Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,580)

Search Parameters:
Keywords = land management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11789 KB  
Article
Impact of Climate and Land Cover Dynamics on River Discharge in the Klambu Dam Catchment, Indonesia
by Fahrudin Hanafi, Lina Adi Wijayanti, Muhammad Fauzan Ramadhan, Dwi Priakusuma and Katarzyna Kubiak-Wójcicka
Water 2026, 18(2), 250; https://doi.org/10.3390/w18020250 (registering DOI) - 17 Jan 2026
Abstract
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were [...] Read more.
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were analyzed and projected via linear regression aligned with IPCC scenarios, revealing a marginal temperature decline of 0.21 °C (from 28.25 °C in 2005 to 28.04 °C in 2023) and a 17% increase in rainfall variability. Land cover assessments from Landsat imagery highlighted drastic changes: a 73.8% reduction in forest area and a 467.8% increase in mixed farming areas, alongside moderate fluctuations in paddy fields and settlements. The Thornthwaite-Mather water balance method simulated monthly discharge, validated against observed data with Pearson correlations ranging from 0.5729 (2020) to 0.9439 (2015). Future projections using Cellular Automata-Markov modeling indicated stable volumetric flow but a temporal shift, including a 28.1% decrease in April rainfall from 2000 to 2040, contracting the wet season and extending dry spells. These shifts pose significant threats to agricultural and aquaculture activities, potentially exacerbating water scarcity and economic losses. The findings emphasize integrating dynamic land cover data, climate projections, and empirical runoff corrections for climate-resilient watershed management. Full article
(This article belongs to the Special Issue Water Management and Geohazard Mitigation in a Changing Climate)
Show Figures

Figure 1

26 pages, 3652 KB  
Article
Enhancing Resilience in Semi-Arid Smallholder Systems: Synergies Between Irrigation Practices and Organic Soil Amendments in Kenya
by Deborah M. Onyancha, Stephen M. Mureithi, Nancy Karanja, Richard N. Onwong’a and Frederick Baijukya
Sustainability 2026, 18(2), 955; https://doi.org/10.3390/su18020955 (registering DOI) - 17 Jan 2026
Abstract
Smallholder farmers in semi-arid regions worldwide face persistent water scarcity, declining soil fertility, and increasing climate variability, which constrain food production. This study investigated soil and water management practices and their effects on soil health, crop productivity, and adoption among smallholder vegetable farmers [...] Read more.
Smallholder farmers in semi-arid regions worldwide face persistent water scarcity, declining soil fertility, and increasing climate variability, which constrain food production. This study investigated soil and water management practices and their effects on soil health, crop productivity, and adoption among smallholder vegetable farmers in a semi-arid area in Kenya. A mixed-methods approach was employed, combining survey data from 397 farmers with a randomized field experiment. Results showed that hand watering (88.7%) and manure application (95.5%) were prevalent, while only 5.7% of farmers used drip irrigation. Compost and mulch treatments significantly improved soil organic carbon (p = 0.03), available water capacity (p = 0.01), and gravimetric moisture content (p = 0.02), with soil moisture conservation practices strongly correlated with higher yields in leafy green vegetables (R = 0.62). Despite these benefits, adoption was hindered by high water costs (42.6%) and unreliable sources (25.7%). Encouragingly, 96.2% of respondents expressed willingness to pay for improved water systems if affordable and dependable. The findings stress the need for integrated water–soil strategies supported by inclusive policy, infrastructure investment, and gender-responsive training to enhance resilience and productivity in smallholder farming under water-scarce conditions across sub-Saharan Africa and other regions globally, contributing to global sustainability targets such as SDG 6, 12 and 15. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

23 pages, 3578 KB  
Article
Integrating Heritage, Mobility, and Sustainability: A TOD-Based Framework for Msheireb Downtown Doha
by Sarah Al-Thani, Jasim Azhar, Raffaello Furlan, Abdulla AlNuaimi, Hameda Janahi and Reem Awwaad
Heritage 2026, 9(1), 34; https://doi.org/10.3390/heritage9010034 (registering DOI) - 16 Jan 2026
Abstract
Transit-Oriented Development (TOD), formalized by Calthorpe and Poticha in 1993, emerged to counter urban sprawl, reduce car dependency, and revitalize historical community centers. Rooted in “new urbanism”, TOD emphasizes integrated regional land-use planning and high-capacity public transportation. In the Middle East, TOD implementation [...] Read more.
Transit-Oriented Development (TOD), formalized by Calthorpe and Poticha in 1993, emerged to counter urban sprawl, reduce car dependency, and revitalize historical community centers. Rooted in “new urbanism”, TOD emphasizes integrated regional land-use planning and high-capacity public transportation. In the Middle East, TOD implementation remains understudied, particularly regarding heritage integration and social equity in arid climates. Doha’s rapid social and economic transformation presents both opportunities and risks: growth offers urban revitalization yet threatens to displace communities and dilute cultural identity. Shifts in urban planning have aimed to address sustainability, connectivity, and heritage preservation. This study examines Msheireb Downtown Doha (MDD) to assess how TOD can restore historic districts while managing gentrification, enhancing accessibility and promoting inclusiveness. A mixed-methods approach was applied, including 12 semi-structured interviews with stakeholders (Qatar Rail, Msheireb Properties, Ministry of Municipality and Environment), purposive surveys of 80 urban users, site observations, and spatial mapping. Using the Node-Place-People (NPP) model, the study evaluates TOD effectiveness across transportation connectivity (node), built environment quality (place), and equity metrics (people). The findings show that MDD successfully implements fundamental TOD principles through its design, which enhances connectivity, walkability, social inclusiveness, and heritage preservation. However, multiple obstacles remain: the “peripheral island effect” limits benefits to the core, pedestrian–vehicular balance is unresolved, and commercial gentrification is on the rise. This research provides evidence-based knowledge for GCC cities pursuing sustainable urban regeneration by demonstrating both the advantages of TOD and the necessity for critical, context-sensitive implementation that focuses on social equity together with physical transformation. Full article
24 pages, 5886 KB  
Article
Bayesian Model Averaging Method for Merging Multiple Precipitation Products over the Arid Region of Northwest China
by Yong Yang, Rensheng Chen, Xinyu Lu, Weiyi Mao, Zhangwen Liu and Xueliang Wang
Atmosphere 2026, 17(1), 94; https://doi.org/10.3390/atmos17010094 - 16 Jan 2026
Abstract
Accurate precipitation estimation is essential for hydrological modeling and water resource management in arid regions; however, complex terrain and sparse meteorological station networks introduce substantial uncertainties into gridded precipitation datasets. This study evaluates the performance of nine widely used precipitation products in the [...] Read more.
Accurate precipitation estimation is essential for hydrological modeling and water resource management in arid regions; however, complex terrain and sparse meteorological station networks introduce substantial uncertainties into gridded precipitation datasets. This study evaluates the performance of nine widely used precipitation products in the arid region of Northwest China (ARNC) at both the meteorological station scale and the sub-basin scale, and applies the Bayesian Model Averaging (BMA) approach to merge multi-source precipitation estimates. The results reveal pronounced spatial heterogeneity and significant differences in performance among datasets, with the Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement mission performing best at the station scale and the Famine Early Warning Systems Network Land Data Assimilation System performing best at the sub-basin scale. Compared with individual products, the BMA-merged precipitation demonstrates substantial improvements at both scales, providing higher coefficients of determination and agreement indices, and lower relative mean absolute error and relative root mean square error, indicating enhanced accuracy and robustness. The BMA-merged precipitation product generally exhibits superior and more spatially consistent performance than the individual datasets across the ARNC, thereby providing a more reliable basis for regional hydrological and climate-related applications. The merged dataset shows that the mean annual precipitation in the ARNC during 2000–2024 is approximately 230.4 mm, exhibiting a statistically significant increasing trend of 1.4 mm per year, with the strongest increases occurring in the Tianshan and Qilian Mountains. This study provides a reliable foundation for hydrological modeling and climate-change assessments in data-limited arid environments. Full article
(This article belongs to the Section Meteorology)
32 pages, 10772 KB  
Article
A Robust Deep Learning Ensemble Framework for Waterbody Detection Using High-Resolution X-Band SAR Under Data-Constrained Conditions
by Soyeon Choi, Seung Hee Kim, Son V. Nghiem, Menas Kafatos, Minha Choi, Jinsoo Kim and Yangwon Lee
Remote Sens. 2026, 18(2), 301; https://doi.org/10.3390/rs18020301 - 16 Jan 2026
Abstract
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of [...] Read more.
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of weather or illumination. This study introduces a deep learning-based ensemble framework for precise inland waterbody detection using high-resolution X-band Capella SAR imagery. To improve the discrimination of water from spectrally similar non-water surfaces (e.g., roads and urban structures), an 8-channel input configuration was developed by incorporating auxiliary geospatial features such as height above nearest drainage (HAND), slope, and land cover classification. Four advanced deep learning segmentation models—Proportional–Integral–Derivative Network (PIDNet), Mask2Former, Swin Transformer, and Kernel Network (K-Net)—were systematically evaluated via cross-validation. Their outputs were combined using a weighted average ensemble strategy. The proposed ensemble model achieved an Intersection over Union (IoU) of 0.9422 and an F1-score of 0.9703 in blind testing, indicating high accuracy. While the ensemble gains over the best single model (IoU: 0.9371) were moderate, the enhanced operational reliability through balanced Precision–Recall performance provides significant practical value for flood and water resource monitoring with high-resolution SAR imagery, particularly under data-constrained commercial satellite platforms. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

25 pages, 9566 KB  
Article
Integrated Geological and Geophysical Approaches for Geohazard Assessment in Salinas, Coastal Ecuador
by María Quiñónez-Macías, Lucrecia Moreno-Alcívar, José Luis Pastor, Davide Besenzon, Pablo B. Palacios and Miguel Cano
Appl. Sci. 2026, 16(2), 938; https://doi.org/10.3390/app16020938 - 16 Jan 2026
Abstract
The Santa Elena Peninsula has experienced local subduction earthquakes in 1901 (7.7 Mw) and 1933 (6.9 Mw), during which local ground conditions, including deposits of longshore-current sediments, paleo-lagoon or marsh, sandspit, and ancient tidal channel sediments, exhibited various coseismic deformation behaviors in Quaternary [...] Read more.
The Santa Elena Peninsula has experienced local subduction earthquakes in 1901 (7.7 Mw) and 1933 (6.9 Mw), during which local ground conditions, including deposits of longshore-current sediments, paleo-lagoon or marsh, sandspit, and ancient tidal channel sediments, exhibited various coseismic deformation behaviors in Quaternary soils of inferior geotechnical quality. This study shows that geophysical profiles from seismic refraction and shear-wave velocities are correlated with stratigraphic data from sedimentary sequences obtained from slope cutting and geotechnical drilling. This database is used to create a comprehensive map to describe the lithological units of Salinas’ urban geology. The thickness of the Tertiary–Quaternary sedimentary sequences and the depth to the bedrock of the Piñon and Cayo geological formations determine the periods of sites in these stratigraphic sequences, which range from 0.3 to 1.5 s. This study provides the first geotechnical zoning map for the city of Salinas at a scale of 1:25,000, which is a technical requirement of the Ecuadorian construction standard. This geotechnical zoning information is essential for appropriate land management in Salinas and its neighboring cities, La Libertad and Santa Elena, as well as for outlining municipal restrictions on future construction. Full article
(This article belongs to the Special Issue Earthquake Engineering: Geological Impacts and Disaster Assessment)
Show Figures

Figure 1

25 pages, 5495 KB  
Article
Coupling Modeling Approaches for the Assessment of Runoff Quality in an Urbanizing Catchment
by Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2026, 13(1), 35; https://doi.org/10.3390/hydrology13010035 - 16 Jan 2026
Abstract
The impacts of land use on stormwater runoff quality and Best Management Practices to mitigate these impacts have been investigated since the 1970s, yet challenges remain in providing a modeling approach that concomitantly considers contributions from different land use types. In densely developed [...] Read more.
The impacts of land use on stormwater runoff quality and Best Management Practices to mitigate these impacts have been investigated since the 1970s, yet challenges remain in providing a modeling approach that concomitantly considers contributions from different land use types. In densely developed urban areas, a buildup/washoff approach is often applied, while in rural areas, some type of erosion modeling is employed, as the processes of detachment, entrainment, and transport are fundamentally different. This study presents a coupled modeling approach within PCSWMM, integrating exponential buildup/washoff for impervious surfaces with the Modified Universal Soil Loss Equation (MUSLE) for pervious areas, including construction sites, to characterize water quality in the large mixed urban–rural Sparrovale catchment in Geelong, Australia. The watershed includes an innovative cascading system of 12 online NbS wetlands along one of the main tributaries, Armstrong Creek, to manage runoff quantity and quality, as well as 16 offline NbS wetlands that are tributary to the online system. A total of 78 samples for Total Suspended Solids (TSS), Total Phosphorus (TP), and Total Nitrogen (TN) were collected from six monitoring sites along Armstrong Creek during wet- and dry-weather events between May and July 2024 for model validation. The data were supplemented with six other catchment stormwater quality datasets collected during earlier studies, which provided an understanding of water quality status for the broader Geelong region. Results showed that average nutrient concentrations across all the sites ranged from 0.44 to 2.66 mg/L for TP and 0.69 to 5.7 mg/L for TN, spanning from within to above the ecological threshold ranges for eutrophication risk (TP: 0.042 to 1 mg/L, TN: 0.3 to 1.5 mg/L). In the study catchment, upstream wetlands reduced pollutant levels; however, downstream wetlands that received runoff from agriculture, residential areas, and, importantly, construction sites, showed a substantial increase in sediment and nutrient concentration. Water quality modeling revealed washoff parameters primarily influenced concentrations from established urban neighborhoods, whereas erosion parameters substantially impacted total pollutant loads for the larger system, demonstrating the importance of integrated modeling for capturing pollutant dynamics in heterogeneous, urbanizing catchments. The study results emphasize the need for spatially targeted management strategies to improve stormwater runoff quality and also show the potential for cascading wetlands to be an important element of the Nature-based Solution (NbS) runoff management system. Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
Show Figures

Figure 1

27 pages, 11839 KB  
Article
Impact of Tropical Climate Anomalies on Land Cover Changes in Sumatra’s Peatlands, Indonesia
by Agus Dwi Saputra, Muhammad Irfan, Mokhamad Yusup Nur Khakim and Iskhaq Iskandar
Sustainability 2026, 18(2), 919; https://doi.org/10.3390/su18020919 - 16 Jan 2026
Abstract
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, [...] Read more.
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, whereas peatland degradation disrupts these functions and can transform peatlands into significant sources of greenhouse gas emissions and climate extremes such as drought and fire. Indonesia contains approximately 13.6–40.5 Gt of carbon, around 40% of which is stored on the island of Sumatra. However, tropical peatlands in this region are highly vulnerable to climate anomalies and land-use change. This study investigates the impacts of major climate anomalies—specifically El Niño and positive Indian Ocean Dipole (pIOD) events in 1997/1998, 2015/2016, and 2019—on peatland cover change across South Sumatra, Jambi, Riau, and the Riau Islands. Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager/Thermal Infrared Sensor imagery were analyzed using a Random Forest machine learning classification approach. Climate anomaly periods were identified using El Niño-Southern Oscillation (ENSO) and IOD indices from the National Oceanic and Atmospheric Administration. To enhance classification accuracy and detect vegetation and hydrological stress, spectral indices including the Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI) were integrated. The results show classification accuracies of 89–92%, with kappa values of 0.85–0.90. The 2015/2016 El Niño caused the most severe peatland degradation (>51%), followed by the 1997/1998 El Niño (23–38%), while impacts from the 2019 pIOD were comparatively limited. These findings emphasize the importance of peatlands in climate regulation and highlight the need for climate-informed monitoring and management strategies to mitigate peatland degradation and associated climate risks. Full article
(This article belongs to the Special Issue Sustainable Development and Land Use Change in Tropical Ecosystems)
Show Figures

Figure 1

20 pages, 8754 KB  
Article
Landscape Pattern Evolution in the Source Region of the Chishui River
by Yanzhao Gong, Xiaotao Huang, Jiaojiao Li, Ju Zhao, Dianji Fu and Geping Luo
Sustainability 2026, 18(2), 914; https://doi.org/10.3390/su18020914 - 15 Jan 2026
Abstract
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To [...] Read more.
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To address this gap, the current study used 2000–2020 land-use, geography, and socio-economic data, integrating landscape pattern indices, land-use transfer matrices, dynamic degree, the GeoDetector model, and the PLUS model. Results revealed that forest and cropland remained the prevailing land-use types throughout 2000–2020, comprising over 85% of the landscape. Grassland had the highest dynamic degree (1.58%), and landscape evolution during the study period was characterized by increased fragmentation, enhanced diversity, and stable dominance of major forms of land use. Anthropogenic influence on different landscape types followed the order: construction land > cropland > grassland > forest > water bodies. Land-use change in this region is a complex process governed by the interrelationships among various factors. Scenario-based predictions demonstrate pronounced variability in various land types. These findings provided a more comprehensive understanding of landscape patterns in karst river source regions, provided evidence-based support for regional planning, and offered guidance for ecological management of similar global river sources. Full article
(This article belongs to the Special Issue Global Hydrological Studies and Ecological Sustainability)
Show Figures

Figure 1

22 pages, 1399 KB  
Review
Nature-Based Solutions for Resilience: A Global Review of Ecosystem Services from Urban Forests and Cover Crops
by Anastasia Ivanova, Reena Randhir and Timothy O. Randhir
Diversity 2026, 18(1), 47; https://doi.org/10.3390/d18010047 - 15 Jan 2026
Abstract
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. [...] Read more.
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. However, their benefits are often viewed separately. This review combines 20 years of research to explore how these strategies, together, improve provisioning, regulating, supporting, and cultural ecosystem services across various landscapes. Urban forests help reduce urban heat islands, improve air quality, manage stormwater, and offer cultural and health benefits. Cover crops increase soil fertility, regulate water, support nutrient cycling, and enhance crop yields, with potential for carbon sequestration and biofuel production. We identify opportunities and challenges, highlight barriers to adopting these strategies, and suggest integrated frameworks—including spatial decision-support tools, incentive programs, and education—to encourage broader use. By connecting urban and rural systems, this review underscores vegetation as a versatile tool for resilience, essential for reaching global sustainability goals. Full article
(This article belongs to the Special Issue 2026 Feature Papers by Diversity's Editorial Board Members)
Show Figures

Graphical abstract

29 pages, 8973 KB  
Article
High-Resolution Daily Evapotranspiration Estimation in Arid Agricultural Regions Based on Remote Sensing via an Improved PT-JPL and CUWFM Fusion Framework
by Hongwei Liu, Xiaoqin Wang, Hongyu Zhang, Mengmeng Li and Qunyong Wu
Remote Sens. 2026, 18(2), 291; https://doi.org/10.3390/rs18020291 - 15 Jan 2026
Viewed by 26
Abstract
Evapotranspiration (ET) plays a crucial role in the terrestrial water cycle, especially in arid and semi-arid agricultural regions where precise water management is essential. However, the limited spatial resolution and temporal frequency of existing ET products hinder their application in fine-scale agricultural monitoring. [...] Read more.
Evapotranspiration (ET) plays a crucial role in the terrestrial water cycle, especially in arid and semi-arid agricultural regions where precise water management is essential. However, the limited spatial resolution and temporal frequency of existing ET products hinder their application in fine-scale agricultural monitoring. In this study, we first improved the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model by replacing the relative humidity-based soil moisture constraint with the land surface water index (LSWI), aiming to enhance model performance in water-limited environments. Second, we developed a Crop Unmixing and Weight Fusion Model for ET (CUWFM) to generate daily ET products at a 30 m spatial resolution by integrating high-resolution but infrequent PT-JPL-ET data with coarse-resolution but frequent PML-V2-ET data. The CUWFM employs a hybrid approach combining sub-pixel crop fraction decomposition with similarity-weighted regression, allowing for more accurate ET estimation over heterogeneous agricultural landscapes. The proposed methods were evaluated in the Changji region of Xinjiang, China, using field-measured ET data from two-flux-tower sites. The results show that the improved PT-JPL model increased ET estimation accuracy compared with the original version, with higher R2 and Nash–Sutcliffe efficiency (NSE), and lower root mean square error (RMSE). The CUWFM outperformed benchmark spatiotemporal fusion methods, including STARFM, ESTARFM, and Fit-FC, in both pixel- and field-scale assessments, achieving the highest overall performance scores based on the All-round Performance Assessment (APA) framework. This study demonstrates the potential of integrating vegetation indices and crop-specific spatial decomposition into ET modeling, providing a feasible pathway for producing high spatiotemporal resolution ET datasets to support precision agriculture in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Remote Sensing for Hydrological Management)
Show Figures

Graphical abstract

26 pages, 5222 KB  
Article
Identification of Potential Supplementary Cultivated Land Based on a Markov-FLUS Model and Cultivation Suitability Evaluation Under the New Occupation and Compensation Balance Policy: A Case Study of Jiangsu Province
by Yanan Liu, Kening Wu, Wei Zou, Hao Su, Xiaoliang Li, Xiao Li and Rui Shi
Land 2026, 15(1), 169; https://doi.org/10.3390/land15010169 - 15 Jan 2026
Viewed by 82
Abstract
The identification of supplementary cultivated land as a reserve resource is of great significance for ensuring implementation of the new mechanism of land occupation and compensation balance in China. Using Jiangsu Province as a case study, here, we use a “multi-period land use [...] Read more.
The identification of supplementary cultivated land as a reserve resource is of great significance for ensuring implementation of the new mechanism of land occupation and compensation balance in China. Using Jiangsu Province as a case study, here, we use a “multi-period land use change patterns–multi-scenario land use simulation–cultivation suitability evaluation–identification of supplementary cultivated land” framework to explore identification of supplementary cultivated land. A single land use dynamic index and a land use transfer matrix were used to analyze land use pattern changes in Jiangsu Province and showed that the area of cultivated land in Jiangsu Province decreased significantly, mainly by being converted into land used for buildings, and waters and conservancy facilities. A Markov-FLUS model was used to simulate and predict land use quantity and spatial distribution under four scenarios: an inertial development scenario, a cultivated land protection scenario, an economic development priority scenario, and an ecological protection priority scenario. Sixteen factor indicators were selected from the four dimensions of natural land quality, social economy, management, and the ecological condition of the land, and the degree of suitability of cultivated land in Jiangsu was evaluated by multi-factor stepwise correction. The southern and central parts of Jiangsu had higher suitability, while the northern part had lower suitability. By superimposing these data on current land use data from 2023, the plots of land that were converted to or from cultivated land were identified. Combined with the suitability degree, the potential three major categories and eight types of sources for supplementary cultivated land, totaling 29,015.92 km2, were identified, along with their distribution. A time sequence arrangement for these sources was initially set up. Corresponding management suggestions were proposed based on the adaptability of different supplementary cultivated land sources, with the aim of providing scientific references for the acquisition of supplementary cultivated land sources in the implementation of the national and local government’s farmland balance management. Full article
Show Figures

Figure 1

23 pages, 3276 KB  
Article
Multi-Scenario Assessment of Ecological Network Resilience and Community Clustering in the Yellow River Delta
by Yajie Zhu, Zhaohong Du, Yunzhao Li, Chienzheng Yong, Jisong Yang, Bo Guan, Fanzhu Qu and Zhikang Wang
Land 2026, 15(1), 170; https://doi.org/10.3390/land15010170 - 15 Jan 2026
Viewed by 112
Abstract
The rapid economic and urban development in the Yellow River Delta Efficient Ecological Economic Zone (YRDEEZ) has intensified land use changes and aggravated ecological patch fragmentation. Constructing ecological networks (ENs) can reconnect fragmented patches and enhance ecosystem services. This study simulated land use [...] Read more.
The rapid economic and urban development in the Yellow River Delta Efficient Ecological Economic Zone (YRDEEZ) has intensified land use changes and aggravated ecological patch fragmentation. Constructing ecological networks (ENs) can reconnect fragmented patches and enhance ecosystem services. This study simulated land use patterns for 2040 under three scenarios: Natural Development (NDS), Ecological Protection (EPS), and Urban Development (UDS). Results indicated a consistent decline in agricultural land and an expansion of urban land across all scenarios, with the most pronounced urban growth under UDS (6.79%) and the largest ecological land area under EPS (5178.96 km2). Since 2000, the number of EN sources and corridors had decreased, with sources mainly concentrated along coastal areas. The source and corridor under UDS exhibited the highest area ratio (20.08%), while NDS showed the lowest (18.72%), with UDS demonstrating the strongest resilience. Through community detection, the UDS EN was divided into five ecological clusters, encompassing 127 intra-cluster corridors (2285.95 km) and 34 inter-cluster corridors (1171.32 km), among which the cluster near the Yellow River estuary was determined to be the most critical (Level 1). These findings will provide valuable insights for managing landscape fragmentation and biological habitat protection in YRDEEZ. Meanwhile, the multi-scenario simulations of ENs could play an important role in constructing ecological security patterns and protecting ecosystems. Full article
Show Figures

Figure 1

13 pages, 861 KB  
Article
Mid-Term Results of the Multicenter CAMPARI Registry Using the E-Liac Iliac Branch Device for Aorto-Iliac Aneurysms
by Francesca Noce, Giulio Accarino, Domenico Angiletta, Luca del Guercio, Sergio Zacà, Mafalda Massara, Pietro Volpe, Antonio Peluso, Loris Flora, Raffaele Serra and Umberto Marcello Bracale
J. Cardiovasc. Dev. Dis. 2026, 13(1), 48; https://doi.org/10.3390/jcdd13010048 - 15 Jan 2026
Viewed by 71
Abstract
Background: Intentional occlusion of the internal iliac artery (IIA) during endovascular repair of aorto-iliac aneurysms may predispose patients to pelvic ischemic complications such as gluteal claudication, erectile dysfunction, and bowel ischemia. Iliac branch devices (IBDs) have been developed to preserve hypogastric perfusion. [...] Read more.
Background: Intentional occlusion of the internal iliac artery (IIA) during endovascular repair of aorto-iliac aneurysms may predispose patients to pelvic ischemic complications such as gluteal claudication, erectile dysfunction, and bowel ischemia. Iliac branch devices (IBDs) have been developed to preserve hypogastric perfusion. E-Liac (Artivion/Jotec) is one of the latest modular IBDs yet reports on mid-term performance are limited to small single-center cohorts with short follow-up. The CAMpania PugliA bRanch IliaC (CAMPARI) study is a multicenter investigation of E-Liac outcomes. Methods: A retrospective observational cohort study was conducted across five Italian vascular centers. All consecutive patients undergoing E-Liac implantation for aorto-iliac or isolated iliac aneurysms between January 2015 and December 2024 were identified from prospectively maintained registries. Inclusion criteria comprised elective or urgent endovascular repair of aorto-iliac aneurysms in which an adequate distal sealing zone was not available without covering the IIA and suitability for the E-Liac device according to its instructions for use (IFU). Patients with a life expectancy < 1 year or hostile anatomy incompatible with the IFU were excluded. The primary end point was freedom from branch instability (occlusion/stenosis, kinking, or detachment of the bridging stent). Secondary end points included freedom from any endoleak, freedom from device-related reintervention, freedom from gluteal claudication, aneurysm-related and all-cause mortality, acute renal failure, and sac regression > 5 mm. Results: A total of 69 consecutive patients (68 male, 1 female, median age 72.0 years) received 74 E-Liac devices, including 5 bilateral implantations. The mean infrarenal aortic diameter was 45 mm and the mean CIA diameter 34 mm; 14 patients (20.0%) had a concomitant IIA aneurysm (>20 mm). Concomitant fenestrated or branched aortic repair was performed in 23% of procedures. Two patients received a standalone IBD without implantation of a proximal aortic endograft. Technical success was achieved in 71/74 cases (96.0%); three failures occurred due to inability to catheterize the IIA. Distal landing was in the main IIA trunk in 58 cases and in the posterior branch in 13 cases. Over a median follow-up of 18 (6; 36) months, there were four branch instability events (5.4%): three occlusions and one bridging stent detachment. Seven patients (9.5%) developed endoleaks (one type Ib, two type II, two type IIIa, and two type IIIc). Five patients (6.8%) required reintervention, and five (6.8%) reported gluteal claudication. There were seven all-cause deaths (10%), none within 30 days or related to aneurysm rupture; causes included COVID-19 pneumonia, acute coronary syndrome, melanoma, gastric cancer, and stroke. No acute renal or respiratory failure occurred. Kaplan–Meier analysis showed 92% (95% CI 77–100) freedom from branch instability in the main-trunk group and 89% (60–100) in the posterior-branch group (log-rank p = 0.69). Freedom from any endoleak at 48 months was 87% (95% CI 75–95), and freedom from reintervention was 93% (95% CI 83–98). Conclusions: In this multicenter cohort, the E-Liac branched endograft demonstrated high technical success and favorable early–mid-term outcomes. Preservation of hypogastric perfusion using E-Liac was associated with low rates of branch instability, endoleak, and reintervention, with no 30-day mortality or aneurysm-related deaths. These findings support the safety and efficacy of E-Liac for aorto-iliac aneurysm management, although larger prospective studies with longer follow-up are needed. Full article
Show Figures

Graphical abstract

25 pages, 1443 KB  
Article
Shock Next Door: Geographic Spillovers in FinTech Lending After Natural Disasters
by David Kuo Chuen Lee, Weibiao Xu, Jianzheng Shi, Yue Wang and Ding Ding
Econometrics 2026, 14(1), 5; https://doi.org/10.3390/econometrics14010005 - 15 Jan 2026
Viewed by 76
Abstract
We examine geographic spillovers in digital credit markets by studying how natural disasters affect borrowing behavior in adjacent, physically undamaged regions. Using granular loan-level data from Indonesia’s largest FinTech lender (2021–2023) and leveraging quasi-random variation in disaster timing and location, we estimate fixed-effects [...] Read more.
We examine geographic spillovers in digital credit markets by studying how natural disasters affect borrowing behavior in adjacent, physically undamaged regions. Using granular loan-level data from Indonesia’s largest FinTech lender (2021–2023) and leveraging quasi-random variation in disaster timing and location, we estimate fixed-effects specifications that incorporate spatially lagged disaster exposure (an SLX-type spatial approach) to quantify spillovers. Disasters generate economically significant spillovers in neighboring provinces: a 1% increase in disaster frequency raises local borrowing by 0.036%, approximately 20% of the direct effect. Spillovers vary sharply with geographic connectivity—land-connected provinces experience effects about 6.6 times larger than sea-connected provinces. These results highlight that digital lending platforms can transmit geographically proximate risks beyond directly affected areas through channels that differ from traditional banking networks. The systematic nature of these spillovers suggests that disaster-response strategies may be more effective when they consider adjacent regions. That platform risk management can be strengthened by integrating spatial disaster exposure and connectivity into credit monitoring and decision rules. Full article
Show Figures

Figure 1

Back to TopTop