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Abstract: Six new complexes of the ligand HQcy (-4-(cyclohexanecarbonyl)-5-methyl-2-phenyl-2,4-
dihydro-3H-pyrazol-3-one) and Ln3+ ions with emission in the near-infrared (Nd3+) or visible and
near-infrared (Sm3+, Pr3+) spectral regions were synthesized and characterized using various meth-
ods, including single crystal X-ray diffraction. The study demonstrated that both tris complexes
[LnQcy

3(H2O)(EtOH)] and tetrakis-acids [H3O][LnQcy
4] can be synthesized by varying the synthetic

conditions. The photochemical properties of the complexes were investigated experimentally and
theoretically using various molecular spectroscopy techniques and Judd–Ofelt theory. The objec-
tive was to quantitatively and qualitatively disclose the influence of complex stoichiometry on its
luminescence properties. The study showed that the addition of an extra ligand molecule (in the
tetrakis species) increased molar extinction by up to 2 times, affected the shape of photoluminescence
spectra, especially of the Pr3+ complex, and increased the quantum yield of the Sm3+ complex by
up to 2 times. The results obtained from this study provide insights into the luminescent properties
of lanthanide coordination compounds, which are crucial for the design and development of novel
photonic materials with tailored photophysical properties.

Keywords: Lanthanides; coordination compounds; luminescence; Judd–Ofelt theory

1. Introduction

Nowadays, there is a high demand for creating new highly efficient sources of emission
at the near-infrared (NIR) [1,2] or both the NIR and visible spectral regions [3,4]. One of the
prominent material classes for such purposes is lanthanide coordination compounds with
organic ligands. Such interest is related to optoelectronic [5–8], spectroscopic and photonic
applications [9–11] due to the relatively high luminescence efficiency and narrow emission
bands typical to trivalent lanthanide ions [9–11]. However, lanthanide ion’s luminescence
intensity is limited by Laporte selection rules [12]. Coordinating lanthanide ions with
organic molecules usually significantly increases the luminescence efficiency of the ions.
This happens due to the “antenna effect” [13], which is based on the electronic excitation
energy transfer from a ligand to an ion, partially allowing the forbidden f→ f* transition.
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Interestingly, intensities for the f→ f* transitions in compounds with a high-symmetry
coordination polyhedron tend to be weaker than those with low symmetry [14].

Acylpyrazolones have previously been studied as chelating ligands, heterocyclic
analogues of β-diketones, effectively sensitizing the luminescence of terbium [15–17] and
dysprosium [3,18,19] ions. This is possible due to the relatively high triplet state energy
of the ligands [20,21] compared to conventional β-diketones such as dibenzoylmethane
and tenoyltrifluoroacetone [22,23]. In addition, there are separate works devoted to the
emission properties of complexes of samarium [20,24] and neodymium [24,25], but this area
remains poorly investigated. The luminescence of acylpyrazolonates of praseodymium has
not been studied before. Moreover, there are few systematic studies of the photophysical
properties of coordination compounds based on Pr3+ ions [3,26].

Regarding chemical structure, acylpyrazolones form complexes of different compo-
sition: neutral tris-complexes [LnQ3(solv)1–2] [21,24,25,27–31], adducts with dipyridyl,
phenanthroline or phosphinoxides [LnQ3(L)], binuclear [Ln2Q6] [32,33], obtained in the
absence of coordinating solvents and M[LnQ4] tetrakis-acid anions, where M is an hy-
droxonium [3,20,34,35], alkylammonium [25,36] or silver cation [20]. Easily formed tris-
complexes, in which the coordination number of lanthanide takes values of 7 or 8 depending
on steric hindrance of the ligand, were investigated in the best way [37]. Unfortunately,
tris-complexes contain coordinated solvent molecules (water or alcohols), so their lumi-
nescence is attenuated by phonon-beam relaxation processes [3]. Tetrakis compounds are
barely described and their photophysical properties have practically not been investigated
in the literature [3,20,38,39]. Constructing a tetrakis compound, we modify luminescence
properties of compounds by three factors. Firstly, replacing two water molecules with an
additional neutral ligand molecule leads to suppression of the nonradiative multiphonon
relaxation on the O-H group oscillations [40]. Secondly, in general, a tetrakis compound
is not electrically neutral. Therefore, a cation in a compound may influence the electronic
structure of organic ligands. On the other hand, an additional ligand molecule can alter the
crystal symmetry of a coordination polyhedron [41–43].

In the present work, a series of tris and tetrakis coordination complexes of Sm3+,
Pr3+ and Nd3+ ions with methanoncyclohexyl(5-hydroxy-3-methyl-1-phenyl-1H-pyrazo-
4-yl)methanon were synthesized (see Scheme 1) and widely investigated using various
methods of molecular spectroscopy. The main goal was to quantitatively and qualitatively
compare the photophysical parameters of tris and tetrakis coordination compounds pair-
wise, such as photoluminescence quantum yields, radiative and non-radiative processes
rates in dependence on the amount of ligand molecules coordinating each ion.
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2. Results
2.1. Crystal Structure

As all lanthanide complexes are isostructural (Table S1), structure description will only
be given for [Sm(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Sm(Qcy)4].

2.1.1. Tris-Complexes

The structure is a mononuclear complex (See Figure 1), where the lanthanide ion is
coordinated by oxygen atoms of three ligands (O1–O6) and two oxygen atoms of solvate
molecules (O7 of ethanol and O1W of water), leading to the octa-coordinated complex
with the coordination polyhedron {SmO8} which is best described as a square antiprism.
Additionally, the structure contains one solvated molecule of ethanol, which is involved
in hydrogen bonding with the water molecule (O1W. . .O1S distance is 2.70 Å). Upon
further analysis of the crystal packing, the presence of intermolecular hydrogen bonds
between the water molecule and pyrazole fragment of the adjacent molecule of the complex
(O1W. . .N2 distance is 2.83 Å) was revealed, leading to the formation of hydrogen-bonded
centrosymmetric dimers (See Figure 2).
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Central metal atom and oxygen atoms of ligands are labeled. 
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Figure 2. View of the crystal packing of [Sm(Qcy)3(H2O)(EtOH)]·(EtOH). Hydrogen atoms not in-
volved in intermolecular interactions are not shown for clarity; solvent ethanol molecules as well as 
thermal ellipsoids are not illustrated. Hydrogen bonds are shown with dotted lines. 
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Figure 1. View of the asymmetric unit of [Sm(Qcy)3(H2O)(EtOH)]·(EtOH). Hydrogen atoms and sol-
vent ethanol molecule are not shown for clarity; thermal ellipsoids are illustrated at 50% probability. 
Central metal atom and oxygen atoms of ligands are labeled. 

 

Figure 2. View of the crystal packing of [Sm(Qcy)3(H2O)(EtOH)]·(EtOH). Hydrogen atoms not in-
volved in intermolecular interactions are not shown for clarity; solvent ethanol molecules as well as 
thermal ellipsoids are not illustrated. Hydrogen bonds are shown with dotted lines. 

2.1.2. Tetrakis-Complexes 
This structure is a mononuclear complex (See Figure 3), where the lanthanide ion is 

coordinated by oxygen atoms of four ligands, leading to an octa-coordinated negatively 

Figure 2. View of the crystal packing of [Sm(Qcy)3(H2O)(EtOH)]·(EtOH). Hydrogen atoms not
involved in intermolecular interactions are not shown for clarity; solvent ethanol molecules as well
as thermal ellipsoids are not illustrated. Hydrogen bonds are shown with dotted lines.

2.1.2. Tetrakis-Complexes

This structure is a mononuclear complex (See Figure 3), where the lanthanide ion
is coordinated by oxygen atoms of four ligands, leading to an octa-coordinated nega-
tively charged complex [Sm(Qcy)4]−, while the hydronium cation (H3O)+ is present as a
counterion. The {SmO8} coordination polyhedron is best described as a square antiprism.
Additionally, the complex lies on a two-fold rotation axis, and only half of the molecule
lies in the asymmetric unit of the crystal structure. Additional proof of the electric negativ-
ity of the complex can be found from the bond length analysis of the diketone fragment
(Table S2). A rather small difference in C–O and C–C bond lengths indicates that this
fragment possesses delocalized negative charge. The analysis of crystal packing revealed
that the hydronium cation is involved in two intermolecular hydrogen bonds with nitrogen
atoms of pyrazole fragments (O1W. . .N2 distance is 2.78 Å and O1W. . .N4 distance is
2.59 Å) of two adjacent molecules of the complex, leading to the linear polymer-like crystal
packing (See Figure 4).
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2.2. Optical Absorption

Optical absorption spectra, obtained for HL and complexes [Pr(Qcy)3(H2O)(EtOH)]·(EtOH),
[H3O][Pr(Qcy)4], [Nd(Qcy)3(H2O)(EtOH)]·(EtOH), [H3O][Nd(Qcy)4], [Sm(Qcy)3(H2O)(EtOH)]
·(EtOH) and [H3O][Sm(Qcy)4] dissolved in MeCN, are shown in Figure 5. All the spectra
qualitatively resemble each other. A pronounced maximum is observed at 268 nm. It
was found that the coordination of lanthanide ions by this ligand leads to a significant
increase in the molar extinction of the ligand environment of 40 times in comparison with
the free HL ligand. Energies of the first excited singlet states were estimated as the edge
of the low-energy band of the absorption spectra by a well-known tangent method [30].
For this purpose, the spectra were deconvoluted on Gaussian components. The S1 energy
values for all the compounds are similar and oscillate about 28,500 cm−1. The increase
in molar extinction is explained by an increase in the oscillator strength value of S0 → S1
transition due to the influence of heavy ions on ligand wave functions for the ground and
excited states.
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Additionally, as the spectra obtained for tris and tetrakis complexes are qualitatively
similar, it is clear that the optical absorption of complexes is related to ligand absorption.
Notably, adding an additional organic ligand molecule leads to an increase in molar
extinction by a factor of two for [Nd(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Nd(Qcy)4]
complexes, 1.4 for [Sm(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Sm(Qcy)4], and by almost
two for [Pr(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Pr(Qcy)4] complexes.

2.3. Photoluminescence

Photoluminescence (PL) spectra for all the compounds were recorded under CW
excitation at 340 nm. The spectra reveal numerous narrow emission bands, originated by f
→ f* transitions in ions. The interrelation of the following spectral bands with transitions
was established according to the literature [44].

Photoluminescence (PL) spectra of [Sm(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Sm(Qcy)4]
complexes in the visible and near-IR regions are shown in Figure 6. We observed narrow
spectral bands, typical for f→ f* transitions of the Sm3+ ion: 4G5/2 → 6H5/2 (555–620 nm),
4G5/2 → 6H7/2 (620–625 nm),4G5/2 → 6H9/2 (625–670 nm),4G5/2 → 6H11/2 (690–730 nm),
4G5/2 → 6H13/2 (780–800 nm),4G5/2 → 6F1/2 (880–895 nm),4G5/2 → 6H15/2 (895–920 nm),
4G5/2 → 6F3/2 (920–940 nm),4G5/2 → 6F5/2 (940–975 nm),4G5/2 → 6F7/2 (975–1050 nm),
4G5/2 → 6F9/2 (1100–1200 nm) . There was no ligand fluorescence in the PL spectra of both
complexes, which evidences the high efficiency of energy transfer from the ligand to the
ion. In addition, the observed emission bands are strongly split into several sub-bands due
to the Stark effect [45]. The spectra of [H3O][Sm(Qcy)4] reveal more sub-bands than the
spectra of [Sm(Qcy)3(H2O)(EtOH)]·(EtOH), which may indicate that the tetrakis complex
has lower coordination polyhedron symmetry in comparison with the tris complex [20].
However, as calculated by the Shape software (https://shapesoftware.com, accessed on
1 July 2023) [46], the symmetry point group of the coordination polyhedron {MO7} is a
square antiprism (D4d) in both cases.

The PL spectra of the [Pr(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Pr(Qcy)4] complexes
are shown in Figure 7. There are narrow spectral emission bands of the Pr3+ ion detected in
the visible region of the luminescence spectra of complexes, as well as wide ligand lumines-
cence bands in the blue-green region of the spectrum. The observed narrow emission bands
centered at 485 nm, 527 nm, 594 nm, 606 nm, 645 nm, 684 nm, 706 nm and 628 nm originate
from 3P0 → 3H4 , 3P0 → 3H5 , 1D2 → 3H4 , 3P0 → 3H6 , 3P0 → 3F2 , 1D2 → 3H5 , 3P0 → 3F3
и 3P0 → 3F4 transitions of the Pr3+ ion, respectively. The presence of highly intensive lig-
and fluorescence in the tris complex spectrum indicates an incomplete transfer of energy
to the excited states of the ion. Notably, there is a decrease in the relative intensity of the
luminescence of the ligand for the tetrakis complex in comparison with the tris complex.

The spectra of both complexes of the Pr3+ ion are similarly split by the Stark effect,
suggesting the same polyhedron symmetry for both compounds. This conclusion was
supported by the X-ray single crystal structure analysis (D4d group). Unfortunately, we
could not obtain the spectrum in the NIR region for the tris complex due to intensive
vibration quenching on the OH groups.

The photoluminescence spectra of [Nd(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Nd(Qcy)4]
complexes are shown in Figure 8. The typical spectral bands for Nd3+ ions are observed in
the spectra: 4 F3/2ß 4 I9/2 880 nm, 4 F3/2ß 4 I11/2 1056 nm 4 F3/2ß 4 I13/2 1330 nm.
The emission bands related to 4 F3/2ß 4 I9/2 880 nm, and 4 F3/2ß 4 I11/2 electronic tran-
sitions are split by several Stark components centered at the same wavelengths for both the
compounds. Therefore, there is no coordination polyhedron symmetry difference for these
complexes.

https://shapesoftware.com
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2.4. Photoluminescence Excitation

The photoluminescence excitation spectra were obtained for all the investigated com-
plexes with the registration wavelength of 1064 nm for Nd3+ ion complexes, 650 nm for
Sm3+ ion complexes and 605 nm for Pr3+ ion complexes. The excitation spectra for tris and
tetrakis complexes qualitatively resemble each other pairwise (See Figure 9). The most
intensive excitation for all the complexes can be achieved via the ligand excited states with
the maximum located at 340 nm. However, we also observed narrow excitation bands
corresponding to resonant excitation of the ions through f-f* electronic transitions. Notably,
the [Nd(Qcy)3(H2O)(EtOH)]·(EtOH) complex has more intensive bands related to excitation
through the ion than [H3O][Nd(Qcy)4], while for Pr3+ ion complexes, tetrakis one has more
intensive bands related to excitation through the ion.
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2.5. Judd–Ofelt Analysis

All the complexes were successfully investigated in terms of the Judd–Ofelt the-
ory [47,48] and their Ωt (t = 2, 4, 6) intensity parameters as well as the trad radiative
lifetimes of the emission states of the ions are presented in Tables 1–3 and S3–S5. The gen-
eral procedure for Nd3+ and Sm3+ complexes was the same as in [2,20,49]. The calculations
included in the transition bands are labeled in the absorption spectra of the complexes
according to [44,50], see Figures S1–S3. The refractive index was set as 1.47 [51]. Notably,
we carried out an analysis for praseodymium complexes via the standard JO theory with
physically valid intensity parameters. The set of transitions used for the calculations was
mostly chosen to minimize the root-mean-square deviation, see Tables S3–S5.

Table 1. Calculated electric-dipole transition probabilities Arad, branching ratios bcalc, and radiative
lifetime trad for praseodymium complexes.

[Pr(Qcy)3(H2O)(EtOH)]·(EtOH) [H3O][Pr(Qcy)4]
3P0 → 2S+1LJ Wavelength, nm Arad, s−1 bcalc, % Arad, s−1 bcalc, %

1D2 3051 26.4 0.03 8.5 0.02
3F4 697 1165.5 1.6 1996.7 5.4
3F2 635 56,964.5 81.1 18,349.5 49.7
3H6 608 6415.1 9.1 6886.3 18.6
3H4 482 5656.8 8.1 9690.4 26.2

trad = 14.2 µs; trad = 27.1 µs;
3P1 → 2S+1LJ Wavelength, nm Arad, s−1 bcalc, % Arad, s−1 bcalc, %

1D2 2223 359.7 0.2 115.9 0.1
3F4 688 2973.2 1.5 5093.23 4.7
3F3 669 97,011.6 49.2 34,600.8 31.8
3F2 611 58,151.7 29.5 18,731.9 17.3
3H6 586 12,305.9 6.2 13,209.9 12.2
3H5 520 20,134.5 10.2 26,390.4 24.3
3H4 468 6083.7 3.08 10,421.8 9.6

trad = 5.1 µs; trad = 9.2 µs;
1D2 → 2S+1LJ Wavelength, nm Arad, s−1 bcalc, % Arad, s−1 bcalc, %

3F4 995 30,580.5 74.6 10,155.6 51.9
3F3 956 1880.1 4.6 708.9 3.6
3F2 843 1685.3 4.1 1279.6 6.5
3H6 796 757.8 1.8 1131.9 5.8
3H5 678 47.9 0.1 65.7 0.3
3H4 592 6048.3 14.8 6206.9 31.8

trad = 24.3 µs; trad = 51.2 µs;
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Table 2. Calculated electric-dipole transition probabilities Arad, branching ratios bcalc, and radiative
lifetime trad for neodymium complexes.

[Nd(Qcy)3(H2O)(EtOH)]·(EtOH) [H3O][Nd(Qcy)4]
4F3/2 → 2S+1LJ Wavelength, nm Arad, s−1 bcalc, % Arad, s−1 bcalc, %

4I15/2 880 1890.2 48.2 2951.6 52.6
4I13/2 1060 1717.7 43.8 2056.5 40.8
4I11/2 1330 295.9 7.5 314.9 6.2
4I9/2 1830 15.2 0.4 16.2 0.3

trad = 255.2 µs; trad = 198.5 µs;

Table 3. Calculated electric-dipole transition probabilities Arad, branching ratios bcalc, and radiative
lifetime trad for samarium complexes.

[Sm(Qcy)3(H2O)(EtOH)]·(EtOH)[H3O][Sm(Qcy)4] *
4G5/2 → 2S+1LJ Wavelength, nm Arad, s−1 bcalc, % Arad, s−1 bcalc, %

6H5/2 565 42.4 2.5 8.6 2.7
6H7/2 610 201.4 12.1 46.2 14.9
6H9/2 650 1006.7 60.4 178.7 57.6
6H11/2 715 57.1 3.4 14.3 4.6
6H13/2 800 5.8 0.3 0.8 0.3
6F3/2 936 36.3 2.2 6.1 1.9
6F5/2 949 202.8 12.1 34.9 11.2
6F7/2 1036 5.5 0.3 1.5 0.5
6F9/2 1180 108.2 6.4 18.7 6.0

trad = 0.6 ms; trad = 3.2 ms;
* Data were revealed previously in [20].

Radiative lifetimes have an increasing trend for the samarium and praseodymium
tetraxis complexes. The strongest effect observed for the samarium complexes since trad
for [H3O][Sm(Qcy)4] is 6 times higher than that for [Sm(Qcy)3(EtOH)]. Increasing of the
radiative lifetime generally and mostly resulted from the stronger mixing of the 4f-states
with the opposite parity states from configurations with higher energies [47]. Addition-
ally, it is commonly considered that the parameter Ω2 is strongly enhanced by covalent
bonding and depends on the degree of symmetry of the ligand environment. Relative to
the analysis of the Stark splitting and X-ray analysis for these complexes (see one for the
tris complex here [20]), we hardly observed any significant changes in symmetry or coor-
dination number, but the maxima of the NIR-luminescent bands were slightly shifted for
[Sm(Qcy)3(H2O)(EtOH)]·(EtOH) indicating the so-called “nephelauxetic effect” [52]. This
peculiarity is possibly related ton the five-times-greater value of Ω2 for the tris complex.
Additionally, to the luminescent spectra of the complexes, evaluated branching ratio values
for 4G5/2-6H9/2 transition are higher than 50% for both complexes, allowing us to consider
them potentially suitable for lasing.

As for the praseodymium complexes, we conclude that the radiative lifetime trad
increased by about twice for tetraxis for all discussed emission layers, viz. 3P0, 3P1 and
1D2. Since transitions from different emission layers are overlapped and strong ligand-
centered luminescence occurs, we can hardly distinguish the experimental branching ratios;
however, the calculated ones show a change, with branching ratios increasing for transitions
of higher energies for the [H3O][Pr(Qcy)4] complex.
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The analysis of the neodymium complexes reveals a 22% decrease in lifetime from
255 to 198 µs for tetraxis complexes, and no changes in Ω2 parameters. Thus, the symmetry
state for both complexes is the same or very close. We suppose that this behavior results
from changes in the delocalization of the outer d-orbitals of ions caused by the ligand field
(this is the nephelauxetic effect).

2.6. Luminescent Decays and Quantum Yields

For a better understanding of electronic excitation and relaxation processes in the in-
vestigated compounds, luminescence decays were recorded. As seen in Figure 10, the
tetrakis Sm3+ complex had a longer lifetime compared to the tris Sm3+ complex. In
particular, characteristic lifetime measured at the registration wavelength of 650 nm for
[H3O][Sm(Qcy)4] was 55 µs, which is four times greater than the lifetime of 13 µs recorded
for [Sm(Qcy)3(H2O)(EtOH)]·(EtOH). Similarly, an increase in the luminescence lifetime was
observed in the NIR region with the registration at 953 nm ( 4G5/2 → 6F5/2 ) from 14 to
66 µs for tris and tetrakis compounds. Both complexes show monoexponential behavior at
visible and NIR regions, which evidences that there is only one emission center.
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Luminescent decays for [Pr(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Pr(Qcy)4] com-
plexes are shown in Figure 11. Herein, the decays have a more complicated behavior than
Sm3+ complexes and can be fitted by a multiexponential law:

Ith(t) = ∑n
i=1 Aie

− t
τi , (1)

where τi and Ai are lifetimes and corresponding amplitudes, respectively. The measured
luminescence decay is determined by

Iexp(t) =
∫ ∞

0
Iir f
(
t′
)

Ith
(
t− t′

)
dt′, (2)

where Iir f (t′) is the instrument response function (IRF), which can be described as a double-
Gaussian function with the characteristic time τirf = 0.5 ns for the measurements in the NIR
region of the spectrum and an exponential function with the characteristic time τirf =1 ns
(see Figure S1 in Supplementary Material).
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monitored at 605 nm (1) and 1020 nm (2).

The Pr3+ ion complex decays obey a three-exponential law with characteristic lifetimes
of several nanoseconds ( τ1), hundreds of nanoseconds ( τ2), and microseconds ( τ3) (See
Table 4). The longest lifetime τ3 was 1278 ns for [Pr(Qcy)3(H2O)(EtOH)]·(EtOH) and 1693 ns
for [H3O][Pr(Qcy)4], and is related to ligand phosphorescence, which was observed in PL
spectra (See Figure 11). We could not measure the NIR tetrakis complex decay due to the
extremely low luminescence intensity.

Table 4. Comparison of characteristic lifetimes of coordination compounds on different registration
wavelengths.

Complex λ, nm τ1, ns τ2, ns Φ, %

[Nd(Qcy)3(H2O)(EtOH)]·(EtOH) 1056 146 1046 1.3

[H3O][Nd(Qcy)4] 1056 1183 – 1.3

[Pr(Qcy)3(H2O)(EtOH)]·(EtOH)
605 5 184 0.4

1020 5 58 –

[H3O][Pr(Qcy)4]
605 81 392 0.4

1020 85 – –

[Sm(Qcy)3(H2O)(EtOH)]·(EtOH)
650 13 × 103 – 1.3

953 14 × 103 – 0.5

[H3O][Sm(Qcy)4]
650 55 × 103 – 2.0

953 66 × 103 – 0.4

Specifically, the lifetimes obtained for [Pr(Qcy)3(H2O)(EtOH)]·(EtOH) with registra-
tion at the visible spectral region are several times higher than the lifetimes at the NIR
spectral region. This phenomenon can be explained by the fact that the radiative transition
1D2 → 3F4 (1020 nm) is more susceptible to non-radiative relaxation on the O-H vibra-
tions of water molecules than the transition 3 P0 → 3H6 (606 nm) due to a small energy
difference. Shorter lifetimes were observed for tris compounds (606 nm : τ1 = 5 ns,
τ2 = 382 ns; 1020 nm : τ1 = 5 ns, τ2 = 58 ns), compared to tetrakis compounds
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(606 nm : τ1 = 86 ns, τ2 = 183 ns; 1020 nm : τ1 = 85 ns). Notably, the [H3O][Pr(Qcy)4]
complex had a monoexponential decay at the NIR spectral region, and the long-term de-
cay component vanished, in contrast to [Pr(Qcy)3(H2O)(EtOH)]·(EtOH) complex, which
remained biexponential.

Photoluminescence decays for [Nd(Qcy)3(H2O)(EtOH)]·(EtOH) and [H3O][Nd(Qcy)4]
complexes, with the registration wavelength of 1056 nm, are shown in Figure 12. The tris
complex has biexponentially fitted decay with characteristic lifetimes τ1 = 146 ns and
τ2 = 1046 ns. The tetrakis complex has monoexponential behaviour, and its characteristic
lifetime is τ = 1183 ns.
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Photoluminescence quantum yield (Φ) values were measured for all the compounds
under optical excitation at 365 nm. As seen from Table 4, Nd3+ ion-based complexes
have similar values of Φ = 1.3%, and Pr3+ ion based complexes have Φ = 0.4%. However,
the [Sm(Qcy)3(H2O)(EtOH)]·(EtOH) complex has Φ = 0.5% in the NIR spectral area and
Φ = 1.3% in the visible spectral area, while [H3O][Sm(Qcy)4] complex has Φ = 0.4% and
Φ = 2.0% in the NIR and visible regions, respectively. Therefore, adding the fourth ligand
molecule to a compound leads to a significant increase in Φ for visible emissions, while
there is no effect in the NIR region.

The 4G5/2 → 6H9/2 transition of the Sm3+ ion, which is the most intensive emission
band, is an electric dipole transition, while the 4G5/2 → 6H5/2 transition is a magnetic
dipole transition. On that basis, ligand environment polarizability of Sm3+ ion tris and
tetrakis complexes was estimated as the difference between the integrated magnetic dipole
and electro dipole transitions. As we observed a bigger value for the tetrakis complex
(10.3 for tetrakis against 7.8 for tris), we conclude that it is more polarized, which can
explain the increase in the quantum yield in the visible region for the tetrakis complex in
comparison with the tris one.

3. Materials and Methods
3.1. Experimental Setups

Single-crystal X-ray diffraction analysis of [Ln(Qcy)3(H2O)(EtOH)]·(EtOH) (Ln = Sm,
Pr, Nd) was carried out on a Bruker D8 Venture diffractometer (MoKα radiation, ω and
ϕ-scan mode), and SCXRD analysis of (H3O)+[Ln(Qcy)4]− (Ln = Sm, Pr, Nd) was carried out
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on a Bruker D8 Quest diffractometer (MoKα radiation,ω andϕ-scan mode). The structures
were solved with direct methods and refined using the least-squares method in the full-
matrix anisotropic approximation on F2. All hydrogen atoms were located in calculated
positions and refined within a riding model. All calculations were performed using the
SHELXTL [53,54] and Olex2 [55] software packages. Atomic coordinates, bond lengths,
angles, and thermal parameters have been deposited at the Cambridge Crystallographic
Data Centre with deposition numbers—CCDC 2280580-2280585, which are available free of
charge at www.ccdc.cam.ac.uk (accessed on 13 July 2023).

Elemental analysis was performed on an Elementar VarioEL Cube CHNO(S) analyzer
(Ele-mentar Analysensysteme GmbH, Langenselbold, Germany). The lanthanide content
was determined by complexometric titration with a standard Trilon B (disodium salt of
ethylenediaminetetraacetic acid) solution in the presence of Xylenol Orange as an indicator.
The sample was decomposed by heating with 70% HNO3 before titration [56].

Visible and NIR absorption spectra for all the complexes and free ligands were
recorded on a JASCO V-770 (Jasco, Tokyo, Japan) spectrophotometer operating within
200–3200 nm. Concentrations of the solutions were approximately 10−5 M. For solutions,
the measurements were performed using quartz cells with a 1 cm pathlength.

Visible photoluminescence spectra and excitation spectra for the complexes and the
free ligand were obtained at room temperature using a Horiba Jobin-Yvon Fluorolog QM-
75-22-C spectrofluorimeter with a 75 W xenon arc lamp (PowerArc, HORIBA, Kyoto, Japan).
A Hamamatsu R13456 (Hamamatsu Photonics, Hamamatsu, Japan) cooled photomultiplier
tube sensitive in the UV–Vis–NIR region (200–950 nm) was used as the detector. For the
NIR spectral region measurements, the same setup was used, except for the detector, which
was replaced by a Hamamatsu H10330 cooled photomultiplier tube sensitive in NIR region
(950–1700 nm). Luminescence decays in the visible region and NIR region of the spectrum
for the complexes were obtained in solid state using the same setup equipped with a Xe
flash lamp as the excitation source.

Luminescence quantum yields in the visible region were obtained using an absolute
method with by a home-made setup based on a MgO-covered integrating sphere with
a diameter of 180 mm and FD-10G calibrated germanium photodiode detector; a CW
emitting LED (365 nm) was used as an excitation source. Each sample was measured a few
times under slightly different experimental conditions, and the results were averaged. The
estimated error for the quantum yields was ±10%.

For all optical measurements, the corresponding instrument response functions were
taken into account. The experiments were performed in air at atmospheric pressure.
Degradation of the optical properties was not observed during the experiments.

3.2. Synthesis

Commercially available reagents and solvents were used for synthesis without further
purification unless otherwise stated. The HQcy ligand was synthesized according to the
previously described method [57]. Lanthanide chloride crystalline hydrates were obtained
by dissolving the corresponding oxides (99.999%, LANHIT, Moscow, Russia) in extra pure
hydrochloric acid.

The tetrakis complexes H3O[Ln(Qcy)4] were prepared according to the previously
reported procedure [3,20]. For IR spectra see Figure S4. The powder XRD method was
used to confirm that the powder phase composition corresponds to a single crystal (see
Figure S5).

H3O[Pr(Qcy)4], 1. Green plates, 75%. Anal. Calc. for C68H79N8O9Pr: C, 63.15; H,
6.16; N, 8.65; Pr, 10.89%. Found: C, 62.1; H, 6.4; N, 8.6; Pr, 10.5. IR (cm−1): 3510 VW
(ν O–HH3O+), 2927 M, 2851 W (ν C-HCyclohexyl), 1672 W (δ O–HH3O+), 1614 VS (ν
C=ODiketone), 1594 S, 1581 M, 1497 VS (ν C–C), 1484 S, 1461 M, 1437 S, 1410 M, 1399 M,
1369 M, 1324 W, 1149 VW, 1124 VW, 1079 M, 1029 W, 1009 W, 999 W, 978 M, 921 W, 906 W,
809 W.

www.ccdc.cam.ac.uk
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H3O[Nd(Qcy)4], 1. Pale violet plates, 74%. Anal. Calc. for C68H79N8NdO9: C, 62.99; H,
6.14; N, 8.64; Nd, 11.12%. Found: C, 63.1; H, 6.7; N, 8.5; Nd, 10.5. IR (cm−1): 3604 VW (ν O–
HH3O+), 2926 S, 2851 S (νC-HCyclohexyl), 1672 S (δO–HH3O+), 1615 VS (νC=ODiketone),
1594 S, 1581 S, 1498 VS (ν C–C), 1484 VS, 1461 S, 1437 VS, 1410 S, 1399 S, 1368 VS, 1324 S,
1234 M, 1149 M, 1079 S, 1029 M, 1009 M, 999 M, 978 S, 920 W, 904 M, 809 S, 691 S.

H3O[Sm(Qcy)4], 1. Pale yellow plates, 78%. Anal. Calc. for C68H79N8O9Sm: C,
62.69; H, 6.11; N, 8.60; Sm, 11.54%. Found: C, 62.0; H, 6.7; N, 8.5; Sm, 11.9. IR (cm−1):
3508 VW (νO–HH3O+), 2927 M, 2852 M (ν C-HCyclohexyl), 1674 M (δO–HH3O+), 1616 VS
(ν C=ODiketone), 1594 S, 1582 S, 1498 VS (ν C–C), 1486 S, 1461 S, 1411 M, 1399 M, 1370 S,
1324 W, 1234 W, 1150 W, 1125 W, 1080 S, 1029 M, 1009 W, 999 W, 978 M, 921 W, 905 W, 904 W,
810 M.Tris complexes [Ln(Qcy)3(H2O)(EtOH)]·(EtOH). were synthesized using a modified
method [3]. For IR spectra see Figure S4. The powder XRD method was used to confirm
that the powder phase composition corresponds to a single crystal (see Figure S6).

[Pr(Qcy)3(H2O)(EtOH)]·(EtOH) Green needles, 66%. Anal. Calc. for C55H71N6O9Pr:
C, 59.99; H, 6.50; N, 7.61; Pr, 12.80%. Found: C, 60.1; H, 6.5; N, 7.6; Pr, 12.8. IR (cm−1):
3590 VW (ν O–H H2O), 2929 M, 2852 W (ν C-HCyclohexyl), 1646 M (δ O–H H2O), 1614 VS
(ν C=ODiketone), 1593 S, 1582 S, 1531 M, 1499 S (ν C–C), 1460 S, 1453 M, 1437 S, 1398 M,
1371 M, 1325 W, 1234 W, 1200 VW, 1176 VW, 1156 VW, 1142 VW, 1129 VW, 1079 M, 1027 W,
1010 W, 1000 W, 979 M, 905 VW, 756 M.

[Nd(Qcy)3(H2O)(EtOH)]·(EtOH) Pale violet needles, 66%. Anal. Calc. for C55H71N6O9Nd:
C, 59.81; H, 6.48; N, 7.61; Nd, 13.06%. Found: C, 60.2; H, 6.5; N, 7.6; Nd, 13.1. IR (cm−1):
3632 VW (ν O–H H2O), 2930 M, 2852 W (ν C-HCyclohexyl), 1645 M (δ O–H H2O), 1613 VS
(ν C=ODiketone), 1594 S, 1582 S, 1532 M, 1499 S (ν C–C), 1461 S, 1453 M, 1438 S, 1399 M,
1374 M, 1325 W, 1235 W, 1201 VW, 1176 VW, 1157 VW, 1142 VW, 1129 VW, 1079 M, 1028 W,
1010 W, 1000 W, 979 M, 756 M.

[Sm(Qcy)3(H2O)(EtOH)]·(EtOH) Pale yellow needles, 62%. Anal. Calc. for C55H71N6O9Sm:
C, 59.48; H, 6.44; N, 7.57; Sm, 13.54%. Found: C, 59.7; H, 6.5; N, 7.6; Sm, 13.7. IR (cm−1):
3627 VW (ν O–HH3O+), 2930 M, 2852 W (ν C-HCyclohexyl), 1672 VW (δ O–HH3O+),
1614 VS (ν C=ODiketone), 1594 S, 1582 M, 1532 M, 1501 VS (ν C–C), 1487 S, 1461 M, 1451 S,
1437 S, 1398 M, 1373 M, 1324 W, 1234 W, 1176 W, 1157 W, 1129 W, 1079 M, 1027 W, 1010 W,
1000 W, 979 M, 921 W, 755 W.

4. Conclusions

Tris and tetrakis coordination compounds of Sm3+, Nd3+ and Pr3+ ions were investi-
gated pairwise in the present work. We found that adding an additional ligand molecule
significantly increases the molar extinction by up to two times. In addition, it slightly
changes the shapes of the Pr3+ and Sm3+ complexes’ PL spectra in the visible region and
strongly affects the shape of the Pr3+ ion tetrakis complex PL spectrum in the NIR region.
However, the polyhedron symmetry does not alter as a result of adding a fourth ligand
molecule, except for Sm3+ complexes, where we observe lower symmetry for the tetrakis
complex than for the tris complex. We also report a significant difference in luminescence
lifetime for tris and tetrakis complexes of Sm3+ and Nd3 ions. Notably, Sm3+ tris and
tetrakis complexes have similar luminescence decay behavior in the visible and NIR re-
gions pairwise. Conversely, the short-time component disappears for the tetrakis Pr3+

complex in the NIR region.
While Nd3+ and Pr3+ ions complexes have the same quantum yield values of 1.3% and

0.4% (in visible region), respectively, we observed a huge increase in quantum yield for the
Sm3+ tetrakis complex in the visible region in comparison with the tris complex (from 1.3%
to 2.0%), although their quantum yield values in NIR region are practically equal (0.4–0.5%).
We consider that the luminescence quantum yield increase in the Sm3+ ion complexes is
related not only to the substitution of water molecules by a ligand molecule, but also to the
polyhedron symmetry change.

The findings of this study may have significant implications in optoelectronics, telecom-
munication, and bioimaging, where the utilization of luminescence in the NIR region of the
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spectrum can lead to advancements in sensing, imaging, and other cutting-edge technolo-
gies.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28155892/s1, Figure S1: Absorption spectra for praseodymium
complexes in DMSO solvent with concentration of 3 × 10−3 M.; Figure S2: Absorption spectra
for neodymium complexes in DMSO solvent with concentration of 3 × 10−3 M.; Figure S3: Ab-
sorption spectra for samarium complexes in DMSO solvent with concentration of 3 × 10−3 M.;
Figure S4: IR transmittance spectra of complexes (KBr pellets, 298K).; Figure S5: PXRD patterns
of tetrakis-complexes of Pr, Nd and Sm and simulated from single crystal data of Sm complex.
Figure S6: PXRD patterns of tris-complexes of Pr, Nd and Sm and simulated from single crys-
tal data of Pr complex. Table S1: Crystal data and refinement parameters for [Sc(Qcy)3(DMSO)],
[La(Qcy)3(H2O)(EtOH)]·(EtOH), [Gd(Qcy)3(H2O)] and [Lu(Qcy)3(DMSO)]; Table S2: C–O and C–C
bond lengths of the diketone fragment in (H3O)+[Sm(Qcy)4]−; Table S3: Experimental fexp and
calculated fcalc oscillator strengths, Judd–Ofelt parameters Ωt (t = 2, 4, 6), and root-mean-squared
deviation RMS for praseodymium complexes; Table S4: Experimental fexp and calculated fcalc oscil-
lator strengths, Judd–Ofelt parameters Ωt (t = 2, 4, 6), and root-mean-squared deviation RMS for
neodymium complexes; Table S5: Experimental fexp and calculated fcalc oscillator strengths, Judd–
Ofelt parameters Ωt (t = 2, 4, 6), and root-mean-squared deviation RMS for samarium complexes.
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