratios at various plasma temperature and density diagnostics, starting with our recently published data for P II. We presented a summary description of theoretical backgrounds for the computed data in the earlier paper. With the introduction of experimental results in the new version of NORAD, we present a summary description of measurement of high-resolution photoionization cross-sections at an Advanced Light Source of LBNL synchrotron set-up and briefly discuss other set-ups. These additions should make NORAD-Atomic-Data more versatile for various applications. For brevity, we provide information on the extensions and avoid repetition of data description of the original paper. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

11 pages, 2828 KiB  
Article
Structural and Photoluminescent Properties of a Novel Terbium Bis(thiocyanato)aurate, Tb[Au(SCN)2]3·6H2O
by Jared D. Taylor and Richard E. Sykora
Inorganics 2023, 11(11), 419; https://doi.org/10.3390/inorganics11110419 - 24 Oct 2023
Viewed by 1773
Abstract
The reaction of Tb3+ ions with KAu(SCN)2 results in the formation of the crystalline coordination compound Tb[Au(SCN)2]3·6H2O. Single-crystal X-ray diffraction has been employed to investigate the structural features of this compound. The crystallographic data are [...] Read more.
The reaction of Tb3+ ions with KAu(SCN)2 results in the formation of the crystalline coordination compound Tb[Au(SCN)2]3·6H2O. Single-crystal X-ray diffraction has been employed to investigate the structural features of this compound. The crystallographic data are as follows (Mo Kα, λ = 0.71073 Å): orthorhombic, Cmcm, a = 12.4907(9) Å, b = 8.5845(6) Å, c = 20.7498(8) Å, V = 3679.72(16) Å3, Z = 4, R1(I > 2(σ)) = 0.0232. This material represents the first known example of a lanthanide dithiocyanatoaurate compound. Au(SCN)2 anions bridge Tb3+ centers in a bidentate fashion to form the [Tb(H2O)4(Au(SCN)2)2+ 1D chains present in the structure. Trimeric Au units in the structure contain short aurophilic bonding interactions with distances of 3.1066(4) Å. The more common O–H‧‧‧O and O–H‧‧‧N H-bonding interactions in the structure are overshadowed by relatively rare O–H‧‧‧S interactions involving the bis(thiocyanato)gold(I) anions. Photoluminescence measurements illustrate that Tb[Au(SCN)2]3·6H2O displays strong Tb3+-based emission, but there is a lack of Au-based emission down to 85 K. Excitation spectra are recorded for the title compound and these measurements demonstrate the presence of a donor–acceptor process within the compound, leading to enhanced Tb3+-based emission. Full article
(This article belongs to the Special Issue Synthesis, Structure and Properties of f-Block Complexes)
Show Figures

Figure 1

26 pages, 6925 KiB  
Article
A Series of Novel 3D Coordination Polymers Based on the Quinoline-2,4-dicarboxylate Building Block and Lanthanide(III) Ions—Temperature Dependence Investigations
by Dmytro Vlasyuk, Renata Łyszczek, Liliana Mazur, Agnieszka Pladzyk, Zbigniew Hnatejko and Przemysław Woźny
Molecules 2023, 28(17), 6360; https://doi.org/10.3390/molecules28176360 - 30 Aug 2023
Cited by 4 | Viewed by 1989
Abstract
A series of novel 3D coordination polymers [Ln2(Qdca)3(H2O)x]·yH2O (x = 3 or 4, y = 0–4) assembled from selected lanthanide ions (Ln(III) = Nd, Eu, Tb, and Er) and a non-explored quinoline-2,4-dicarboxylate building [...] Read more.
A series of novel 3D coordination polymers [Ln2(Qdca)3(H2O)x]·yH2O (x = 3 or 4, y = 0–4) assembled from selected lanthanide ions (Ln(III) = Nd, Eu, Tb, and Er) and a non-explored quinoline-2,4-dicarboxylate building block (Qdca2− = C11H5NO42−) were prepared under hydrothermal conditions at temperatures of 100, 120, and 150 °C. Generally, an increase in synthesis temperature resulted in structural transformations and the formation of more hydrated compounds. The metal complexes were characterized by elemental analysis, single-crystal and powder X-ray diffraction methods, thermal analysis (TG-DSC), ATR/FTIR, UV/Vis, and luminescence spectroscopy. The structural variety of three-dimensional coordination polymers can be ascribed to the temperature effect, which enforces the diversity of quinoline-2,4-dicarboxylate ligand denticity and conformation. The Qdca2− ligand only behaves as a bridging or bridging–chelating building block binding two to five metal centers with seven different coordination modes arising mainly from different carboxylate group coordination types. The presence of water molecules in the structures of complexes is crucial for their stability. The removal of both coordinated and non-coordinated water molecules leads to the disintegration and combustion of metal–organic frameworks to the appropriate lanthanide oxides. The luminescence features of complexes, quantum yield, and luminescent lifetimes were measured and analyzed. Only the Eu complexes show emission in the VIS region, whereas Nd and Er complexes emit in the NIR range. The luminescence properties of complexes were correlated with the crystal structures of the investigated complexes. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding)
Show Figures

Figure 1

13 pages, 3163 KiB  
Article
Luminescent Papers with Asymmetric Complexes of Eu(III) and Tb(III) in Polymeric Matrices and Suggested Combinations for Color Tuning
by Roberto J. Aguado, Beatriz O. Gomes, Luisa Durães and Artur J. M. Valente
Molecules 2023, 28(16), 6164; https://doi.org/10.3390/molecules28166164 - 21 Aug 2023
Cited by 7 | Viewed by 2078
Abstract
Complexes of lanthanide ions, such as Eu(III) (red light emission) and Tb(III) (green light emission), with proper ligands can be highly luminescent and color-tunable, also attaining yellow and orange emission under UV radiation. The ligands employed in this work were poly(sodium acrylate), working [...] Read more.
Complexes of lanthanide ions, such as Eu(III) (red light emission) and Tb(III) (green light emission), with proper ligands can be highly luminescent and color-tunable, also attaining yellow and orange emission under UV radiation. The ligands employed in this work were poly(sodium acrylate), working as polymeric matrix, and 1,10-phenanthroline, taking advantage of its antenna effect. Possibilities of color display were further enhanced by incorporating a cationic polyfluorene with blue emission. This strategy allowed for obtaining cyan and magenta, besides the aforementioned colors. Uncoated cellulose paper was impregnated with the resulting luminescent inks, observing a strong hypsochromic shift in excitation wavelength upon drying. Hence, while a cheap UV-A lamp sufficed to reveal the polyfluorene’s blue emission, shorter wavelengths were necessary to visualize the emission due to lanthanide ions as well. The capacity to reveal, with UV-C radiation, a full-color image that remains invisible under natural light is undoubtedly useful for anti-counterfeiting applications. Furthermore, both lanthanide ion complexes and polyfluorenes were shown to have their luminescence quenched by Cu(II) ions and nitroarenes, respectively. Full article
(This article belongs to the Special Issue Colloids and Polymers: An Issue in Honor of Professor Björn Lindman)
Show Figures

Graphical abstract

18 pages, 6578 KiB  
Article
Influence of Ligand Environment Stoichiometry on NIR-Luminescence Efficiency of Sm3+, Pr3+ and Nd3+ Ions Coordination Compounds
by Trofim Polikovskiy, Vladislav Korshunov, Mikhail Metlin, Viktoria Gontcharenko, Darya Metlina, Nikolay Datskevich, Mikhail Kiskin, Yury Belousov, Alisia Tsorieva and Ilya Taydakov
Molecules 2023, 28(15), 5892; https://doi.org/10.3390/molecules28155892 - 5 Aug 2023
Cited by 4 | Viewed by 1703
Abstract
Six new complexes of the ligand HQcy (-4-(cyclohexanecarbonyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) and Ln3+ ions with emission in the near-infrared (Nd3+) or visible and near-infrared (Sm3+, Pr3+) spectral regions were synthesized and characterized using various methods, including single crystal [...] Read more.
Six new complexes of the ligand HQcy (-4-(cyclohexanecarbonyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) and Ln3+ ions with emission in the near-infrared (Nd3+) or visible and near-infrared (Sm3+, Pr3+) spectral regions were synthesized and characterized using various methods, including single crystal X-ray diffraction. The study demonstrated that both tris complexes [LnQcy3(H2O)(EtOH)] and tetrakis-acids [H3O][LnQcy4] can be synthesized by varying the synthetic conditions. The photochemical properties of the complexes were investigated experimentally and theoretically using various molecular spectroscopy techniques and Judd–Ofelt theory. The objective was to quantitatively and qualitatively disclose the influence of complex stoichiometry on its luminescence properties. The study showed that the addition of an extra ligand molecule (in the tetrakis species) increased molar extinction by up to 2 times, affected the shape of photoluminescence spectra, especially of the Pr3+ complex, and increased the quantum yield of the Sm3+ complex by up to 2 times. The results obtained from this study provide insights into the luminescent properties of lanthanide coordination compounds, which are crucial for the design and development of novel photonic materials with tailored photophysical properties. Full article
(This article belongs to the Special Issue Applications of Spectroscopy in Molecules)
Show Figures

Graphical abstract

Back to TopTop