Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,369)

Search Parameters:
Keywords = land remote sensing data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 32792 KB  
Article
MRV-YOLO: A Multi-Channel Remote Sensing Object Detection Method for Identifying Reclaimed Vegetation in Hilly and Mountainous Mining Areas
by Xingmei Li, Hengkai Li, Jingjing Dai, Kunming Liu, Guanshi Wang, Shengdong Nie and Zhiyu Zhang
Forests 2025, 16(10), 1536; https://doi.org/10.3390/f16101536 - 2 Oct 2025
Abstract
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow [...] Read more.
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow effects. Fixed UAV altitude and missing topographic data further cause resolution inconsistencies, posing major challenges for accurate vegetation detection in reclaimed land. To enhance multi-spectral vegetation detection, the model input is expanded from the traditional three channels to six channels, enabling full utilization of multi-spectral information. Furthermore, the Channel Attention and Global Pooling SPPF (CAGP-SPPF) module is introduced for multi-scale feature extraction, integrating global pooling and channel attention to capture multi-channel semantic information. In addition, the C2f_DynamicConv module replaces conventional convolutions in the neck network to strengthen high-dimensional feature transmission and reduce information loss, thereby improving detection accuracy. On the self-constructed reclaimed vegetation dataset, MRV-YOLO outperformed YOLOv8, with mAP@0.5 and mAP@0.5:0.95 increasing by 4.6% and 10.8%, respectively. Compared with RT-DETR, YOLOv3, YOLOv5, YOLOv6, YOLOv7, yolov7-tiny, YOLOv8-AS, YOLOv10, and YOLOv11, mAP@0.5 improved by 6.8%, 9.7%, 5.3%, 6.5%, 6.4%, 8.9%, 4.6%, 2.1%, and 5.4%, respectively. The results demonstrate that multichannel inputs incorporating near-infrared and dual red-edge bands significantly enhance detection accuracy for reclaimed vegetation in rare earth mining areas, providing technical support for ecological restoration monitoring. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 7612 KB  
Article
Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas
by Lulu Gao, Chao Zhang and Cheng Li
Land 2025, 14(10), 1986; https://doi.org/10.3390/land14101986 - 2 Oct 2025
Abstract
Rapid evaluations of farmland soil quality can provide data support for farmland protection and utilization. This study focuses on the soda–saline soil region of Da’an City, Jilin Province, covering an area of 4879 km2; it proposes a framework for evaluating farmland [...] Read more.
Rapid evaluations of farmland soil quality can provide data support for farmland protection and utilization. This study focuses on the soda–saline soil region of Da’an City, Jilin Province, covering an area of 4879 km2; it proposes a framework for evaluating farmland soil quality based on multi-source remote sensing data (Sentinel-2 MSI, GF-5 AHSI hyperspectral and field hyperspectral data). Soil organic matter content, salt content, and pH were selected as indicators of cultivated land soil quality in soda–saline soil areas. A threshold of 20% crop residue cover was set to mask high-cover areas, extracting bare soil information. The spectral indices SI1 and SI2 were utilized to predict the comprehensive grade of soil organic matter + salinity based on the cloud model (MEc = 0.74 and MEv = 0.68). The pH grade was predicted using the red-edge ratio vegetation index (RVIre) (MEc = 0.95 and MEv = 0.98). The short-board method was used to construct a soil quality evaluation system. The results indicate that 13.73% of the cultivated land in Da’an City is of high quality (grade 1), 80.63% is of medium quality (grades 2–3), and 5.65% is of poor quality (grade 4). This study provides a rapid assessment tool for the sustainable management of cultivated land in saline–alkali areas at the county level. Full article
(This article belongs to the Special Issue New Advance in Intensive Agriculture and Soil Quality)
Show Figures

Figure 1

30 pages, 12156 KB  
Article
Spatial and Data-Driven Approaches for Mitigating Urban Heat in Coastal Cities
by Ke Li and Haitao Wang
Buildings 2025, 15(19), 3544; https://doi.org/10.3390/buildings15193544 - 2 Oct 2025
Abstract
With accelerating urbanization and global climate warming, Urban Heat Islands (UHIs) pose serious threats to urban development. Existing UHI research mainly focuses on inland regions, lacking systematic understanding of coastal city heat island mechanisms. We selected eight Chinese coastal cities with different backgrounds, [...] Read more.
With accelerating urbanization and global climate warming, Urban Heat Islands (UHIs) pose serious threats to urban development. Existing UHI research mainly focuses on inland regions, lacking systematic understanding of coastal city heat island mechanisms. We selected eight Chinese coastal cities with different backgrounds, quantitatively assessed urban heat island intensity based on summer 2023 Landsat 8 remote sensing data, established block-LCZ spatial analysis units, and employed a combination of machine learning models and causal inference methods to systematically analyze the regional differentiation characteristics of Urban Heat Island Intensity (UHII) and the influence mechanisms of multi-dimensional driving factors within land–sea interaction contexts. The results revealed the following: (1) UHII in the study area presents obvious spatial differentiation, with the highest value occurring in Hong Kong (2.63 °C). Northern cities generally had higher values than southern ones. (2) Different Local Climate Zone (LCZ) types show significant differences in thermal contributions, with LCZ2 (compact midrise) blocks presenting the highest UHII values in most cities, while LCZ G (water) and LCZ A (dense trees) blocks exhibit stable cooling effects. Nighttime light (NTL) and distance to sea (DS) are dominant factors affecting UHII, with NTL marginal effect curves generally presenting hump-shaped characteristics, while DS shows different response patterns across cities. (3) Causal inference reveals true causal driving mechanisms beyond correlations, finding that causal effects of key factors exhibit significant spatial heterogeneity. The research findings provide a new cognitive framework for understanding the formation mechanisms of thermal environments in Chinese coastal cities and offer a quantitative basis for formulating regionalized UHI mitigation strategies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

42 pages, 106100 KB  
Review
Seeing the Trees from Above: A Survey on Real and Synthetic Agroforestry Datasets for Remote Sensing Applications
by Babak Chehreh, Alexandra Moutinho and Carlos Viegas
Remote Sens. 2025, 17(19), 3346; https://doi.org/10.3390/rs17193346 - 1 Oct 2025
Abstract
Trees are vital to both environmental health and human well-being. They purify the air we breathe, support biodiversity by providing habitats for wildlife, prevent soil erosion to maintain fertile land, and supply wood for construction, fuel, and a multitude of essential products such [...] Read more.
Trees are vital to both environmental health and human well-being. They purify the air we breathe, support biodiversity by providing habitats for wildlife, prevent soil erosion to maintain fertile land, and supply wood for construction, fuel, and a multitude of essential products such as fruits, to name a few. Therefore, it is important to monitor and preserve them to protect the natural environment for future generations and ensure the sustainability of our planet. Remote sensing is the rapidly advancing and powerful tool that enables us to monitor and manage trees and forests efficiently and at large scale. Statistical methods, machine learning, and more recently deep learning are essential for analyzing the vast amounts of data collected, making data the fundamental component of these methodologies. The advancement of these methods goes hand in hand with the availability of sample data; therefore, a review study on available high-resolution aerial datasets of trees can help pave the way for further development of analytical methods in this field. This study aims to shed light on publicly available datasets by conducting a systematic search and filter and an in-depth analysis of them, including their alignment with the FAIR—findable, accessible, interoperable, and reusable—principles and the latest trends concerning applications for such datasets. Full article
(This article belongs to the Special Issue Advances in Deep Learning Approaches: UAV Data Analysis)
Show Figures

Figure 1

21 pages, 1743 KB  
Article
A Simple Aridity Index to Monitor Vineyard Health: Evaluating the De Martonne Index in the Iberian Peninsula
by Nazaret Crespo-Cotrina, Luís Pádua, André M. Claro, André Fonseca, Francisco J. Rebollo, Francisco J. Moral, Luis L. Paniagua, Abelardo García-Martín, João A. Santos and Helder Fraga
Appl. Sci. 2025, 15(19), 10605; https://doi.org/10.3390/app151910605 - 30 Sep 2025
Abstract
Viticulture in the Iberian Peninsula is increasingly threatened by climate change, particularly rising temperatures and prolonged droughts. This study evaluates the ability of the De Martonne Index (DMI), a simple climatic aridity index based solely on temperature and precipitation, to serve as a [...] Read more.
Viticulture in the Iberian Peninsula is increasingly threatened by climate change, particularly rising temperatures and prolonged droughts. This study evaluates the ability of the De Martonne Index (DMI), a simple climatic aridity index based solely on temperature and precipitation, to serve as a proxy for vineyard health over a 30-year period (1993–2022). Vineyard health was assessed using the Vegetation Health Index (VHI), derived from satellite remote sensing data. DMI values were computed from bias-corrected ERA5-Land data, and VHI composites were generated from NOAA satellite imagery. Vineyard-specific outputs were isolated using land cover datasets, and a contingency analysis compared drought classifications from both indices. Results show a strong spatio-temporal correspondence between low DMI values and reduced VHI, with agreement rates for severe/extreme drought conditions reaching up to 56% under the most restrictive DMI thresholds. In the analyzed period, years such as 1995, 1997, 2005, 2009, and 2012, showed over 20% of vineyard areas affected by moderate-to-severe/extreme drought. The spatial analysis revealed that northern and northwestern regions of the peninsula experienced less drought stress, while central and southern areas were more frequently affected. This approach demonstrates that the DMI alone can provide a reliable assessment of vineyard health, potentially enabling its direct use with seasonal forecasts, which are generally available for temperature and precipitation, to anticipate drought impacts and support adaptation in viticulture. The proposed methodology is scalable and transferable to other crops and regions, serving as a tool for climate adaptation strategies in viticulture. Full article
28 pages, 4334 KB  
Article
Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China
by Yiqi Zhao, Songrui Ning, An Yan, Pingan Jiang, Huipeng Ren, Ning Li, Tingting Huo and Jiandong Sheng
Agronomy 2025, 15(10), 2307; https://doi.org/10.3390/agronomy15102307 - 29 Sep 2025
Abstract
Oases in arid regions are crucial for sustaining agricultural production and ecological stability, yet few studies have simultaneously examined the coupled dynamics of land use/cover change (LUCC), carbon emissions, and ecosystem service value (ESV) at the oasis–agricultural scale. This gap limits our understanding [...] Read more.
Oases in arid regions are crucial for sustaining agricultural production and ecological stability, yet few studies have simultaneously examined the coupled dynamics of land use/cover change (LUCC), carbon emissions, and ecosystem service value (ESV) at the oasis–agricultural scale. This gap limits our understanding of how different land use trajectories shape trade-offs between carbon processes and ecosystem services in fragile arid ecosystems. This study examines the spatiotemporal interactions between land use carbon emissions and ESV from 1990 to 2020 in the Wensu Oasis, Northwest China, and predicts their future trajectories under four development scenarios. Multi-period remote sensing data, combined with the carbon emission coefficient method, modified equivalent factor method, spatial autocorrelation analysis, the coupling coordination degree model, and the PLUS model, were employed to quantify LUCC patterns, carbon emission intensity, ESV, and its coupling relationships. The results indicated that (1) cultivated land, construction land, and unused land expanded continuously (by 974.56, 66.77, and 1899.36 km2), while grassland, forests, and water bodies declined (by 1363.93, 77.92, and 1498.83 km2), with the most pronounced changes occurring between 2000 and 2010; (2) carbon emission intensity increased steadily—from 23.90 × 104 t in 1990 to 169.17 × 104 t in 2020—primarily driven by construction land expansion—whereas total ESV declined by 46.37%, with water and grassland losses contributing substantially; (3) carbon emission intensity and ESV exhibited a significant negative spatial correlation, and the coupling coordination degree remained low, following a “high in the north, low in the south” distribution; and (4) scenario simulations for 2030–2050 suggested that this negative correlation and low coordination will persist, with only the ecological protection scenario (EPS) showing potential to enhance both carbon sequestration and ESV. Based on spatial clustering patterns and scenario outcomes, we recommend spatially differentiated land use regulation and prioritizing EPS measures, including glacier and wetland conservation, adoption of water-saving irrigation technologies, development of agroforestry systems, and renewable energy utilization on unused land. By explicitly linking LUCC-driven carbon–ESV interactions with scenario-based prediction and evaluation, this study provides new insights into oasis sustainability, offers a scientific basis for balancing agricultural production with ecological protection in the oasis of the arid region, and informs China’s dual-carbon strategy, as well as the Sustainable Development Goals. Full article
Show Figures

Figure 1

35 pages, 17848 KB  
Article
Satellite-Based Multi-Decadal Shoreline Change Detection by Integrating Deep Learning with DSAS: Eastern and Southern Coastal Regions of Peninsular Malaysia
by Saima Khurram, Amin Beiranvand Pour, Milad Bagheri, Effi Helmy Ariffin, Mohd Fadzil Akhir and Saiful Bahri Hamzah
Remote Sens. 2025, 17(19), 3334; https://doi.org/10.3390/rs17193334 - 29 Sep 2025
Abstract
Coasts are critical ecological, economic and social interfaces between terrestrial and marine systems. The current upsurge in the acquisition and availability of remote sensing datasets, such as Landsat remote sensing data series, provides new opportunities for analyzing multi-decadal coastal changes and other components [...] Read more.
Coasts are critical ecological, economic and social interfaces between terrestrial and marine systems. The current upsurge in the acquisition and availability of remote sensing datasets, such as Landsat remote sensing data series, provides new opportunities for analyzing multi-decadal coastal changes and other components of coastal risk. The emergence of machine learning-based techniques represents a new trend that can support large-scale coastal monitoring and modeling using remote sensing big data. This study presents a comprehensive multi-decadal analysis of coastal changes for the period from 1990 to 2024 using Landsat remote sensing data series along the eastern and southern coasts of Peninsular Malaysia. These coastal regions include the states of Kelantan, Terengganu, Pahang, and Johor. An innovative approach combining deep learning-based shoreline extraction with the Digital Shoreline Analysis System (DSAS) was meticulously applied to the Landsat datasets. Two semantic segmentation models, U-Net and DeepLabV3+, were evaluated for automated shoreline delineation from the Landsat imagery, with U-Net demonstrating superior boundary precision and generalizability. The DSAS framework quantified shoreline change metrics—including Net Shoreline Movement (NSM), Shoreline Change Envelope (SCE), and Linear Regression Rate (LRR)—across the states of Kelantan, Terengganu, Pahang, and Johor. The results reveal distinct spatial–temporal patterns: Kelantan exhibited the highest rates of shoreline change with erosion of −64.9 m/year and accretion of up to +47.6 m/year; Terengganu showed a moderated change partly due to recent coastal protection structures; Pahang displayed both significant erosion, particularly south of the Pahang River with rates of over −50 m/year, and accretion near river mouths; Johor’s coastline predominantly exhibited accretion, with NSM values of over +1900 m, linked to extensive land reclamation activities and natural sediment deposition, although local erosion was observed along the west coast. This research highlights emerging erosion hotspots and, in some regions, the impact of engineered coastal interventions, providing critical insights for sustainable coastal zone management in Malaysia’s monsoon-influenced tropical coastal environment. The integrated deep learning and DSAS approach applied to Landsat remote sensing data series provides a scalable and reproducible framework for long-term coastal monitoring and climate adaptation planning around the world. Full article
Show Figures

Figure 1

24 pages, 8527 KB  
Article
Multi-Feature Estimation Approach for Soil Nitrogen Content in Caohai Wetland Based on Diverse Data Sources
by Zhuo Dong, Yu Zhang, Guanglai Zhu, Tianjiao Luo, Xin Yao, Yongxiang Fan and Chaoyong Shen
Land 2025, 14(10), 1967; https://doi.org/10.3390/land14101967 - 29 Sep 2025
Abstract
Nitrogen (N) is a key nutrient for sustaining ecosystem productivity and agricultural sustainability; however, achieving high-precision monitoring in wetlands with highly heterogeneous surface types remains challenging. This study focuses on Caohai, a representative karst plateau wetland in China, and integrates Sentinel-2 multispectral and [...] Read more.
Nitrogen (N) is a key nutrient for sustaining ecosystem productivity and agricultural sustainability; however, achieving high-precision monitoring in wetlands with highly heterogeneous surface types remains challenging. This study focuses on Caohai, a representative karst plateau wetland in China, and integrates Sentinel-2 multispectral and Zhuhai-1 hyperspectral remote sensing data to develop a soil nitrogen inversion model based on spectral indices, texture features, and their integrated combinations. A comparison of four machine learning models (RF, SVM, PLSR, and BPNN) demonstrates that the SVM model, incorporating Zhuhai-1 hyperspectral data with combined spectral and texture features, yields the highest inversion accuracy. Incorporating land-use type as an auxiliary variable further enhanced the stability and generalization capability of the model. The study reveals the spatial enrichment of soil nitrogen content along the wetland margins of Caohai, where remote sensing inversion results show significantly higher nitrogen levels compared to surrounding areas, highlighting the distinctive role of wetland ecosystems in nutrient accumulation. Using Caohai Wetland on the Chinese karst plateau as a case study, this research validates the applicability of integrating spectral and texture features in complex wetland environments and provides a valuable reference for soil nutrient monitoring in similar ecosystems. Full article
Show Figures

Figure 1

20 pages, 4846 KB  
Article
Public Garden Environmental Factors Impact on Land Surface Temperatures of the Adjacent Urban Areas in an Arid Region
by Marouane Samir Guedouh, Kamal Youcef and Rabah Hadji
Urban Sci. 2025, 9(10), 391; https://doi.org/10.3390/urbansci9100391 - 28 Sep 2025
Abstract
Urban growth in hot, arid regions intensifies the urban heat island effect, making green spaces vital for climate mitigation. This research investigates the impact of public gardens on the surrounding urban thermal environment and on the mitigation of the urban heat island (UHI) [...] Read more.
Urban growth in hot, arid regions intensifies the urban heat island effect, making green spaces vital for climate mitigation. This research investigates the impact of public gardens on the surrounding urban thermal environment and on the mitigation of the urban heat island (UHI) in a hot arid region. This study selects an important public garden in Biskra, the “5 July 1962” Garden, as a case study of significance at the urban scale. To achieve research objectives, onsite measurement using a digital measurement device (5-in-1 Environmental Meter “Extech EN300”) and satellite remote sensing data from LANDSAT8 are employed, capturing summer measurements of key parameters and indices: Land Surface Temperature (LST), Air Temperature (AT), Relative Humidity (RH), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized Difference Moisture Index (NDMI). The analysis and correlation of these indices with the LST values allow us to evaluate the zoning and distance impacts of the garden studied. Land surface temperature rises gradually from the garden outward, peaking in the North-East with the strongest heat island effect and remaining lower in the cooler, vegetation-rich South-West. The results reveal that air temperature is the primary driver of land surface temperature (72% impact), while relative humidity (17.3%), vegetation index (7.8%), moisture index (2.9%), and water index (1.7%) contribute to cooling, with vegetation and moisture reducing surface temperatures through shading, transpiration, and latent heat exchange. Full article
Show Figures

Figure 1

29 pages, 3932 KB  
Article
Dynamic Spatiotemporal Evolution of Ecological Environment in the Yellow River Basin in 2000–2024 and the Driving Mechanisms
by Yinan Wang, Lu Yuan, Yanli Zhou and Xiangchao Qin
Land 2025, 14(10), 1958; https://doi.org/10.3390/land14101958 - 28 Sep 2025
Abstract
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving [...] Read more.
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving mechanism and the coupling between the ecological and hydrological systems remain scarce. In this study, with multi-source remote-sensing imagery and measured hydrological data, the random forest (RF) model and the geographical detector (GD) technique were employed to quantify the dynamic spatiotemporal changes in the ecological environment of YRB in 2000–2024 and identify the driving factors. The variables analyzed in this study included gross primary productivity (GPP), fractional vegetation cover (FVC), land use and cover change (LUCC), meteorological statistics, as well as runoff and sediment data measured at hydrological stations in YRB. The main findings are as follows: first, the GPP and FVC increased significantly by 37.9% and 18.0%, respectively, in YRB in 2000–2024; second, LUCC was the strongest driver of spatiotemporal changes in the ecological environment of YRB; third, precipitation and runoff contributed positively to vegetation growth, whereas the sediment played a contrary role, and the response of ecological variables to the hydrological processes exhibited a time lag of 1–2 years. This study is expected to provide scientific insights into ecological conservation and water resources management in YRB, and offer a decision-making basis for the design of sustainability policies and eco-restoration initiatives. Full article
Show Figures

Figure 1

15 pages, 6185 KB  
Article
Evaluating How Land-Use Changes Affect the Ecosystem Services Provided by Urban Parks and Green Spaces
by Ojonugwa Emmanuel and Ahmed Eraky
J. Parks 2025, 1(1), 4; https://doi.org/10.3390/jop1010004 - 27 Sep 2025
Abstract
This research assesses how land-cover transitions from 2012 to 2022 have impacted the value of ecosystem services in Denton County, Texas. Using remote sensing and spatial analysis, this study quantitatively links land-use change to its ecological and economic consequences. Full-county Landsat data were [...] Read more.
This research assesses how land-cover transitions from 2012 to 2022 have impacted the value of ecosystem services in Denton County, Texas. Using remote sensing and spatial analysis, this study quantitatively links land-use change to its ecological and economic consequences. Full-county Landsat data were analyzed in ArcGIS Pro through supervised classification and categorical change detection. To quantify the impact of these changes, an accuracy assessment was performed, and a benefit-transfer method using both global and Texas-specific coefficients was applied to estimate the change in Ecosystem Service Value (ESV). Results revealed a complex dynamic: while the county experienced significant urban expansion, it also saw substantial greening as large areas of bare land transitioned to vegetation. However, this greening was not enough to offset the economic impact of losing high-value ecosystems. The analysis shows a net loss in total ESV over the decade, estimated between USD 24 million and USD 95 million per year, primarily driven by the significant reduction of water bodies. This study provides a replicable framework for policymakers to assess the environmental trade-offs of development and highlights the critical importance of preserving existing high-value ecosystems alongside urban greening initiatives. Full article
Show Figures

Figure 1

29 pages, 14740 KB  
Article
Cloud Mask Detection by Combining Active and Passive Remote Sensing Data
by Chenxi He, Zhitong Wang, Qin Lang, Lan Feng, Ming Zhang, Wenmin Qin, Minghui Tao, Yi Wang and Lunche Wang
Remote Sens. 2025, 17(19), 3315; https://doi.org/10.3390/rs17193315 - 27 Sep 2025
Abstract
Clouds cover nearly two-thirds of Earth’s surface, making reliable cloud mask data essential for remote sensing applications and atmospheric research. This study develops a TrAdaBoost transfer learning framework that integrates active CALIOP and passive MODIS observations to enable unified, high-accuracy cloud detection across [...] Read more.
Clouds cover nearly two-thirds of Earth’s surface, making reliable cloud mask data essential for remote sensing applications and atmospheric research. This study develops a TrAdaBoost transfer learning framework that integrates active CALIOP and passive MODIS observations to enable unified, high-accuracy cloud detection across FY-4A/AGRI, FY-4B/AGRI, and Himawari-8/9 AHI sensors. The proposed TrAdaBoost Cloud Mask algorithm (TCM) achieves robust performance in dual validations with CALIPSO VFM and MOD35/MYD35, attaining a hit rate (HR) above 0.85 and a cloudy probability of detection (PODcld) exceeding 0.89. Relative to official products, TCM consistently delivers higher accuracy, with the most pronounced gains on FY-4A/AGRI. SHAP interpretability analysis highlights that 0.47 μm albedo, 10.8/10.4 μm and 12.0/12.4 μm brightness temperatures and geometric factors such as solar zenith angles (SZA) and satellite zenith angles (VZA) are key contributors influencing cloud detection. Multidimensional consistency assessments further indicate strong inter-sensor agreement under diverse SZA and land cover conditions, underscoring the stability and generalizability of TCM. These results provide a robust foundation for the advancement of multi-source satellite cloud mask algorithms and the development of cloud data products integrated. Full article
(This article belongs to the Special Issue Remote Sensing in Clouds and Precipitation Physics)
Show Figures

Figure 1

38 pages, 6865 KB  
Article
Land Use and Land Cover Change Patterns from Orbital Remote Sensing Products: Spatial Dynamics and Trend Analysis in Northeastern Brazil
by Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva, Pabrício Marcos Oliveira Lopes, Rodrigo Couto Santos, Ailton Alves de Carvalho, Geber Barbosa de Albuquerque Moura, Thieres George Freire da Silva, Alan Cézar Bezerra, Alexandre Maniçoba da Rosa Ferraz Jardim, Maria Beatriz Ferreira, Patrícia Costa Silva, Josef Augusto Oberdan Souza Silva, Marcio Mesquita, Pedro Henrique Dias Batista, Rodrigo Aparecido Jordan and Henrique Fonseca Elias de Oliveira
Land 2025, 14(10), 1954; https://doi.org/10.3390/land14101954 - 26 Sep 2025
Abstract
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that [...] Read more.
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that exhibit high climatic variability and are extremely vulnerable to environmental changes and pressures from human activities. The application of geotechnologies and geographic information system (GIS) modeling is essential to mitigate the impacts and pressures on the various ecosystems of Northeastern Brazil (NEB), where the Caatinga biome is predominant and critically threatened by these factors. In this context, the objective was to map and assess the spatiotemporal patterns of land use and land cover (LULC), detecting significant trends of loss and gain, based on surface reflectance data and precipitation data over two decades (2000–2019). Remote sensing datasets were utilized, including Landsat satellite data (LULC data), MODIS sensor data (surface reflectance product) and TRMM data (precipitation data). The Google Earth Engine (GEE) software was used to process orbital images and determine surface albedo and acquisition of the LULC dataset. Satellite data were subjected to multivariate analysis, descriptive statistics, dispersion and variability assessments. The results indicated a significant loss trend over the time series (2000–2019) for forest areas (ZMK = −5.872; Tau = −0.958; p < 0.01) with an annual loss of −3705.853 km2 and a total loss of −74,117.06 km2. Conversely, farming areas (agriculture and pasture) exhibited a significant gain trend (ZMK = 5.807; Tau = 0.947; p < 0.01), with an annual gain of +3978.898 km2 and a total gain of +79,577.96 km2, indicating a substantial expansion of these areas over time. However, it is important to emphasize that deforestation of the region’s native vegetation contributes to reduced water production and availability. The trend analysis identified an increase in environmental degradation due to the rapid expansion of land use. LULC and albedo data confirmed the intensification of deforestation in the Northern, Northwestern, Southern and Southeastern regions of NEB. The Northwestern region was the most directly impacted by this increase due to anthropogenic pressures. Over two decades (2000–2019), forested areas in the NEB lost approximately 80.000 km2. Principal component analysis (PCA) identified a significant cumulative variance of 87.15%. It is concluded, then, that the spatiotemporal relationship between biophysical conditions and regional climate helps us to understand and evaluate the impacts and environmental dynamics, especially of the vegetation cover of the NEB. Full article
Show Figures

Figure 1

29 pages, 21314 KB  
Article
Integrating Remote Sensing and Geospatial-Based Comprehensive Multi-Criteria Decision Analysis Approach for Sustainable Coastal Solar Site Selection in Southern India
by Constan Antony Zacharias Grace, John Prince Soundranayagam, Antony Johnson Antony Alosanai Promilton, Shankar Karuppannan, Wafa Saleh Alkhuraiji, Viswasam Stephen Pitchaimani, Faten Nahas and Yousef M. Youssef
ISPRS Int. J. Geo-Inf. 2025, 14(10), 377; https://doi.org/10.3390/ijgi14100377 - 26 Sep 2025
Abstract
Rapid urbanization across Southern Asia’s coastal regions has significantly increased electricity demand, driving India’s solar sector expansion under the National Solar Mission and positioning the country as the world’s fourth-largest solar market. Nonetheless, methodological limitations remain in applying GIS-based multi-criteria decision analysis (MCDA) [...] Read more.
Rapid urbanization across Southern Asia’s coastal regions has significantly increased electricity demand, driving India’s solar sector expansion under the National Solar Mission and positioning the country as the world’s fourth-largest solar market. Nonetheless, methodological limitations remain in applying GIS-based multi-criteria decision analysis (MCDA) frameworks to coastal urban microclimates, which involve intricate land-use dynamics and resilience constraints. To address this gap, this study proposes a multi-criteria GIS- based Analytical Hierarchy Process (AHP) framework, incorporating remote sensing and geospatial data, to assess Solar Farm Sites (SFSs) suitability, supplemented by sensitivity analysis in Thoothukudi coastal city, India. Ten parameters—covering photovoltaic, climatic, topographic, environmental, and accessibility factors—were used, with Global Horizontal Irradiance (18%), temperature (11%), and slope (11%) identified as key drivers. Results show that 9.99% (13.61 km2) of the area has excellent suitability, mainly in the southwest, while 28.15% (38.33 km2) exhibits very high potential along the southeast coast. Additional classifications include good (22.29%), moderate (32.41%), and low (7.16%) suitability zones. Sensitivity analysis confirmed photovoltaic variables as dominant, with GHI (0.25) and diffuse radiation (0.23) showing the highest impact. The largest excellent zone could support approximately 390 MW, with excellent and very high zones combined offering up to 2080 MW capacity. The findings also underscore opportunities for dual-use solar deployment, particularly on salt pans (17.1%), as well as elevated solar installations in flood-prone areas. Overall, the proposed framework provides robust, spatially explicit insights to support sustainable energy planning and climate-resilient infrastructure development in coastal urban settings. Full article
Show Figures

Figure 1

25 pages, 5056 KB  
Article
Spatiotemporal Evolution and Multi-Scale Driving Mechanisms of Ecosystem Service Value in Wuhan, China
by Yi Sun, Xuxi Fang, Diwei Tang and Yubo Hu
Sustainability 2025, 17(19), 8676; https://doi.org/10.3390/su17198676 - 26 Sep 2025
Abstract
This study examined the spatiotemporal dynamics and driving mechanisms of ecosystem service value (ESV) in Wuhan from 1985 to 2020. Using multi-temporal land-use data, remotely sensed vegetation indices, and socioeconomic statistics, we estimated the ESV with an improved equivalent-factor method and analyzed its [...] Read more.
This study examined the spatiotemporal dynamics and driving mechanisms of ecosystem service value (ESV) in Wuhan from 1985 to 2020. Using multi-temporal land-use data, remotely sensed vegetation indices, and socioeconomic statistics, we estimated the ESV with an improved equivalent-factor method and analyzed its drivers using a Geodetector and geographically weighted regression (GWR). Over the 35-year period, total ESV for Wuhan showed a mildly declining trend, decreasing from CNY 37.464 billion in 1985 to CNY 36.439 billion in 2020. Waterbodies contributed the largest share of ESV, followed by croplands and forests. In the urban core, ESV declined significantly, with low-value zones expanding outward from the city center. Spatial autocorrelation analysis revealed significant “high–high” and “low–low” clustering. Geodetector results indicated slope, elevation, and normalized difference vegetation index (NDVI) as the primary natural drivers, with human footprint, gross domestic product (GDP), and population density acting as important socioeconomic auxiliaries. Interactions between natural and socioeconomic factors substantially increased the explanatory power. Furthermore, GWR revealed pronounced spatial heterogeneity in the sign and magnitude of the factor effects across the study area, underscoring the complexity of ESV drivers. These findings provide quantitative evidence to support spatially differentiated ecological planning and conservation strategies during urbanization in Wuhan and the broader mid-Yangtze region. Full article
Show Figures

Figure 1

Back to TopTop