Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = laminate packaging materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2472 KiB  
Article
Incorporating Recyclates Derived from Household Waste into Flexible Food Packaging Applications: An Environmental Sustainability Assessment
by Trang T. Nhu, Anna-Sophie Haslinger, Sophie Huysveld and Jo Dewulf
Recycling 2025, 10(4), 142; https://doi.org/10.3390/recycling10040142 - 17 Jul 2025
Viewed by 351
Abstract
Integrating recyclates into food packaging is key towards circularity while meeting functionality and safety requirements; however, associated environmental impacts remain underexplored. This gap was addressed through a cradle-to-gate life cycle assessment, using the Environmental Footprint method, along with substitution and cut-off approaches for [...] Read more.
Integrating recyclates into food packaging is key towards circularity while meeting functionality and safety requirements; however, associated environmental impacts remain underexplored. This gap was addressed through a cradle-to-gate life cycle assessment, using the Environmental Footprint method, along with substitution and cut-off approaches for handling the multifunctionality of recycling. Recyclates were derived from polyethylene (PE)-rich household food packaging waste, purified via delamination-deinking. Firstly, results show that shifting from virgin multi-material to mono-material multilayer structures with or without recyclates, while maintaining functionality, offers environmental benefits. Secondly, recyclates should sufficiently substitute virgin materials in quantity and quality, decreasing the need for primary plastics and avoiding recyclate incorporation without functionality. Otherwise, thicker laminates are obtained, increasing processability challenges and environmental impacts, e.g., 12% for particulate matter, and 14% for mineral-metal resource use when the recycle content rises from 34 to 50%. Thirdly, a fully closed loop for flexible food packaging is not yet feasible. Key improvements lie in reducing residues generated during recycling, especially in delamination-deinking, lowering energy use in recompounding, and using more efficient transport modes for waste collection. Further research is essential to optimise the innovative technologies studied for flexible food packaging and refine them for broader applications. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
Ecological Packaging: Reuse and Recycling of Rosehip Waste to Obtain Biobased Multilayer Starch-Based Material and PLA for Food Trays
by Yuliana Monroy, Florencia Versino, Maria Alejandra García and Sandra Rivero
Foods 2025, 14(11), 1843; https://doi.org/10.3390/foods14111843 - 22 May 2025
Viewed by 694
Abstract
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava [...] Read more.
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava starch with citric acid as a compatibilizer. Physicochemical characterization revealed appropriate surface roughness (Rz of 31–64 μm) and controlled water absorption capacities of the composite materials (contact angle of 85–95°), properties critical for food quality preservation and safety. The incorporation of polylactic acid (PLA) films in the laminates significantly enhanced the mechanical performance, increasing the stress resistance by 5 to 10 times, and improved moisture resistance, showing a 78–82% reduction in the materials’ water absorption capacity and an almost 50% decrease in water content and solubility, depending on the processing method. Results indicated that these biocomposite laminates represent a viable alternative to conventional polystyrene foam trays for food packaging. Two distinct multilayer manufacturing processes were comparatively evaluated to optimize production efficiency by reducing the energy consumption and processing time. This research contributes to circular economy principles by transforming agricultural waste into value-added laminated materials with commercial potential. Full article
Show Figures

Figure 1

18 pages, 10927 KiB  
Article
Study on the Formation and Evolution Mechanism of Pinhole in Aluminum Foil for the Lithium-Ion Battery Soft Packaging
by Kai Zhang, Wei Chen, Zhehang Fan, Xiaohu Chen, Changle Xiao, Yunan Chen, Yinhui Xu, Ruian Ni and Hongyan Wu
Coatings 2025, 15(4), 472; https://doi.org/10.3390/coatings15040472 - 16 Apr 2025
Viewed by 714
Abstract
As the crucial core material in aluminum–plastic-laminated films, aluminum foil serves as a barrier and shaping element for lithium-ion battery soft packaging. However, its thinness, measuring only tens of microns, makes it susceptible to the formation of pinholes during the manufacturing process, which [...] Read more.
As the crucial core material in aluminum–plastic-laminated films, aluminum foil serves as a barrier and shaping element for lithium-ion battery soft packaging. However, its thinness, measuring only tens of microns, makes it susceptible to the formation of pinholes during the manufacturing process, which can significantly impact the barrier performance and properties of the aluminum–plastic-laminated film. The morphology and composition of foreign particles that lead to pinholes were analyzed using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). Additionally, the formation mechanism and evolution law of pinholes were investigated using a laser scanning confocal microscope (LSCM). The results revealed that foreign particles responsible for pinholes originated from the inclusions in the aluminum alloy melt, filter aid particles from rolling oil, and environmental dust particles. To address this issue, potential strategies for controlling foreign particles were proposed. These included purifying the aluminum alloy melt, filtering the rolling oil, and maintaining a clean production environment. The simulated experiments showed that foreign particles were gradually embedded in the aluminum matrix during plastic deformation, leading to damage in the aluminum matrix. When the cumulative rolling reduction ratio exceeded 38%, the aluminum foil and foreign particles began to separate along the rolling direction, resulting in the formation of pinholes. The mechanism of uncoordinated deformation between foreign particles and aluminum foil was elaborated in detail. In addition, the simulation experiment indicated that once the cumulative reduction ratio surpassed 50%, the aspect ratio of the pinhole increased rapidly. When the cumulative reduction ratio increased to 83%, the pinhole began to gradually heal. Consequently, a quantitative relationship model between the pinhole area and the rolling reduction ratio was constructed. The pinhole evolution model enables a rough prediction of the actual pinhole area change and meets the requirements for engineering applications. This research provides both engineering applications and theoretical prediction approaches that can aid in the production of high-quality aluminum foil for lithium-ion battery soft packaging. Full article
Show Figures

Figure 1

16 pages, 5430 KiB  
Article
Macro Stickies Content Evaluation of Different Cellulose-Based Materials Through Image Analysis
by António de O. Mendes, Joana C. Vieira, Vera L. D. Costa, Paula Pinto, Belinda Soares, Paulo Barata, Joana M. R. Curto, Maria E. Amaral, Ana P. Costa and Paulo T. Fiadeiro
Recycling 2025, 10(2), 69; https://doi.org/10.3390/recycling10020069 - 11 Apr 2025
Viewed by 657
Abstract
In this work an evaluation of Macro Stickies was performed on thirteen different cellulose-based materials through image analysis. In particular, the materials that were evaluated consisted of different types/categories of papers/products produced by the industry, namely, molded cellulose products, unbleached kraft papers, barrier [...] Read more.
In this work an evaluation of Macro Stickies was performed on thirteen different cellulose-based materials through image analysis. In particular, the materials that were evaluated consisted of different types/categories of papers/products produced by the industry, namely, molded cellulose products, unbleached kraft papers, barrier papers, one recycled paper, and a laminated paper package. The Macro Stickies Evaluation was carried out using an image analysis tool developed by our research group to perform this kind of work from now on. The results indicated that eight of the processed samples revealed low/residual contents of Macro Stickies, whereas the remaining five revealed higher amounts of Macro Stickies in their surfaces. Of the eight samples showing a low/residual Macro Stickies content, five of them belonged to the unbleached kraft papers category, with an area per mass of Macro Stickies ranging from 8.60 to 29.04 mm2/kg. However, the lowest case did not belong to this category, but to the molded cellulose products category with a value of 6.10 mm2/kg. Of the five samples showing higher amounts of Macro Stickies, the worst three cases were associated to one of the barrier papers, the recycled paper and the laminated paper, with an area per mass of Macro Stickies of 28,973.42, 6998.56, and 14,058.76 mm2/kg, respectively. Macro Stickies can assume different sizes, numbers and distributions depending on the characteristics and nature of each sample, and can be a great concern in the recycling of cellulose-based materials. In this sense, the proper assessment of Macro Stickies provides valuable information for the recycling sector to classify them in the products, and to anticipate which materials might give rise to potential stickies related problems in the recycling process. Full article
Show Figures

Figure 1

17 pages, 6098 KiB  
Article
Use of Cellulose Fibres from Posidonia oceanica to Obtain Chitosan Biocomposites and Poly(lactic Acid) Laminates
by Paula Camarena-Bononad, Pedro A. V. Freitas, Amparo Chiralt and Maria Vargas
Polysaccharides 2025, 6(2), 27; https://doi.org/10.3390/polysaccharides6020027 - 2 Apr 2025
Cited by 1 | Viewed by 739
Abstract
New sustainable materials have been developed to replace conventional plastics obtained from non-renewable sources. In this study, cellulose fibres from Posidonia oceanica (PO) were obtained by applying subcritical water extraction and bleaching with hydrogen peroxide or sodium chlorite. The PO fibres were used [...] Read more.
New sustainable materials have been developed to replace conventional plastics obtained from non-renewable sources. In this study, cellulose fibres from Posidonia oceanica (PO) were obtained by applying subcritical water extraction and bleaching with hydrogen peroxide or sodium chlorite. The PO fibres were used to obtain cellulose films, chitosan–cellulose composites, and PLA–cellulose laminates. These films were characterised as to their optical properties, mechanical performance, oxygen and water vapour permeability, thermal stability, and microstructure. The cellulose films exhibited low mechanical resistance, with different colouration depending on the degree of delignification. The composites had lower mechanical strength than pure chitosan films. The PO cellulose fibres had a similar, but attenuated, effect when laminated with PLA layers. The fibres improved the oxygen barrier capacity of chitosan films, although this effect only occurred in PLA laminates for cellulose purified with sodium chlorite. In no case did cellulose improve the water vapour barrier of the films compared to pure polymers. The thermal stability was not notably altered by the blending effect, thus reflecting the absence of significant interactions between the fibres and polymer. However, there is a need to improve the functionality of cellulose fibres from PO waste for their incorporation as fillers or laminates in biodegradable food packaging materials. Full article
Show Figures

Figure 1

12 pages, 1415 KiB  
Article
Recycling of Multilayer Flexible Packaging Waste Through Delamination with Recoverable Switchable Hydrophilicity Solvents
by Roberta Mastroddi, Chiara Samorì, Martina Vagnoni, Chiara Gualandi, Paola Galletti and Emilio Tagliavini
Separations 2025, 12(2), 45; https://doi.org/10.3390/separations12020045 - 11 Feb 2025
Cited by 1 | Viewed by 2459
Abstract
Multilayer flexible packaging wastes (MFPWs) consist of complex materials composed of multiple plastic films, which are often laminated with aluminum foil, and they constitute a large portion of packaging waste. The use of several polymeric layers is essential to achieve the desired technical [...] Read more.
Multilayer flexible packaging wastes (MFPWs) consist of complex materials composed of multiple plastic films, which are often laminated with aluminum foil, and they constitute a large portion of packaging waste. The use of several polymeric layers is essential to achieve the desired technical and mechanical performance of the packaging; however, this makes layer separation and recycling challenging. Currently, this type of waste is predominantly incinerated or landfilled; non-industrial recycling processes have recently been developed, but they mostly rely on traditional solvent-based treatments, which can be problematic. We present a versatile process for recycling MFPWs using switchable hydrophilicity solvents (SHSs). By treating waste with SHSs through a temperature-controlled process, we efficiently recovered the polymeric layers as sorted transparent films, effectively removing all additives while preserving the original properties of the polymers. Aluminum was recovered as well. N,N-dimethylcyclohexylamine was the best solvent for the delamination of the 26 different packaging materials tested, containing polypropylene, polyethylene, polyethylene terephthalate, and aluminum. The main advantage of this method is the straightforward recovery of the different components that can be efficiently delaminated and easily removed from the solvent, even from highly variable input material. Moreover, by exploiting the CO2-triggered switchable behavior of the solvent, its purification and recovery can be achieved, maintaining its delamination efficacy over several cycles. Full article
(This article belongs to the Special Issue Novel Solvents and Methods for Extraction of Chemicals)
Show Figures

Graphical abstract

14 pages, 2685 KiB  
Article
Formulation and Characterization of Deep Eutectic Solvents and Potential Application in Recycling Packaging Laminates
by Adamantini Loukodimou, Christopher Lovell, Tianmiao Li, George Theodosopoulos, Kranthi Kumar Maniam and Shiladitya Paul
Polymers 2024, 16(19), 2781; https://doi.org/10.3390/polym16192781 - 30 Sep 2024
Cited by 2 | Viewed by 1888
Abstract
Deep Eutectic Solvents (DESs) show promising abilities for the delamination of multilayer packaging films that are used in food packaging and in pharmaceutical blister packs. Due to the complexity of their structure, the recycling of such materials is a challenging task, leading to [...] Read more.
Deep Eutectic Solvents (DESs) show promising abilities for the delamination of multilayer packaging films that are used in food packaging and in pharmaceutical blister packs. Due to the complexity of their structure, the recycling of such materials is a challenging task, leading to the easiest or cheapest disposal option of either landfill or incineration. Towards the development of ‘green’ solvents for efficient waste management and recycling, this research focuses on the preparation of a range of hydrophobic and hydrophilic DESs based on carboxylic acids in combination with various naturally derived aliphatic and aromatic organic compounds as well as amino acids. Chemical and physical characterization of the solvents was undertaken using differential scanning calorimetry, rheometry, and density measurements for the determination of their properties. Subsequently, batches of solvent were tested against different types of consumer packaging to evaluate the ability of the DES to delaminate these structures into their component materials. The laminate packaging waste products tested were Al/PE, PE/Al/PET, Al/PE/paper, and PVC/PE/Al. Separated films were collected and studied to further examine the effect of solvent delamination on the materials. Depending on the DES formulation, the results showed either partial or full delamination of one or more of the packaging materials, albeit there were challenges for certain solvent systems in the context of delivering a broad delamination efficiency. Variables including temperature, agitation rate, mixing time, and solvent ratios were investigated via a Design of Experiments process to assess the effects of these parameters on the delamination outcome. The results showed that the DESs presented in this research can offer an efficient, low-energy, affordable, and green option for the delamination of laminate packaging materials. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

17 pages, 4850 KiB  
Article
Delamination and Evaluation of Multilayer PE/Al/PET Packaging Waste Separated Using a Hydrophobic Deep Eutectic Solvent
by Adamantini Loukodimou, Christopher Lovell, George Theodosopoulos, Kranthi Kumar Maniam and Shiladitya Paul
Polymers 2024, 16(19), 2718; https://doi.org/10.3390/polym16192718 - 25 Sep 2024
Cited by 2 | Viewed by 4714
Abstract
This research concerns the development and implementation of ground-breaking strategies for improving the sorting, separation, and recycling of common flexible laminate packaging materials. Such packaging laminates incorporate different functional materials in order to achieve the desired mechanical performance and barrier properties. Common components [...] Read more.
This research concerns the development and implementation of ground-breaking strategies for improving the sorting, separation, and recycling of common flexible laminate packaging materials. Such packaging laminates incorporate different functional materials in order to achieve the desired mechanical performance and barrier properties. Common components include poly(ethylene) (PE), poly(propylene) (PP), and poly(ethylene terephthalate) (PET), as well as valuable barrier materials such as poly(vinyl alcohol) (PVOH) and aluminium (Al) foils. Although widely used for the protection and preservation of food produce, such packaging materials present significant challenges for established recycling infrastructure and, therefore, to our future ambitions for a circular economy. Experience from the field of ionic liquids (ILs) and deep eutectic solvents (DESs) has been leveraged to develop novel green solvent systems that delaminate multilayer packaging materials to facilitate the separation and recovery of high-purity commodity plastics and aluminium. This research focuses on the development of a hydrophobic DES and the application of a Design of Experiments (DoE) methodology to investigate the effects of process parameters on the delamination of PE/Al/PET laminate packaging films. Key variables including temperature, time, loading, flake size, and perforations were assessed at laboratory scale using a 1 L filter reactor vessel. The results demonstrate that efficient separation of PE, Al, and PET can be achieved with high yields for material and solvent recovery. Recovered plastic films were subsequently characterised via Fourier-transform infra-red (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) to qualify the quality of plastics for reuse. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

24 pages, 9635 KiB  
Article
Expert Survey on the Impact of Cardboard and Paper Recycling Processes, Fiber-Based Composites/Laminates and Regulations, and Their Significance for the Circular Economy and the Sustainability of the German Paper Industry
by Jürgen Belle, Daniela Hirtz and Sven Sängerlaub
Sustainability 2024, 16(15), 6610; https://doi.org/10.3390/su16156610 - 2 Aug 2024
Viewed by 4088
Abstract
The European Community is striving for a sustainable society as suggested by the UN’s 2015 sustainability goals. The circular economy in the paper and packaging industry is of particular importance here because it consumes many resources. The paper industry in Germany with a [...] Read more.
The European Community is striving for a sustainable society as suggested by the UN’s 2015 sustainability goals. The circular economy in the paper and packaging industry is of particular importance here because it consumes many resources. The paper industry in Germany with a fiber recycling rate of 85% in 2022 is already a pioneer and role model for other industries. All materials should be recyclable. Fiber-based composites/laminates are currently becoming increasingly important. Essential questions are: which collection systems and recycling paths should be used for fiber-based composites/laminates, and where are there currently challenges with recycling? To answer these questions, 58 questionnaires answered by German experts and practitioners in the German paper industry were evaluated. Wet-strength papers, adhesives, plastic coatings and wax dispersions were perceived as a problem by 70% of all respondents, and packaging residues by almost 40%. Additionally, 90% stated that the composition of paper for recycling changes regularly due to legislation, trends and innovations, while 60% attributed this to recent changes in legislation. For at least 80%, virgin fibers from packaging are valuable for paper recycling, but only 15% of respondents stated that virgin fibers compensate for the disadvantages of rejects. Almost 90% expected challenges with fiber-based composites/laminates in the existing paper for recycling processes. Overall, the collection and recycling of fiber-based composites/laminates in conventional paper for recycling collection and the recycling system is not desirable. An integrated collection, sorting and recycling system should be considered, especially because a further increase in fiber-based composites is to be expected. In the end, the design for recycling and following recycling guidelines are the key to the recycling industry in the future. Good recyclability of fiber-based composites/laminates would improve their acceptance by paper recyclers. Their virgin fibers are particularly valuable. The results of our study are relevant to the recycling and fiber industry, standard-setting bodies, regulatory authorities and research. The limitation of this study is that experts from the paper industry were interviewed, but the recyclability of the fiber materials was not analyzed by measurement, and the machine technology of the interviewees could not be examined and evaluated. Full article
(This article belongs to the Collection Waste Management towards a Circular Economy Transition)
Show Figures

Figure 1

19 pages, 2961 KiB  
Article
Waste Study on Flexible Food and Non-Food Packaging: Detailed Analysis of the Plastic Composition of European Polyethylene-Containing Waste Streams
by Nelly Freitag, Johannes Schneider, Virginie Decottignies, Tanja Fell, Esra Kucukpinar and Martin Schlummer
Materials 2024, 17(13), 3202; https://doi.org/10.3390/ma17133202 - 30 Jun 2024
Cited by 3 | Viewed by 3036
Abstract
Despite extensive sorting, packaging waste often contains a mixture of different materials that make high-quality recycling difficult, especially in the case of flexible packaging. This is partly due to the widespread use of multi-layer laminates and packaging consisting of different inseparably combined materials. [...] Read more.
Despite extensive sorting, packaging waste often contains a mixture of different materials that make high-quality recycling difficult, especially in the case of flexible packaging. This is partly due to the widespread use of multi-layer laminates and packaging consisting of different inseparably combined materials. To improve the post-consumer recyclate quality and develop optimised recycling processes, it is important to generate a comprehensive understanding of the composition of the sorted packaging waste streams. Therefore, in this study, polyolefin sorting fractions for flexible packaging waste from three European countries are analysed in detail. By selective extraction of the different plastics, their mass fractions in the waste streams are determined. This shows that the PE-rich sorting fractions for flexible packaging are made up of 85–90% of PE, but also contain a certain proportion of foreign materials. A detailed analysis of the layer structures of various types of packaging also provides information on the prevalence of multi-layer packaging and the polymer and non-polymer materials used therein. This shows that particularly in food packaging, with 63–84% of multi-layer and 50–70% of multi-material packaging, a high proportion of foreign materials is used and introduced into the sorting fractions. These insights provide a valuable contribution to the development of recyclable packaging, potential sorting streams and recycling processes, especially with regard to the challenges of the closed-loop recycling of food packaging. Full article
(This article belongs to the Special Issue Polymers: From Waste to Potential Reuse)
Show Figures

Figure 1

15 pages, 1905 KiB  
Article
Optimization of Laminated Bio-Polymer Fabrication for Food Packaging Application: A Sustainable Plasma-Activated Approach
by Giacomo Foli, Filippo Capelli, Mariachiara Grande, Stefano Tagliabue, Matteo Gherardi and Matteo Minelli
Polymers 2024, 16(13), 1851; https://doi.org/10.3390/polym16131851 - 28 Jun 2024
Cited by 1 | Viewed by 2167
Abstract
The current level of packaging consumption imposes a need to fabricate single-use food packaging with renewable and compostable materials, such as bio-polyesters (e.g., polylactic acid, PLA and polybutylene succinate, PBS) or cellulose, but their use is still problematic. Fabrication of bio-compostable composites can [...] Read more.
The current level of packaging consumption imposes a need to fabricate single-use food packaging with renewable and compostable materials, such as bio-polyesters (e.g., polylactic acid, PLA and polybutylene succinate, PBS) or cellulose, but their use is still problematic. Fabrication of bio-compostable composites can specifically address impeding challenges, and adhesive lamination, achieved with compostable glue, is becoming more and more popular with respect to the less versatile hot lamination. In this context, plasma activation, a chemical-free oxidation technique of a material’s surface, is used to increase the affinity of three different biomaterials (cellulose, PLA and PBS) toward a compostable polyurethane adhesive to decrease its amount by gluing bio-polyesters to cellulose. Optical Microscopy reveals activation conditions that do not affect the integrity of the materials, while Water Contact Analyses confirm the activation of the surfaces, with contact angles decreased to roughly 50 deg in all cases. Unexpectedly, ζ-potential analyses and subtractive infrared spectroscopy highlight how the activation performed superficially etches cellulose, while for both PLA and PBS, a general decrease in surface potential and an increase in superficial hydroxyl group populations confirm the achievement of the desired oxidation. Thus, we rationalize continuous activation conditions to treat PLA and PBS and to glue them to neat cellulose. While no beneficial effect is observed with activated PLA, bi-laminate composites fabricated with activated PBS fulfill the benchmark for adhesion strength using less than before, while oxygen permeation analyses exclude plasma-induced etching even at a nanoscale. Full article
(This article belongs to the Special Issue Biopolymers from Renewable Sources and Their Applications II)
Show Figures

Figure 1

22 pages, 3069 KiB  
Article
Stability and Composting Behaviour of PLA–Starch Laminates Containing Active Extracts and Cellulose Fibres from Rice Straw
by Pedro A. V. Freitas, Chelo González-Martínez and Amparo Chiralt
Polymers 2024, 16(11), 1474; https://doi.org/10.3390/polym16111474 - 23 May 2024
Cited by 3 | Viewed by 1524
Abstract
The stability and composting behaviour of monolayers and laminates of poly (lactic acid) (PLA) and starch with and without active extracts and cellulose fibres from rice straw (RS) were evaluated. The retrogradation of the starch throughout storage (1, 5, and 10 weeks) gave [...] Read more.
The stability and composting behaviour of monolayers and laminates of poly (lactic acid) (PLA) and starch with and without active extracts and cellulose fibres from rice straw (RS) were evaluated. The retrogradation of the starch throughout storage (1, 5, and 10 weeks) gave rise to stiffer and less extensible monolayers with lower water vapour barrier capacity. In contrast, the PLA monolayers, with or without extract, did not show marked changes with storage. However, these changes were more attenuated in the bilayers that gained water vapour and oxygen barrier capacity during storage, maintaining the values of the different properties close to the initial range. The bioactivity of the active films exhibited a slight decrease during storage, so the antioxidant capacity is better preserved in the bilayers. All monolayer and bilayer films were fully composted within 90 days but with different behaviour. The bilayer assembly enhanced the biodegradation of PLA, whose monolayer exhibited a lag period of about 35 days. The active extract reduced the biodegradation rate of both mono- and bilayers but did not limit the material biodegradation within the time established in the Standard. Therefore, PLA–starch laminates, with or without the valorised fractions from RS, can be considered as biodegradable and stable materials for food packaging applications. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials III)
Show Figures

Graphical abstract

12 pages, 3011 KiB  
Article
The Effect of Applying UV LED-Cured Varnish to Metalized Printing Elements during Cold Foil Lamination
by Igor Majnarić, Marko Morić, Dean Valdec and Katja Milković
Coatings 2024, 14(5), 604; https://doi.org/10.3390/coatings14050604 - 10 May 2024
Cited by 2 | Viewed by 2169
Abstract
The coating process involves applying a thin material layer to a surface to engender it with specific desirable properties or enhance its performance. In the production of print media (labels, packaging, printed textiles, and promotional materials), the standard functions of the coating process [...] Read more.
The coating process involves applying a thin material layer to a surface to engender it with specific desirable properties or enhance its performance. In the production of print media (labels, packaging, printed textiles, and promotional materials), the standard functions of the coating process include visual decoration, which involves the addition of appealing colors, textures, and patterns. A pertinent issue in the printing industry is that at present, the predominant coating process uses printing and coating technologies (gravure, flexo, letterset, letterpress, screen printing, inkjet, and electrophotography) and lamination (i.e., attaching decorative layers of materials, such as films or fabrics). In this paper, we present a new method for testing the efficiency with which different-sized metalized printing elements (using gold foil) may be applied to paper substrates; to do so, we gradually vary the amount UV-cured inkjet varnish (or adhesive) that is applied. To test the effectiveness of this method in producing metallic visual effects, we utilize seven different thicknesses of UV-cured varnish with the aid of modular piezo inkjet heads (KM1024 iLHE-30) and three different printing speeds. Our research shows that to achieve optimal production of cold metalized foil, a 21 µm layer should be deposited, and the substrate should move at a speed of 0.30 m/s. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

14 pages, 6283 KiB  
Article
Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite
by Aleksandra Janićijević, Suzana Filipović, Aleksandra Sknepnek, Ana Salević-Jelić, Radmila Jančić-Heinemann, Miloš Petrović, Ivan Petronijević, Marina Stamenović, Predrag Živković, Nebojša Potkonjak and Vladimir B. Pavlović
Polymers 2024, 16(8), 1033; https://doi.org/10.3390/polym16081033 - 10 Apr 2024
Cited by 6 | Viewed by 1890
Abstract
This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction [...] Read more.
This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

15 pages, 2093 KiB  
Article
The Influence of the Production Stages of Cardboard Pharmaceutical Packaging on the Circular Economy
by Mia Klemenčić, Ivana Bolanča Mirković and Nenad Bolf
Sustainability 2023, 15(24), 16882; https://doi.org/10.3390/su152416882 - 15 Dec 2023
Cited by 3 | Viewed by 2232
Abstract
Packaging appearance is important in a competitive market. Designers strive to create products that attract customers and often use laminated packaging, due to the attractive appearance and quality characteristics of the material. The circular economy in the recycling of cardboard packaging helps to [...] Read more.
Packaging appearance is important in a competitive market. Designers strive to create products that attract customers and often use laminated packaging, due to the attractive appearance and quality characteristics of the material. The circular economy in the recycling of cardboard packaging helps to reduce waste, saves natural resources and increases the quality of the environment. All of the above contributes to sustainable production, but the quality and properties of the obtained recycled paper materials should not be ignored. Recycling of laminated cardboard packaging often has a negative impact on the quality of recycled paper, due to the formation of sticky particles that can affect the optical properties of recycled paper and the efficiency of the recycling process. This article provides insight into the influence of each stage of production of packaging intended for pharmaceutical products on the properties and characteristics of recycled paper. The standard INGEDE 11 deinking method was used to remove dyes and other impurities from the pulp. The obtained optical results of the characteristics of recycled laboratory sheets obtained from laminated and non-laminated cardboard samples were compared in order to determine the impact of each stage of box production on the quality of the paper pulp. The acquired knowledge can be applied in the design phase of a more sustainable product, and laminated materials can be used in luxury products or to increase the functionality of the packaging. Designing for recycling will contribute to an increase in the quality of the obtained paper mass, which is directly related to an increase in the productivity of recycling and the sustainability of the packaging production process. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

Back to TopTop