Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,486)

Search Parameters:
Keywords = knowledge and learning integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1278 KB  
Article
MixModel: A Hybrid TimesNet–Informer Architecture with 11-Dimensional Time Features for Enhanced Traffic Flow Forecasting
by Chun-Chi Ting, Kuan-Ting Wu, Hui-Ting Christine Lin and Shinfeng Lin
Mathematics 2025, 13(19), 3191; https://doi.org/10.3390/math13193191 - 5 Oct 2025
Abstract
The growing demand for reliable long-term traffic forecasting has become increasingly critical in the development of intelligent transportation systems (ITS). However, capturing both strong periodic patterns and long-range temporal dependencies presents a significant challenge, and existing approaches often fail to balance these factors [...] Read more.
The growing demand for reliable long-term traffic forecasting has become increasingly critical in the development of intelligent transportation systems (ITS). However, capturing both strong periodic patterns and long-range temporal dependencies presents a significant challenge, and existing approaches often fail to balance these factors effectively, resulting in unstable or suboptimal predictions. To address this issue, we propose MixModel , a novel hybrid framework that integrates TimesNet and Informer to leverage their complementary strengths. Specifically, the TimesNet branch extracts periodic variations through frequency-domain decomposition and multi-scale convolution, while the Informer branch employs ProbSparse attention to efficiently capture long-range dependencies across extended horizons. By unifying these capabilities, MixModel achieves enhanced forecasting accuracy, robustness, and stability compared with state-of-the-art baselines. Extensive experiments on real-world highway datasets demonstrate the effectiveness of our model, highlighting its potential for advancing large-scale urban traffic management and planning. To the best of our knowledge, MixModel is the first hybrid framework that explicitly bridges frequency-domain periodic modeling and efficient long-range dependency learning for long-term traffic forecasting, establishing a new benchmark for future research in Intelligent Transportation Systems. Full article
15 pages, 265 KB  
Article
Supporting Teacher Professionalism for Inclusive Education: Integrating Cognitive, Emotional, and Contextual Dimensions
by Michal Nissim and Fathi Shamma
Educ. Sci. 2025, 15(10), 1317; https://doi.org/10.3390/educsci15101317 - 4 Oct 2025
Abstract
This study examined how cognitive, affective, and sociocultural factors shape teachers’ readiness for inclusive education, focusing on the interplay between attitudes, emotional concerns, and self-efficacy. A survey of 149 elementary school teachers from diverse communities employed three validated instruments to assess these constructs. [...] Read more.
This study examined how cognitive, affective, and sociocultural factors shape teachers’ readiness for inclusive education, focusing on the interplay between attitudes, emotional concerns, and self-efficacy. A survey of 149 elementary school teachers from diverse communities employed three validated instruments to assess these constructs. Overall, teachers expressed moderately positive attitudes toward inclusion and relatively high levels of self-efficacy, yet emotional concerns were consistently present. Importantly, correlational analyses revealed that emotional concerns fully mediated the relationship between attitudes and self-efficacy, underscoring the central role of affective dimensions in shaping teachers’ professional confidence. Teachers with prior training or direct experience with students with disabilities reported lower emotional concerns, suggesting the value of practice-based professional learning opportunities. Sociocultural differences also emerged, with differences across communities, pointing to the influence of communal norms on emotional readiness for inclusion. These findings highlight the need to reconceptualize teacher professionalism in inclusive education as integrating cognitive, emotional, and contextual dimensions. Implications include designing professional development programs that combine knowledge, practice, and emotional preparedness, alongside culturally responsive approaches tailored to minority communities. Full article
(This article belongs to the Special Issue Supporting Teaching Staff Development for Professional Education)
81 pages, 4442 KB  
Systematic Review
From Illusion to Insight: A Taxonomic Survey of Hallucination Mitigation Techniques in LLMs
by Ioannis Kazlaris, Efstathios Antoniou, Konstantinos Diamantaras and Charalampos Bratsas
AI 2025, 6(10), 260; https://doi.org/10.3390/ai6100260 - 3 Oct 2025
Abstract
Large Language Models (LLMs) exhibit remarkable generative capabilities but remain vulnerable to hallucinations—outputs that are fluent yet inaccurate, ungrounded, or inconsistent with source material. To address the lack of methodologically grounded surveys, this paper introduces a novel method-oriented taxonomy of hallucination mitigation strategies [...] Read more.
Large Language Models (LLMs) exhibit remarkable generative capabilities but remain vulnerable to hallucinations—outputs that are fluent yet inaccurate, ungrounded, or inconsistent with source material. To address the lack of methodologically grounded surveys, this paper introduces a novel method-oriented taxonomy of hallucination mitigation strategies in text-based LLMs. The taxonomy organizes over 300 studies into six principled categories: Training and Learning Approaches, Architectural Modifications, Input/Prompt Optimization, Post-Generation Quality Control, Interpretability and Diagnostic Methods, and Agent-Based Orchestration. Beyond mapping the field, we identify persistent challenges such as the absence of standardized evaluation benchmarks, attribution difficulties in multi-method systems, and the fragility of retrieval-based methods when sources are noisy or outdated. We also highlight emerging directions, including knowledge-grounded fine-tuning and hybrid retrieval–generation pipelines integrated with self-reflective reasoning agents. This taxonomy provides a methodological framework for advancing reliable, context-sensitive LLM deployment in high-stakes domains such as healthcare, law, and defense. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
25 pages, 3228 KB  
Article
Sustainable vs. Non-Sustainable Assets: A Deep Learning-Based Dynamic Portfolio Allocation Strategy
by Fatma Ben Hamadou and Mouna Boujelbène Abbes
J. Risk Financial Manag. 2025, 18(10), 563; https://doi.org/10.3390/jrfm18100563 - 3 Oct 2025
Abstract
This article aims to investigate the impact of sustainable assets on dynamic portfolio optimization under varying levels of investor risk aversion, particularly during turbulent market conditions. The analysis compares the performance of two portfolio types: (i) portfolios composed of non-sustainable assets such as [...] Read more.
This article aims to investigate the impact of sustainable assets on dynamic portfolio optimization under varying levels of investor risk aversion, particularly during turbulent market conditions. The analysis compares the performance of two portfolio types: (i) portfolios composed of non-sustainable assets such as fossil energy commodities and conventional equity indices, and (ii) mixed portfolios that combine non-sustainable and sustainable assets, including renewable energy, green bonds, and precious metals using advanced Deep Reinforcement Learning models (including TD3 and DDPG) based on risk and transaction cost- sensitive in portfolio optimization against the traditional Mean-Variance model. Results show that incorporating clean and sustainable assets significantly enhances portfolio returns and reduces volatility across all risk aversion profiles. Moreover, the Deep Reinforcing Learning optimization models outperform classical MV optimization, and the RTC-LSTM-TD3 optimization strategy outperforms all others. The RTC-LSTM-TD3 optimization achieves an annual return of 24.18% and a Sharpe ratio of 2.91 in mixed portfolios (sustainable and non-sustainable assets) under low risk aversion (λ = 0.005), compared to a return of only 8.73% and a Sharpe ratio of 0.67 in portfolios excluding sustainable assets. To the best of the authors’ knowledge, this is the first study that employs the DRL framework integrating risk sensitivity and transaction costs to evaluate the diversification benefits of sustainable assets. Findings offer important implications for portfolio managers to leverage the benefits of sustainable diversification, and for policymakers to encourage the integration of sustainable assets, while addressing fiduciary responsibilities. Full article
(This article belongs to the Special Issue Sustainable Finance for Fair Green Transition)
Show Figures

Figure 1

20 pages, 4264 KB  
Article
Skeleton-Guided Diffusion for Font Generation
by Li Zhao, Shan Dong, Jiayi Liu, Xijin Zhang, Xiaojiao Gao and Xiaojun Wu
Electronics 2025, 14(19), 3932; https://doi.org/10.3390/electronics14193932 - 3 Oct 2025
Abstract
Generating non-standard fonts, such as running script (e.g., XingShu), poses significant challenges due to their high stroke continuity, structural flexibility, and stylistic diversity, which traditional component-based prior knowledge methods struggle to model effectively. While diffusion models excel at capturing continuous feature spaces and [...] Read more.
Generating non-standard fonts, such as running script (e.g., XingShu), poses significant challenges due to their high stroke continuity, structural flexibility, and stylistic diversity, which traditional component-based prior knowledge methods struggle to model effectively. While diffusion models excel at capturing continuous feature spaces and stroke variations through iterative denoising, they face critical limitations: (1) style leakage, where large stylistic differences lead to inconsistent outputs due to noise interference; (2) structural distortion, caused by the absence of explicit structural guidance, resulting in broken strokes or deformed glyphs; and (3) style confusion, where similar font styles are inadequately distinguished, producing ambiguous results. To address these issues, we propose a novel skeleton-guided diffusion model with three key innovations: (1) a skeleton-constrained style rendering module that enforces semantic alignment and balanced energy constraints to amplify critical skeletal features, mitigating style leakage and ensuring stylistic consistency; (2) a cross-scale skeleton preservation module that integrates multi-scale glyph skeleton information through cross-dimensional interactions, effectively modeling macro-level layouts and micro-level stroke details to prevent structural distortions; (3) a contrastive style refinement module that leverages skeleton decomposition and recombination strategies, coupled with contrastive learning on positive and negative samples, to establish robust style representations and disambiguate similar styles. Extensive experiments on diverse font datasets demonstrate that our approach significantly improves the generation quality, achieving superior style fidelity, structural integrity, and style differentiation compared to state-of-the-art diffusion-based font generation methods. Full article
40 pages, 773 KB  
Article
Exploring AI-ESG-Driven Synergies in M&A Transactions: Open Innovation and Real Options Approaches
by Andrejs Čirjevskis
J. Risk Financial Manag. 2025, 18(10), 561; https://doi.org/10.3390/jrfm18100561 - 3 Oct 2025
Abstract
This study aims to explore the intersection of Artificial Intelligence (AI), Environmental, Social, and Governance (ESG) factors, and Open Innovation (OI) within the context of mergers and acquisitions (M&A). As ESG considerations increasingly influence corporate strategy and valuation, integrating AI offers powerful tools [...] Read more.
This study aims to explore the intersection of Artificial Intelligence (AI), Environmental, Social, and Governance (ESG) factors, and Open Innovation (OI) within the context of mergers and acquisitions (M&A). As ESG considerations increasingly influence corporate strategy and valuation, integrating AI offers powerful tools for enhancing due diligence, reducing risks, and creating long-term value. Building on the ARCTIC framework, an extension of the VRIO framework and real options theory, this paper introduces a new method for measuring AI-ESG-OI-driven synergies in mergers and acquisitions. It highlights the crucial role of Open Innovation in facilitating cross-boundary knowledge exchange, federated learning, and collaborative ESG data analysis. Based on recent advances in AI-ESG-enabled OI practices, such as multi-agent systems, synthetic data, and decentralized innovation, this paper shows how companies can address ESG complexity and cultural integration challenges. The findings indicate that incorporating OI principles into AI-ESG strategies not only enhances decision-making but also aligns M&A activities with evolving investor expectations and sustainability goals. The study concludes with practical insights and directions for future research in AI-driven, ESG-aligned corporate innovation. Full article
(This article belongs to the Special Issue Finance, Risk and Sustainable Development)
Show Figures

Figure 1

38 pages, 1412 KB  
Article
A Framework for Understanding the Impact of Integrating Conceptual and Quantitative Reasoning in a Quantum Optics Tutorial on Students’ Conceptual Understanding
by Paul D. Justice, Emily Marshman and Chandralekha Singh
Educ. Sci. 2025, 15(10), 1314; https://doi.org/10.3390/educsci15101314 - 3 Oct 2025
Abstract
We investigated the impact of incorporating quantitative reasoning for deeper sense-making in a Quantum Interactive Learning Tutorial (QuILT) on students’ conceptual performance using a framework emphasizing integration of conceptual and quantitative aspects of quantum optics. In this investigation, we compared two versions of [...] Read more.
We investigated the impact of incorporating quantitative reasoning for deeper sense-making in a Quantum Interactive Learning Tutorial (QuILT) on students’ conceptual performance using a framework emphasizing integration of conceptual and quantitative aspects of quantum optics. In this investigation, we compared two versions of the QuILT that were developed and validated to help students learn various aspects of quantum optics using a Mach Zehnder Interferometer with single photons and polarizers. One version of the QuILT is entirely conceptual while the other version integrates quantitative and conceptual reasoning (hybrid version). Performance on conceptual questions of upper-level undergraduate and graduate students who engaged with the hybrid QuILT was compared with that of those who utilized the conceptual QuILT emphasizing the same concepts. Both versions of the QuILT focus on the same concepts, use a scaffolded approach to learning, and take advantage of research on students’ difficulties in learning these challenging concepts as well as a cognitive task analysis from an expert perspective as a guide. The hybrid and conceptual QuILTs were used in courses for upper-level undergraduates or first-year physics graduate students in several consecutive years at the same university. The same conceptual pre-test and post-test were administered after traditional lecture-based instruction in relevant concepts and after student engaged with the QuILT, respectively. We find that the post-test performance of physics graduate students who utilized the hybrid QuILT on conceptual questions, on average, was better than those who utilized the conceptual QuILT. For undergraduates, the results showed differences for different classes. One possible interpretation of these findings that is consistent with our framework is that integrating conceptual and quantitative aspects of physics in research-based tools and pedagogies should be commensurate with students’ prior knowledge of physics and mathematics involved so that students do not experience cognitive overload while engaging with such learning tools and have appropriate opportunities for metacognition, deeper sense-making, and knowledge organization. In the undergraduate course in which many students did not derive added benefit from the integration of conceptual and quantitative aspects, their pre-test performance suggests that the traditional lecture-based instruction may not have sufficiently provided a “first coat” to help students avoid cognitive overload when engaging with the hybrid QuILT. These findings suggest that different groups of students can benefit from a research-based learning tool that integrates conceptual and quantitative aspects if cognitive overload while learning is prevented either due to students’ high mathematical facility or due to their reasonable conceptual facility before engaging with the learning tool. Full article
36 pages, 9762 KB  
Article
Mineral Prospectivity Mapping for Exploration Targeting of Porphyry Cu-Polymetallic Deposits Based on Machine Learning Algorithms, Remote Sensing and Multi-Source Geo-Information
by Jialiang Tang, Hongwei Zhang, Ru Bai, Jingwei Zhang and Tao Sun
Minerals 2025, 15(10), 1050; https://doi.org/10.3390/min15101050 - 3 Oct 2025
Abstract
Machine learning (ML) algorithms have promoted the development of predictive modeling of mineral prospectivity, enabling data-driven decision-making processes by integrating multi-source geological information, leading to efficient and accurate prediction of mineral exploration targets. However, it is challenging to conduct ML-based mineral prospectivity mapping [...] Read more.
Machine learning (ML) algorithms have promoted the development of predictive modeling of mineral prospectivity, enabling data-driven decision-making processes by integrating multi-source geological information, leading to efficient and accurate prediction of mineral exploration targets. However, it is challenging to conduct ML-based mineral prospectivity mapping (MPM) in under-explored areas where scarce data are available. In this study, the Narigongma district of the Qiangtang block in the Himalayan–Tibetan orogen was chosen as a case study. Five typical alterations related to porphyry mineralization in the study area, namely pyritization, sericitization, silicification, chloritization and propylitization, were extracted by remote sensing interpretation to enrich the data source for MPM. The extracted alteration evidences, combined with geological, geophysical and geochemical multi-source information, were employed to train the ML models. Four machine learning models, including artificial neural network (ANN), random forest (RF), support vector machine and logistic regression, were employed to map the Cu-polymetallic prospectivity in the study area. The predictive performances of the models were evaluated through confusion matrix-based indices and success-rate curves. The results show that the classification accuracy of the four models all exceed 85%, among which the ANN model achieves the highest accuracy of 96.43% and a leading Kappa value of 92.86%. In terms of predictive efficiency, the RF model outperforms the other models, which captures 75% of the mineralization sites within only 3.5% of the predicted area. A total of eight exploration targets were delineated upon a comprehensive assessment of all ML models, and these targets were further ranked based on the verification of high-resolution geochemical anomalies and evaluation of the transportation condition. The interpretability analyses emphasize the key roles of spatial proxies of porphyry intrusions and geochemical exploration in model prediction as well as significant influences everted by pyritization and chloritization, which accords well with the established knowledge about porphyry mineral systems in the study area. The findings of this study provide a robust ML-based framework for the exploration targeting in greenfield areas with good outcrops but low exploration extent, where fusion of a remote sensing technique and multi-source geo-information serve as an effective exploration strategy. Full article
22 pages, 26488 KB  
Article
Lightweight Deep Learning Approaches on Edge Devices for Fetal Movement Monitoring
by Atcharawan Rattanasak, Talit Jumphoo, Kasidit Kokkhunthod, Wongsathon Pathonsuwan, Rattikan Nualsri, Sittinon Thanonklang, Pattama Tongdee, Porntip Nimkuntod, Monthippa Uthansakul and Peerapong Uthansakul
Biosensors 2025, 15(10), 662; https://doi.org/10.3390/bios15100662 - 2 Oct 2025
Abstract
Fetal movement monitoring (FMM) is crucial for assessing fetal well-being, traditionally relying on clinical assessments or maternal perception, each with inherent limitations. This study presents a novel lightweight deep learning framework for real-time FMM on edge devices. Data were collected from 120 participants [...] Read more.
Fetal movement monitoring (FMM) is crucial for assessing fetal well-being, traditionally relying on clinical assessments or maternal perception, each with inherent limitations. This study presents a novel lightweight deep learning framework for real-time FMM on edge devices. Data were collected from 120 participants using a wearable device equipped with an inertial measurement unit, which captured both accelerometer and gyroscope data, coupled with a rigorous two-stage labeling protocol integrating maternal perception and ultrasound validation. We addressed class imbalance using virtual-rotation-based augmentation and adaptive clustering-based undersampling. The data were transformed into spectrograms using the Short-Time Fourier Transform, serving as input for deep learning models. To ensure model efficiency suitable for resource-constrained microcontrollers, we employed knowledge distillation, transferring knowledge from larger, high-performing teacher models to compact student architectures. Post-training integer quantization further optimized the models, reducing the memory footprint by 74.8%. The final optimized model achieved a sensitivity (SEN) of 90.05%, a precision (PRE) of 87.29%, and an F1-score (F1) of 88.64%. Practical energy assessments showed continuous operation capability for approximately 25 h on a single battery charge. Our approach offers a practical framework adaptable to other medical monitoring tasks on edge devices, paving the way for improved prenatal care, especially in resource-limited settings. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

19 pages, 1517 KB  
Article
Decoding Anticancer Drug Response: Comparison of Data-Driven and Pathway-Guided Prediction Models
by Efstathios Pateras, Ioannis S. Vizirianakis, Mingrui Zhang, Georgios Aivaliotis, Georgios Tzimagiorgis and Andigoni Malousi
Future Pharmacol. 2025, 5(4), 58; https://doi.org/10.3390/futurepharmacol5040058 - 2 Oct 2025
Abstract
Background/Objective: Predicting pharmacological response in cancer remains a key challenge in precision oncology due to intertumoral heterogeneity and the complexity of drug–gene interactions. While machine learning models using multi-omics data have shown promise in predicting pharmacological response, selecting the features with the highest [...] Read more.
Background/Objective: Predicting pharmacological response in cancer remains a key challenge in precision oncology due to intertumoral heterogeneity and the complexity of drug–gene interactions. While machine learning models using multi-omics data have shown promise in predicting pharmacological response, selecting the features with the highest predictive power critically affects model performance and biological interpretability. This study aims to compare computational and biologically informed gene selection strategies for predicting drug response in cancer cell lines and to propose a feature selection strategy that optimizes performance. Methods: Using gene expression and drug response data, we trained models on both data-driven and biologically informed gene sets based on the drug target pathways to predict IC50 values for seven anticancer drugs. Several feature selection methods were tested on gene expression profiles of cancer cell lines, including Recursive Feature Elimination (RFE) with Support Vector Regression (SVR) against gene sets derived from drug-specific pathways in KEGG and CTD databases. The predictability was comparatively analyzed using both AUC and IC50 values and further assessed on proteomics data. Results: RFE with SVR outperformed other computational methods, while pathway-based gene sets showed lower performance compared to data-driven methods. The integration of computational and biologically informed gene sets consistently improved prediction accuracy across several anticancer drugs, while the predictive value of the corresponding proteomic features was significantly lower compared with the mRNA profiles. Conclusions: Integrating biological knowledge into feature selection enhances both the accuracy and interpretability of drug response prediction models. Integrative approaches offer a more robust and generalizable framework with potential applications in biomarker discovery, drug repurposing, and personalized treatment strategies. Full article
Show Figures

Figure 1

23 pages, 698 KB  
Review
Machine Learning in Land Use Prediction: A Comprehensive Review of Performance, Challenges, and Planning Applications
by Cui Li, Cuiping Wang, Tianlei Sun, Tongxi Lin, Jiangrong Liu, Wenbo Yu, Haowei Wang and Lei Nie
Buildings 2025, 15(19), 3551; https://doi.org/10.3390/buildings15193551 - 2 Oct 2025
Abstract
The accelerated global urbanization process has positioned land use/land cover change modeling as a critical component of contemporary geographic science and urban planning research. Traditional approaches face substantial challenges when addressing urban system complexity, multiscale spatial interactions, and high-dimensional data associations, creating urgent [...] Read more.
The accelerated global urbanization process has positioned land use/land cover change modeling as a critical component of contemporary geographic science and urban planning research. Traditional approaches face substantial challenges when addressing urban system complexity, multiscale spatial interactions, and high-dimensional data associations, creating urgent demand for sophisticated analytical frameworks. This review comprehensively evaluates machine learning applications in land use prediction through systematic analysis of 74 publications spanning 2020–2024, establishing a taxonomic framework distinguishing traditional machine learning, deep learning, and hybrid methodologies. The review contributes a comprehensive methodological assessment identifying algorithmic evolution patterns and performance benchmarks across diverse geographic contexts. Traditional methods demonstrate sustained reliability, while deep learning architectures excel in complex pattern recognition. Most significantly, hybrid methodologies have emerged as the dominant paradigm through algorithmic complementarity, consistently outperforming single-algorithm implementations. However, contemporary applications face critical constraints including computational complexity, scalability limitations, and interpretability issues impeding practical adoption. This review advances the field by synthesizing fragmented knowledge into a coherent framework and identifying research trajectories toward integrated intelligent systems with explainable artificial intelligence. Full article
(This article belongs to the Special Issue Advances in Urban Planning and Design for Urban Safety and Operations)
Show Figures

Figure 1

27 pages, 2517 KB  
Article
A Guided Self-Study Platform of Integrating Documentation, Code, Visual Output, and Exercise for Flutter Cross-Platform Mobile Programming
by Safira Adine Kinari, Nobuo Funabiki, Soe Thandar Aung and Htoo Htoo Sandi Kyaw
Computers 2025, 14(10), 417; https://doi.org/10.3390/computers14100417 - 1 Oct 2025
Abstract
Nowadays, Flutter with the Dart programming language has become widely popular in mobile developments, allowing developers to build multi-platform applications using one codebase. An increasing number of companies are adopting these technologies to create scalable and maintainable mobile applications. Despite this increasing relevance, [...] Read more.
Nowadays, Flutter with the Dart programming language has become widely popular in mobile developments, allowing developers to build multi-platform applications using one codebase. An increasing number of companies are adopting these technologies to create scalable and maintainable mobile applications. Despite this increasing relevance, university curricula often lack structured resources for Flutter/Dart, limiting opportunities for students to learn it in academic environments. To address this gap, we previously developed the Flutter Programming Learning Assistance System (FPLAS), which supports self-learning through interactive problems focused on code comprehension through code-based exercises and visual interfaces. However, it was observed that many students completed the exercises without fully understanding even basic concepts, if they already had some knowledge of object-oriented programming (OOP). As a result, they may not be able to design and implement Flutter/Dart codes independently, highlighting a mismatch between the system’s outcomes and intended learning goals. In this paper, we propose a guided self-study approach of integrating documentation, code, visual output, and exercise in FPLAS. Two existing problem types, namely, Grammar Understanding Problems (GUP) and Element Fill-in-Blank Problems (EFP), are combined together with documentation, code, and output into a new format called Integrated Introductory Problems (INTs). For evaluations, we generated 16 INT instances and conducted two rounds of evaluations. The first round with 23 master students in Okayama University, Japan, showed high correct answer rates but low usability ratings. After revising the documentation and the system design, the second round with 25 fourth-year undergraduate students in the same university demonstrated high usability and consistent performances, which confirms the effectiveness of the proposal. Full article
Show Figures

Figure 1

19 pages, 830 KB  
Article
Innovations in Non-Motorized Transportation (NMT) Knowledge Creation and Diffusion
by Carlos J. L. Balsas
World 2025, 6(4), 136; https://doi.org/10.3390/world6040136 - 1 Oct 2025
Abstract
The COVID-19 pandemic caused the world to pause temporarily on an almost planetary scale. The creation and diffusion of knowledge about environmental planning and public health are now almost taken for granted. However, such processes were rather different in pre-pandemic times. It took [...] Read more.
The COVID-19 pandemic caused the world to pause temporarily on an almost planetary scale. The creation and diffusion of knowledge about environmental planning and public health are now almost taken for granted. However, such processes were rather different in pre-pandemic times. It took a substantial dose of labor and resources to generate the information needed to produce useful and usable knowledge, and especially to make it available to others in a timely and effective way. As automobility has come to occupy center stage in the lives of an increasing number of suburbanized dwellers, it has taken multiple energy and public health crises, bold leadership, and the real threat of climate change to create the conditions needed to bolster sustainable Non-Motorized Transportation (NMT) as a complement to cleaner and more convenient mass transit options in cities. How does knowledge about sustainable NMT get created? How are sustainable NMT innovations diffused? How can technological and societal transitions to more sustainable realities be nurtured and augmented? This article utilizes a longitudinal and integrated knowledge creation and diffusion model with a Participatory Planning Process to analyze the adoption of measures aimed at reducing the negative consequences of too much automobility and encouraging higher levels of walking, cycling, and mass transportation. The research methods comprised autoethnographic, qualitative, and policy evaluation techniques. The study makes use of the means and ends matrix to discuss cases from five distinct realms: personal, academic, institutional, volunteering NGO, and private sector. The key findings and lessons learned promote scenarios of managed degrowth and sustainable urban transitions. Full article
Show Figures

Graphical abstract

25 pages, 26694 KB  
Article
Research on Wind Field Correction Method Integrating Position Information and Proxy Divergence
by Jianhong Gan, Mengjia Zhang, Cen Gao, Peiyang Wei, Zhibin Li and Chunjiang Wu
Biomimetics 2025, 10(10), 651; https://doi.org/10.3390/biomimetics10100651 - 1 Oct 2025
Abstract
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as [...] Read more.
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as the true value, which relies on interpolation calculation, which directly affects the accuracy of the correction results. To address these issues, we propose a new deep learning model, PPWNet. The model directly uses sparse and discretely distributed observation data as the true value, which integrates observation point positions and a physical consistency term to achieve a high-precision corrected wind field. The model design is inspired by biological intelligence. First, observation point positions are encoded as input and observation values are included in the loss function. Second, a parallel dual-branch DenseInception network is employed to extract multi-scale grid features, simulating the hierarchical processing of the biological visual system. Meanwhile, PPWNet references the PointNet architecture and introduces an attention mechanism to efficiently extract features from sparse and irregular observation positions. This mechanism reflects the selective focus of cognitive functions. Furthermore, this paper incorporates physical knowledge into the model optimization process by adding a learned physical consistency term to the loss function, ensuring that the corrected results not only approximate the observations but also adhere to physical laws. Finally, hyperparameters are automatically tuned using the Bayesian TPE algorithm. Experiments demonstrate that PPWNet outperforms both traditional and existing deep learning methods. It reduces the MAE by 38.65% and the RMSE by 28.93%. The corrected wind field shows better agreement with observations in both wind speed and direction, confirming the effectiveness of incorporating position information and a physics-informed approach into deep learning-based wind field correction. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

20 pages, 2916 KB  
Article
Domain-Driven Teacher–Student Machine Learning Framework for Predicting Slope Stability Under Dry Conditions
by Semachew Molla Kassa, Betelhem Zewdu Wubineh, Africa Mulumar Geremew, Nandyala Darga Kumar and Grzegorz Kacprzak
Appl. Sci. 2025, 15(19), 10613; https://doi.org/10.3390/app151910613 - 30 Sep 2025
Abstract
Slope stability prediction is a critical task in geotechnical engineering, but machine learning (ML) models require large datasets, which are often costly and time-consuming to obtain. This study proposes a domain-driven teacher–student framework to overcome data limitations for predicting the dry factor of [...] Read more.
Slope stability prediction is a critical task in geotechnical engineering, but machine learning (ML) models require large datasets, which are often costly and time-consuming to obtain. This study proposes a domain-driven teacher–student framework to overcome data limitations for predicting the dry factor of safety (FS dry). The teacher model, XGBoost, was trained on the original dataset to capture nonlinear relationships among key site-specific features (unit weight, cohesion, friction angle) and assign pseudo-labels to synthetic samples generated via domain-driven simulations. Six student models, random forest (RF), decision tree (DT), shallow artificial neural network (SNN), linear regression (LR), support vector regression (SVR), and K-nearest neighbors (KNN), were trained on the augmented dataset to approximate the teacher’s predictions. Models were evaluated using a train–test split and five-fold cross-validation. RF achieved the highest predictive accuracy, with an R2 of up to 0.9663 and low error metrics (MAE = 0.0233, RMSE = 0.0531), outperforming other student models. Integrating domain knowledge and synthetic data improved prediction reliability despite limited experimental datasets. The framework provides a robust and interpretable tool for slope stability assessment, supporting infrastructure safety in regions with sparse geotechnical data. Future work will expand the dataset with additional field and laboratory tests to further improve model performance. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop