Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = lab-on-a-chip simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1098 KB  
Review
Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering
by Daniele Marazzi, Federica Trovalusci, Paolo Di Nardo and Felicia Carotenuto
Biomimetics 2026, 11(1), 18; https://doi.org/10.3390/biomimetics11010018 - 30 Dec 2025
Viewed by 663
Abstract
Microfluidic technologies have ushered in a new era in cardiac tissue engineering, providing more predictive in vitro models compared to two-dimensional culture studies. This review examines Organ-on-a-Chip (OoC) and Lab-on-a-Chip (LoC) platforms, with a specific focus on cardiovascular applications. OoCs, and particularly Heart-on-a-Chip [...] Read more.
Microfluidic technologies have ushered in a new era in cardiac tissue engineering, providing more predictive in vitro models compared to two-dimensional culture studies. This review examines Organ-on-a-Chip (OoC) and Lab-on-a-Chip (LoC) platforms, with a specific focus on cardiovascular applications. OoCs, and particularly Heart-on-a-Chip systems, have advanced biomimicry to a higher level by recreating complex 3D cardiac microenvironments in vitro and dynamic fluid flow. These platforms employ induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), engineered extracellular matrices, and dynamic mechanical and electrical stimulation to reproduce the structural and functional features of myocardial tissue. LoCs have introduced miniaturization and integration of analytical functions into compact devices, enabling high-throughput screening, advanced diagnostics, and efficient pharmacological testing. They enable the investigation of pathophysiological mechanisms, the assessment of cardiotoxicity, and the development of precision medicine approaches. Furthermore, progress in multi-organ systems expands the potential of microfluidic technologies to simulate heart–liver, heart–kidney, and heart–tumor interactions, providing more comprehensive predictive models. However, challenges remain, including the immaturity of iPSC-derived cells, the lack of standardization, and scalability issues. In general, microfluidic platforms represent strategic tools for advancing cardiovascular research in translation and accelerating therapeutic innovation within precision medicine. Full article
Show Figures

Graphical abstract

16 pages, 2897 KB  
Article
Self-Powered Microfluidic System Based on Double-Layer Rotational Triboelectric Nanogenerator
by Yiming Zhong, Haofeng Li and Dongping Wu
Micromachines 2025, 16(12), 1386; https://doi.org/10.3390/mi16121386 - 6 Dec 2025
Viewed by 649
Abstract
Self-powered microfluidic systems represent a promising direction toward autonomous and portable lab-on-chip technologies, yet conventional electrowetting platforms remain constrained by bulky high-voltage supplies and intricate control circuitry. In this work, we design a triboelectric nanogenerator (TENG)-based microfluidic system that harvests mechanical energy for [...] Read more.
Self-powered microfluidic systems represent a promising direction toward autonomous and portable lab-on-chip technologies, yet conventional electrowetting platforms remain constrained by bulky high-voltage supplies and intricate control circuitry. In this work, we design a triboelectric nanogenerator (TENG)-based microfluidic system that harvests mechanical energy for droplet manipulation without any external electronics. The TENG integrates two triboelectric units with a 25° phase offset, enabling periodic high-voltage generation. Finite element simulations elucidate the electric field distributions of the TENG and microfluidic chip, validating the operating principle of the integrated microfluidic system. Experimental studies further quantify the effects of electrode geometry and rotational speed on the critical drivable droplet volume, demonstrating stable transport over linear, S-shaped, and circular trajectories. Remarkably, the droplet motion direction can be instantaneously reversed by reversing the TENG rotation direction, achieving bidirectional control without auxiliary circuitry. This work establishes a voltage-optimized, structurally tunable, and fully self-powered platform, offering a new paradigm for portable digital microfluidics. Full article
Show Figures

Figure 1

21 pages, 4855 KB  
Article
Enhancing Microparticle Separation Efficiency in Acoustofluidic Chips via Machine Learning and Numerical Modeling
by Tamara Klymkovych, Nataliia Bokla, Wojciech Zabierowski and Dmytro Klymkovych
Sensors 2025, 25(20), 6427; https://doi.org/10.3390/s25206427 - 17 Oct 2025
Cited by 1 | Viewed by 956
Abstract
An integrated approach for enhancing microparticle separation efficiency in acoustofluidic lab-on-a-chip systems is presented, combining numerical modeling in COMSOL 6.2 Multiphysics® with reinforcement learning techniques implemented in Python 3.10.14. The proposed method addresses the limitations of traditional parameter tuning, which is time-consuming [...] Read more.
An integrated approach for enhancing microparticle separation efficiency in acoustofluidic lab-on-a-chip systems is presented, combining numerical modeling in COMSOL 6.2 Multiphysics® with reinforcement learning techniques implemented in Python 3.10.14. The proposed method addresses the limitations of traditional parameter tuning, which is time-consuming and computationally intensive. A simulation framework based on LiveLink™ for COMSOL–Python integration enables the automatic generation, execution, and evaluation of particle separation scenarios. Reinforcement learning algorithms, trained on both successful and failed experiments, are employed to optimize control parameters such as flow velocity and acoustic frequency. Experimental data from over 100 numerical simulations were used to train a neural network, which demonstrated the ability to accurately predict and improve sorting efficiency. The results confirm that incorporating failed outcomes into the reward structure significantly improves learning convergence and model accuracy. This work contributes to the development of intelligent microfluidic systems capable of autonomous adaptation and optimization for biomedical and analytical applications, such as label-free separation of microplastics from biological fluids, selective sorting of soot and ash particles for environmental monitoring, and high-precision manipulation of cells or extracellular vesicles for diagnostic assays. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 4100 KB  
Proceeding Paper
Simulation and Experimental Validation of a Microfluidic Device Used for Cell Focusing and Sorting Based on an Inertial Microfluidics Technique
by Muhammad Zulfiqar, Fizzah Asif, Emad Uddin, Muhammad Irfan, Ch Abdullah, Sibghat Ullah and Danish Manshad
Mater. Proc. 2025, 23(1), 13; https://doi.org/10.3390/materproc2025023013 - 6 Aug 2025
Viewed by 1097
Abstract
Cell separation is a major process in biomedicine and diagnostics and in the food and pharmaceutical industries. In this paper, a channel design is proposed for cell separation based on a passive cell sorting technique and sheath less flow. Initially, erythrocytes and monocytes [...] Read more.
Cell separation is a major process in biomedicine and diagnostics and in the food and pharmaceutical industries. In this paper, a channel design is proposed for cell separation based on a passive cell sorting technique and sheath less flow. Initially, erythrocytes and monocytes are injected into the designed channel, and the behavior of the particles is observed. The erythrocyte and monocyte are 8 μm and 20 μm in size, respectively. The final design is tested for different cross-sectional areas and particle sizes; 20 μm is the largest particle size that can be sorted with this design. Particles are separated due to inertial migration because the forces that focus the particles in the channels, in the form of different streams, deepen the lift force on the inertia of the moving particles. The lift force pushes the particles toward the wall, while the Dean force causes them to rotate near to the wall, stabilizing their positions. The lift and Dean forces depend on the inertia of the particles and topology of the channel, respectively. In this research, cell sorting is quantified by the distance between the two separated particles, and the trend of Δ x x versus Q is discussed. The channel throughput is also quantified in terms of the minimum and maximum allowable flow rates. Particles are best sorted by critical flow rate and Dean number. This hook-shaped design is created using polymethyl siloxane (PDMS), which is ideally suited for use in lab-on-chip (LOC) devices for continuous filtration and particle separation. The design is also experimentally tested and validated with the simulation results. Full article
Show Figures

Figure 1

21 pages, 5159 KB  
Article
Energy-Efficient AC Electrothermal Microfluidic Pumping via Localized External Heating
by Diganta Dutta, Lanju Mei, Xavier Palmer and Matthew Ziemke
Appl. Sci. 2025, 15(13), 7369; https://doi.org/10.3390/app15137369 - 30 Jun 2025
Viewed by 933
Abstract
In this study, we present a comprehensive numerical investigation of alternating-current electrothermal (ACET) pumping strategies tailored for energy-efficient microfluidic applications. Using coupled electrokinetic and thermal multiphysics simulations in narrow microchannels, we systematically explore the effects of channel geometry, electrode asymmetry and external heating [...] Read more.
In this study, we present a comprehensive numerical investigation of alternating-current electrothermal (ACET) pumping strategies tailored for energy-efficient microfluidic applications. Using coupled electrokinetic and thermal multiphysics simulations in narrow microchannels, we systematically explore the effects of channel geometry, electrode asymmetry and external heating on flow performance and thermal management. A rigorous mesh convergence study confirms velocity deviations below ±0.006 µm/s across the entire operating envelope, ensuring reliable prediction of ACET-driven flows. We demonstrate that increasing channel height from 100 µm to 500 µm reduces peak temperatures by up to 79 K at a constant 2 W heat input, highlighting the critical role of channel dimensions in convective heat dissipation. Introducing a localized external heat source beneath asymmetric electrode pairs enhances convective circulations, while doubling the fluid’s electrical conductivity yields a ~29% increase in net flow rate. From these results, we derive practical design guidelines—combining asymmetric electrode layouts, tailored channel heights, and external heat bias—to realize self-regulating, low-power microfluidic pumps. Such devices hold significant promises for on-chip semiconductor cooling, lab-on-a-chip assays and real-time thermal control in high-performance microelectronic and analytical systems. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

13 pages, 5874 KB  
Article
Fano Resonance Mach–Zehnder Modulator Based on a Single Arm Coupled with a Photonic Crystal Nanobeam Cavity for Silicon Photonics
by Enze Shi, Guang Chen, Lidan Lu, Yingjie Xu, Jieyu Yang and Lianqing Zhu
Sensors 2025, 25(10), 3240; https://doi.org/10.3390/s25103240 - 21 May 2025
Viewed by 2287
Abstract
Recently, Fano resonance modulators and photonic crystal nanobeam cavities (PCNCs) have attracted more and more attention due to their superior performance, such as high modulation efficiency and high extinction ratio (ER). In this paper, a silicon Fano resonance Mach–Zehnder modulator (MZM) based on [...] Read more.
Recently, Fano resonance modulators and photonic crystal nanobeam cavities (PCNCs) have attracted more and more attention due to their superior performance, such as high modulation efficiency and high extinction ratio (ER). In this paper, a silicon Fano resonance Mach–Zehnder modulator (MZM) based on a single arm coupled with a PCNC is theoretically analyzed, designed, and numerically simulated. By optimizing the coupling length, lattice constant, coupling gap, and the number of holes in the mirror/taper region, the ER of our MZM can achieve 34 dB. When the applied voltage of the MZM is biased at 4.3 V and the non-return-to-zero on–off keying (NRZ-OOK) signal at a data rate of 10 Gbit/s is modulated, the sharpest asymmetric resonant peak and the most remarkable Fano line shape can be obtained around a wavelength of 1550.68 nm. Compared with the traditional nanobeam cavities, along with the varying radii, our PCNC design has holes with a fixed radius of 90 nm, which is suitable to be fabricated by a 180 nm passive silicon photonic multi-project wafer (MPW). Therefore, our compacted lab-on-chip, resonance-based silicon photonic MZM that is coupled with a PCNC has the advantages of superior performance and easy fabrication, which provide support for photonic integrated circuit designs and can be beneficial to various silicon photonic application fields, including photonic computing, photonic convolutional neural networks, and optical communications, in the future. Full article
(This article belongs to the Special Issue Advances in Microwave Photonics)
Show Figures

Figure 1

21 pages, 5078 KB  
Article
Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring
by Samuele Moscato, Emanuela Cutuli, Massimo Camarda and Maide Bucolo
Micromachines 2025, 16(5), 586; https://doi.org/10.3390/mi16050586 - 17 May 2025
Cited by 2 | Viewed by 1279
Abstract
Miniaturization and reliable, real-time, non-invasive monitoring are essential for investigating microfluidic processes in Lab-on-a-Chip (LoC) systems. Progress in this field is driven by three complementary approaches: analytical modeling, computational fluid dynamics (CFD) simulations, and experimental validation techniques. In this study, we present an [...] Read more.
Miniaturization and reliable, real-time, non-invasive monitoring are essential for investigating microfluidic processes in Lab-on-a-Chip (LoC) systems. Progress in this field is driven by three complementary approaches: analytical modeling, computational fluid dynamics (CFD) simulations, and experimental validation techniques. In this study, we present an on-chip experimental method for estimating the slug-flow velocity in microchannels through in situ optical monitoring. Slug flow involving two immiscible fluids was investigated under both liquid–liquid and gas–liquid conditions via an extensive experimental campaign. The measured velocities were used to determine the slug length and key dimensionless parameters, including the Reynolds number and Capillary number. A comparison with analytical models and CFD simulations revealed significant discrepancies, particularly in gas–liquid flows. These differences are mainly attributed to factors such as gas compressibility, pressure fluctuations, the presence of a liquid film, and leakage flows, all of which substantially affect flow dynamics. Notably, the percentage error in liquid–liquid flows was lower than that in gas–liquid flows, largely due to the incompressibility assumption inherent in the model. The high-frequency monitoring capability of the proposed method enables in situ mapping of evolving multiphase structures, offering valuable insights into slug-flow dynamics and transient phenomena that are often difficult to capture using conventional measurement techniques. Full article
(This article belongs to the Special Issue Complex Fluid Flows in Microfluidics)
Show Figures

Figure 1

33 pages, 3295 KB  
Article
Integrating Model-Based Systems Engineering into CubeSat Development: A Case Study of the BOREALIS Mission
by Lorenzo Nardi, Stefano Carletta, Parsa Abbasrezaee, Giovanni Palmerini, Nicola Lovecchio, Nunzio Burgio, Alfonso Santagata, Massimo Frullini, Donato Calabria, Massimo Guardigli, Elisa Michelini, Maria Maddalena Calabretta, Martina Zangheri, Elisa Lazzarini, Andrea Pace, Marco Montalti, Dario Mordini, Liyana Popova, Saverio Citraro, Daniela Billi, Fabio Lorenzini, Alessandro Donati, Mara Mirasoli and Augusto Nascettiadd Show full author list remove Hide full author list
Aerospace 2025, 12(3), 256; https://doi.org/10.3390/aerospace12030256 - 18 Mar 2025
Viewed by 2894
Abstract
The Biofilm Onboard Radiation Exposure Assessment Lab In Space (BOREALIS) mission is a 6U CubeSat initiative funded by the Italian Space Agency under the ALCOR program, executed through a collaboration among the School of Aerospace Engineering of Sapienza University of Rome, Interdepartmental Centre [...] Read more.
The Biofilm Onboard Radiation Exposure Assessment Lab In Space (BOREALIS) mission is a 6U CubeSat initiative funded by the Italian Space Agency under the ALCOR program, executed through a collaboration among the School of Aerospace Engineering of Sapienza University of Rome, Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace) of the University of Bologna and Kayser Italia Srl. BOREALIS is equipped with a lab-on-chip payload for studying the effects of microgravity and ionising radiation on microbial biofilms, which are crucial for understanding and preventing persistent infections in space environments. The satellite will operate across multiple orbits, moving from low to medium Earth orbit, to distinctly analyse the impacts of radiation separate from microgravity. The required orbital transfer not only tests the autonomy of its on-board systems in challenging conditions but also places BOREALIS among the first and few CubeSats to have ever attempted such a complex manoeuvre. This study explores the systematic application of Model-Based Systems Engineering to satellite design, from conceptualisation to trade-offs, using a tradespace analysis approach supported by Monte Carlo simulations to optimise mission configurations against performance and cost. Additionally, the adaptability of Model-Based Systems Engineering tools and the reusability of such an approach for other satellite projects are discussed, illustrating the BOREALIS mission as a case study for small mission design considering constraints and requirements. Full article
Show Figures

Figure 1

18 pages, 7779 KB  
Article
Enhanced Fluid Mixing in Microchannels Using Levitated Magnetic Microrobots: A Numerical Study
by Ali Anil Demircali, Abdurrahim Yilmaz and Huseyin Uvet
Micromachines 2025, 16(1), 52; https://doi.org/10.3390/mi16010052 - 31 Dec 2024
Cited by 2 | Viewed by 1993
Abstract
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within [...] Read more.
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within a Y-shaped microchannel with a square cross-section (500 × 500 μm). Our research investigates the fluid mixing effectiveness facilitated by the microrobot through various levitation heights and orientations to enhance the mixing index (MI). This index is tested under different conditions by leveraging the dynamics of the propeller robot, characterized by adjustable roll and pitch angles and varying levitation heights. The numerical simulations, conducted using COMSOL® (Finite Element Method, FEM) software, integrate Maxwell’s equations for magnetic field interaction with momentum and transport-diffusion equations to analyze fluid dynamics within the microchannel. Results indicate that the propeller robot can achieve an MI of up to 98.94% at a 150 μm levitation height and 1500 rpm propeller speed within 3 s. Additionally, the study examines the impact of propeller speed, Reynolds number, and robot length on mixing performance, providing comprehensive guidance for optimizing microscale fluid mixing in lab-on-a-chip applications. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering)
Show Figures

Figure 1

12 pages, 3108 KB  
Article
A Microfluidic-Based Sensing Platform for Rapid Quality Control on Target Cells from Bioreactors
by Alessia Foscarini, Fabio Romano, Valeria Garzarelli, Antonio Turco, Alessandro Paolo Bramanti, Iolena Tarantini, Francesco Ferrara, Paolo Visconti, Giuseppe Gigli and Maria Serena Chiriacò
Sensors 2024, 24(22), 7329; https://doi.org/10.3390/s24227329 - 16 Nov 2024
Cited by 2 | Viewed by 2354
Abstract
We investigated the design and characterization of a Lab-On-a-Chip (LoC) cell detection system primarily designed to support immunotherapy in cancer treatment. Immunotherapy uses Chimeric Antigen Receptors (CARs) and T Cell Receptors (TCRs) to fight cancer, engineering the response of the immune system. In [...] Read more.
We investigated the design and characterization of a Lab-On-a-Chip (LoC) cell detection system primarily designed to support immunotherapy in cancer treatment. Immunotherapy uses Chimeric Antigen Receptors (CARs) and T Cell Receptors (TCRs) to fight cancer, engineering the response of the immune system. In recent years, it has emerged as a promising strategy for personalized cancer treatment. However, it requires bioreactor-based cell culture expansion and manual quality control (QC) of the modified cells, which is time-consuming, labour-intensive, and prone to errors. The miniaturized LoC device for automated QC demonstrated here is simple, has a low cost, and is reliable. Its final target is to become one of the building blocks of an LoC for immunotherapy, which would take the place of present labs and manual procedures to the benefit of throughput and affordability. The core of the system is a commercial, on-chip-integrated capacitive sensor managed by a microcontroller capable of sensing cells as accurately measured charge variations. The hardware is based on standardized components, which makes it suitable for mass manufacturing. Moreover, unlike in other cell detection solutions, no external AC source is required. The device has been characterized with a cell line model selectively labelled with gold nanoparticles to simulate its future use in bioreactors in which labelling can apply to successfully engineered CAR-T-cells. Experiments were run both in the air—free drop with no microfluidics—and in the channel, where the fluid volume was considerably lower than in the drop. The device showed good sensitivity even with a low number of cells—around 120, compared with the 107 to 108 needed per kilogram of body weight—which is desirable for a good outcome of the expansion process. Since cell detection is needed in several contexts other than immunotherapy, the usefulness of this LoC goes potentially beyond the scope considered here. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

19 pages, 2090 KB  
Article
Thermal Bed Design for Temperature-Controlled DNA Amplification Using Optoelectronic Sensors
by Guillermo Garcia-Torales, Hector Hugo Torres-Ortega, Ruben Estrada-Marmolejo, Anuar B. Beltran-Gonzalez and Marija Strojnik
Sensors 2024, 24(21), 7050; https://doi.org/10.3390/s24217050 - 31 Oct 2024
Viewed by 1705
Abstract
Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, [...] Read more.
Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, which require precise thermal control for optimal DNA amplification. This paper introduces a novel thermal bed design using PCB copper traces and FR4 dielectric materials, providing a reliable, modular, and repairable heating platform. The system achieves accurate and stable temperature control, which is critical for μ-LAMP applications, with temperature deviations within ±1.0 °C. The thermal bed’s performance is validated through finite element method (FEM) simulations, showing uniform temperature distribution and a rapid thermal response of 2.5 s to reach the target temperature. These results highlight the system’s potential for applications such as disease diagnostics, biological safety, and forensic analysis, where precision and reliability are paramount. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

10 pages, 225 KB  
Commentary
Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research
by Marco De Spirito, Valentina Palmieri, Giordano Perini and Massimiliano Papi
Bioengineering 2024, 11(7), 664; https://doi.org/10.3390/bioengineering11070664 - 28 Jun 2024
Cited by 25 | Viewed by 3785
Abstract
Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D [...] Read more.
Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D bioprinted tissues, when integrated with microfluidic systems, can replicate the dynamic environment of the human body, allowing for the development of multi-organ models. This integration facilitates more precise drug screening and personalized therapy development by simulating interactions between different organ systems. Such innovations not only improve predictive accuracy but also address ethical concerns associated with animal testing, aligning with the three Rs principle. Future directions include enhancing bioprinting resolution, developing advanced bioinks, and incorporating AI for optimized system design. These technologies hold the potential to revolutionize drug development, regenerative medicine, and disease modeling, leading to more effective, personalized, and humane treatments. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
16 pages, 3777 KB  
Article
Analytical Solution for Transient Electroosmotic and Pressure-Driven Flows in Microtubes
by Yu Feng, Hang Yi and Ruguan Liu
Fluids 2024, 9(6), 140; https://doi.org/10.3390/fluids9060140 - 11 Jun 2024
Cited by 4 | Viewed by 4989
Abstract
This study focuses on deriving and presenting an infinite series as the analytical solution for transient electroosmotic and pressure-driven flows in microtubes. Such a mathematical presentation of fluid dynamics under simultaneous electric field and pressure gradients leverages governing equations derived from the generalized [...] Read more.
This study focuses on deriving and presenting an infinite series as the analytical solution for transient electroosmotic and pressure-driven flows in microtubes. Such a mathematical presentation of fluid dynamics under simultaneous electric field and pressure gradients leverages governing equations derived from the generalized continuity and momentum equations simplified for laminar and axisymmetric flow. Velocity profile developments, apparent slip-induced flow rates, and shear stress distributions were analyzed by varying values of the ratio of microtube radius to Debye length and the electroosmotic slip velocity. Additionally, the “retarded time” in terms of hydraulic diameter, kinematic viscosity, and slip-induced flow rate was derived. A simpler polynomial series approximation for steady electroosmotic flow is also proposed for engineering convenience. The analytical solutions obtained in this study not only enhance the fundamental understanding of the electroosmotic flow characteristics within microtubes, emphasizing the interplay between electroosmotic and pressure-driven mechanisms, but also serve as a benchmark for validating computational fluid dynamics models for electroosmotic flow simulations in more complex flow domains. Moreover, the analytical approach aids in the parametric analysis, providing deeper insights into the impact of physical parameters on electroosmotic and pressure-driven flow behavior, which is critical for optimizing device performance in practical applications. These findings also offer insightful implications for diagnostic and therapeutic strategies in healthcare, particularly enhancing the capabilities of lab-on-a-chip technologies and paving the way for future research in the development and optimization of microfluidic systems. Full article
(This article belongs to the Special Issue Physics and Applications of Microfluidics)
Show Figures

Figure 1

8 pages, 3631 KB  
Communication
Low-Voltage High-Frequency Lamb-Wave-Driven Micromotors
by Zhaoxun Wang, Wei Wei, Menglun Zhang, Xuexin Duan, Quanning Li, Xuejiao Chen, Qingrui Yang and Wei Pang
Micromachines 2024, 15(6), 716; https://doi.org/10.3390/mi15060716 - 29 May 2024
Viewed by 3979
Abstract
By leveraging the benefits of a high energy density, miniaturization and integration, acoustic-wave-driven micromotors have recently emerged as powerful tools for microfluidic actuation. In this study, a Lamb-wave-driven micromotor is proposed for the first time. This motor consists of a ring-shaped Lamb wave [...] Read more.
By leveraging the benefits of a high energy density, miniaturization and integration, acoustic-wave-driven micromotors have recently emerged as powerful tools for microfluidic actuation. In this study, a Lamb-wave-driven micromotor is proposed for the first time. This motor consists of a ring-shaped Lamb wave actuator array with a rotor and a fluid coupling layer in between. On a driving mechanism level, high-frequency Lamb waves of 380 MHz generate strong acoustic streaming effects over an extremely short distance; on a mechanical design level, each Lamb wave actuator incorporates a reflector on one side of the actuator, while an acoustic opening is incorporated on the other side to limit wave energy leakage; and on electrical design level, the electrodes placed on the two sides of the film enhance the capacitance in the vertical direction, which facilitates impedance matching within a smaller area. As a result, the Lamb-wave-driven solution features a much lower driving voltage and a smaller size compared with conventional surface acoustic-wave-driven solutions. For an improved motor performance, actuator array configurations, rotor sizes, and liquid coupling layer thicknesses are examined via simulations and experiments. The results show the micromotor with a rotor with a diameter of 5 mm can achieve a maximum angular velocity of 250 rpm with an input voltage of 6 V. The proposed micromotor is a new prototype for acoustic-wave-driven actuators and demonstrates potential for lab-on-a-chip applications. Full article
Show Figures

Figure 1

13 pages, 3335 KB  
Article
FPGA-Based Implementation of a Digital Insulin-Glucose Regulator for Type 2 Diabetic Patients
by Guido Di Patrizio Stanchieri, Andrea De Marcellis, Marco Faccio, Elia Palange, Mario Di Ferdinando, Stefano Di Gennaro and Pierdomenico Pepe
Electronics 2024, 13(9), 1607; https://doi.org/10.3390/electronics13091607 - 23 Apr 2024
Cited by 1 | Viewed by 1937
Abstract
This paper reports on the hardware implementation of a digital insulin-glucose regulator for type 2 diabetic patients by using a Field Programmable Gate Array board. For a real time-control of the patient insulin concentration, the insulin-regulator needs to measure only his blood glucose [...] Read more.
This paper reports on the hardware implementation of a digital insulin-glucose regulator for type 2 diabetic patients by using a Field Programmable Gate Array board. For a real time-control of the patient insulin concentration, the insulin-regulator needs to measure only his blood glucose concentration. With respect to other reported solutions using general-purpose programmable hardware’s, the proposed insulin-glucose regulator allows to design a software-free, fully-hardware architecture of the system here described in detail. A prototype has been developed so to validate its functionality in the following two operating modes: (i) in the open loop condition for which only the insulin-glucose regulator is operating; (ii) in the closed loop condition for which the insulin-glucose regulator acting as an artificial pancreas is connected to a population of one hundred virtual patients individuated by employing a comprehensive theoretical model recognized by the U.S. Food and Drug Administration for the pre-clinical validation of glucose control strategies. These virtual patients present the same trend of the variation of the glucose concentration achieving different maximum and minimum values of glucose concentrations when eating a meal. The paper presents and discusses the experimental results by comparing them with those ones obtained by implementing the theoretical model through numerical simulations performed in SIMULINK. Relative errors lower than ±1% have been achieved by performing this comparison so demonstrating a very high accuracy of the proposed insulin-glucose regulator digital system. The implemented hardware solution of the digital controller can process the input data related to the glucose concentration of each virtual patient in about 1.1 μs with an estimated power consumption of about 36 mW. These achievements open the way for further investigations on digital architectures for glucose regulators to be integrated in VLSI as System-on-Chips and/or Lab-on-Chips for portable, wearable, and implantable solutions in real biomedical applications. Full article
(This article belongs to the Special Issue Emerging Electronic Technologies for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop