Mineral Prospectivity Mapping for Exploration Targeting of Porphyry Cu-Polymetallic Deposits Based on Machine Learning Algorithms, Remote Sensing and Multi-Source Geo-Information
Abstract
1. Introduction
2. Geology of the Study Area

3. Materials and Methods
3.1. Data Used
3.2. Alteration Extraction
3.3. Synthetic Minority Over-Sampling Technique (SMOTE)
3.4. Machine Learning Methods
3.4.1. Artificial Neural Network (ANN)
3.4.2. Random Forest (RF)
3.4.3. Support Vector Machine (SVM)
3.4.4. Logistic Regression (LR)
3.5. Modeling Setup
3.5.1. Creation of Labeled Datasets
3.5.2. Parameter Optimization
3.5.3. Performance Metrics
4. Results
4.1. Extraction of Ore-Related Alteration
4.2. Performance Evaluation
4.3. The Predictive Efficiency of Models
4.4. Delineation of Exploration Targets
4.5. Model Interpretation
5. Discussion
5.1. Robust Framework of ML-Based MPM in Under-Explored Areas
5.2. Limitation and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, R.; Carranza, E.J.M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37, 1967–1975. [Google Scholar] [CrossRef]
- Porwal, A.; Carranza, E.J.M. Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geol. Rev. 2015, 71, 477–483. [Google Scholar] [CrossRef]
- Chung, C.F.; Agterberg, F.P. Regression models for estimating mineral resources from geological map data. J. Int. Assoc. Math. Geol. 1980, 12, 473–488. [Google Scholar] [CrossRef]
- Harris, J.R.; Sanborn-Barrie, M.; Panagapko, D.A.; Skulski, T.; Parker, J.R. Gold prospectivity maps of the Red Lake greenstone belt: Application of GIS technology. Can. J. Earth Sci. 2006, 43, 865–893. [Google Scholar] [CrossRef]
- Agterberg, F.P. Combining indicator patterns in weights of evidence modeling for resource evaluation. Nat. Resour. Res. 1992, 1, 39–50. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Data-Driven Evidential Belief Modeling of Mineral Potential Using Few Prospects and Evidence with Missing Values. Nat. Resour. Res. 2015, 24, 291–304. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, T.; Wu, K.; Zhang, J.; Zhang, H.; Pu, W.; Liao, B. Tungsten prospectivity mapping using multi-source geo-information and deep forest algorithm. Ore Geol. Rev. 2025, 177, 106452. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, L.; Wu, W. Machine Learning-Based 3D Modeling of Mineral Prospectivity Mapping in the Anqing Orefield, Eastern China. Nat. Resour. Res. 2021, 30, 3099–3120. [Google Scholar] [CrossRef]
- Forson, E.D.; Amponsah, P.O. Mineral prospectivity mapping over the gomoa area of Ghana’s southern kibi-winneba belt using support vector machine and naive bayes. J. Afr. Earth Sci. 2023, 206, 105024. [Google Scholar] [CrossRef]
- Brown, W.M.; Gedeon, T.D.; Groves, D.I.; Barnes, R.G. Artificial neural networks: A new method for mineral prospectivity mapping. Aust. J. Earth Sci. 2000, 47, 757–770. [Google Scholar] [CrossRef]
- Brown, W.M.; Gedeon, T.D.; Groves, D.I. Use of Noise to Augment Training Data: A Neural Network Method of Mineral-Potential Mapping in Regions of Limited Known Deposit Examples. Nat. Resour. Res. 2003, 12, 141–152. [Google Scholar] [CrossRef]
- Sun, T.; Feng, M.; Pu, W.; Liu, Y.; Chen, F.; Zhang, H.; Huang, J.; Mao, L.; Wang, Z. Fractal-Based Multi-Criteria Feature Selection to Enhance Predictive Capability of AI-Driven Mineral Prospectivity Mapping. Fractal Fract. 2024, 8, 224. [Google Scholar] [CrossRef]
- Abedi, M.; Norouzi, G.H.; Bahroudi, A. Support vector machine for multi-classification of mineral prospectivity areas. Comput. Geosci. 2012, 46, 272–283. [Google Scholar] [CrossRef]
- Zheng, C.; Yuan, F.; Luo, X.; Li, X.; Liu, P.; Wen, M.; Chen, Z.; Albanese, S. Mineral prospectivity mapping based on Support vector machine and Random Forest algorithm – A case study from Ashele copper–zinc deposit, Xinjiang, NW China. Ore Geol. Rev. 2023, 159, 105567. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Laborte, A.G. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput. Geosci. 2015, 74, 60–70. [Google Scholar] [CrossRef]
- Sun, T.; Chen, F.; Zhong, L.; Liu, W.; Wang, Y. GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geol. Rev. 2019, 109, 26–49. [Google Scholar] [CrossRef]
- Sun, T.; Li, H.; Wu, K.; Chen, F.; Zhu, Z.; Hu, Z. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province, China. Minerals 2020, 10, 102. [Google Scholar] [CrossRef]
- Fu, Y.; Cheng, Q.; Jing, L.; Ye, B.; Fu, H. Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet. Remote Sens. 2023, 15, 439. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Ruitenbeek, F.J.A.V.; Hecker, C.A.; Meijde, M.V.D.; Meer, F.D.V.D. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. Int. J. Appl. Earth. Obs. Geoinform. 2008, 10, 374–387. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Geocomputation of mineral exploration targets. Comput. Geosci. 2011, 37, 1907–1916. [Google Scholar] [CrossRef]
- Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Cheng, Q. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55–70. [Google Scholar] [CrossRef]
- Chawla, N.; Japkowicz, N.; Aleksander, K. Editorial: Special Issue on Learning from Imbalanced datasets. Sigkdd Explor. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Hariharan, S.; Tirodkar, S.; Porwal, A.; Bhattacharya, A.; Joly, A. Random Forest-Based Prospectivity Modelling of Greenfield Terrains Using Sparse Deposit Data: An Example from the Tanami Region, Western Australia. Nat. Resour. Res. 2017, 26, 489–507. [Google Scholar] [CrossRef]
- Fernandez, A.; Garcia, S.; Herrera, F. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, T.; Wu, K.; Xiang, W.; Zhang, J.; Zhang, H.; Feng, M. Interpretability Analysis of Data Augmented Convolutional Neural Network in Mineral Prospectivity Mapping Using Black-Box Visualization Tools. Nat. Resour. Res. 2025, 34, 759–783. [Google Scholar] [CrossRef]
- Li, T.; Xia, Q.; Zhao, M.; Gui, Z.; Leng, S. Prospectivity Mapping for Tungsten Polymetallic Mineral Resources, Nanling Metallogenic Belt, South China: Use of Random Forest Algorithm from a Perspective of Data Imbalance. Nat. Resour. Res. 2019, 29, 203–227. [Google Scholar] [CrossRef]
- Zhou, K.; Sun, T.; Liu, Y.; Feng, M.; Tang, J.; Mao, L.; Pu, W.; Huang, J. Prospectivity Mapping of Tungsten Mineralization in Southern Jiangxi Province Using Few-Shot Learning. Minerals 2023, 13, 669. [Google Scholar] [CrossRef]
- Sabins, F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Mahmood, T.H.; Hasan, K.; Akhter, S.H. Lithologic mapping of a forested montane terrain from Landsat 5 TM image. Geocarto Int. 2019, 34, 750–768. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Müller, R.; Chandra, R. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens. Environ. 2022, 268, 112750. [Google Scholar] [CrossRef]
- Mohamed Taha, A.M.; Xi, Y.; He, Q.; Hu, A.; Wang, S.; Liu, X. Investigating the Capabilities of Various Multispectral Remote Sensors Data to Map Mineral Prospectivity Based on Random Forest Predictive Model: A Case Study for Gold Deposits in Hamissana Area, NE Sudan. Minerals 2023, 13, 49. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Abdelkareem, M.; Elkhateeb, S.O. Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt. J. Afr. Earth. Sci. 2017, 130, 28–37. [Google Scholar] [CrossRef]
- Francisco, T.; Cecilia, V.; David, C.; Zhang, L. Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery. Remote Sens. 2018, 10, 203. [Google Scholar]
- Zhao, Z.; Zhou, J.; Lu, Y.; Chen, Q.; Cao, X.; He, X.; Fu, X.; Zeng, S.; Feng, W. Mapping alteration minerals in the Pulang porphyry copper ore district, SW China, using ASTER and WorldView-3 data: Implications for exploration targeting. Ore Geol. Rev. 2021, 134, 104171. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Z.; Zhou, J.; Zeng, M.; Xia, J.; Sun, T.; Zhao, X. New Insights into the Pulang Porphyry Copper Deposit in Southwest China: Indication of Alteration Minerals Detected Using ASTER and WorldView-3 Data. Remote Sens. 2021, 13, 2798. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, Z.; Xu, J.; Bian, X.; Wang, G.; Yang, Z.; Tian, S.; Liu, Y.; Wang, Z. Geology and origin of the post-collisional Narigongma porphyry Cu-Mo deposit, southern Qinghai, Tibet. Gondwana Res. 2014, 26, 536–556. [Google Scholar] [CrossRef]
- Hou, Z.; Zeng, P.; Gao, Y.; Du, A.; Fu, D. Himalayan Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone: Constraints from Re–Os dating of molybdenite. Miner. Deposit. 2006, 41, 33–45. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Pl. Sc. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Yang, Z.; Tian, S.; Liu, Y.; Ma, Y.; Wang, G.; Qu, W. Narigongma porphery molybdenite copper deposit, northern extension of Yulong copper belt: Evidence from the age of Re-Os isotope. Acta Petrol Sin. 2008, 24, 503–510. [Google Scholar]
- Song, Z.; Jia, Q.; Chen, X.; Chen, B.; Zhang, Y.; Zhang, X.; Quan, S.; Li, Y. The Petrogenic age of Narigongma Granitic Diorite-porphyry in the Northern Part of the Sanjiang region and Its geological implications. Acta Geosci. Sinica 2011, 32, 154–162, (In Chinese with English Abstract). [Google Scholar]
- Song, Z.; Jia, Q.; Zhang, Y.; Chen, B.; Chen, X.; Wang, F.; Tian, Y.; Li, Y.; Zhang, X.; Quan, S. LA-ICPMS ziron U-Pb dating of Narigongma biotite granite porphyry in northern Sanjiang region and its geological significance. Geol. Bull. China 2012, 31, 439–447, (In Chinese with English Abstract). [Google Scholar]
- Zhang, M.; Liu, J.; Xiao, W.; Yang, Z. Geological characteristics and ore prospecting orientation of porphyry copper deposit in Qinghai Province. Miner. Res. Geol. 2007, 21, 440–444. [Google Scholar]
- GeoCloud Database of China Geological Survey. Available online: https://geocloud.cgs.gov.cn (accessed on 23 September 2025).
- Hu, X.; Li, X.; Yuan, F.; Ord, A.; Jowitt, S.M.; Li, Y.; Dai, W.; Zhou, T. Numerical modeling of ore-forming processes within the Chating Cu-Au porphyry-type deposit, China: Implications for the longevity of hydrothermal systems and potential uses in mineral exploration. Ore Geol. Rev. 2020, 116, 103230. [Google Scholar] [CrossRef]
- Chen, J.; Pan, T.; Hao, J. Metallogenic Regularity and Prediction of the Copper Polymetallic Deposit in the North Section of Sanjiang in Qinghai Province; Geological Publishing House: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Wang, F. Exploration model and periphery prospecting prediction for Narigongma porphyry copper-molybdenum deposit in the northern part of Sanjiang, Qinghai province. Master Thesis, Jilin University, Jilin, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Zhang, J. Study on Extraction Method of Remote Sensing AlterationInformation in Yulong Porphyry Copper Belt. Master Thesis, Chengdu University of Technology, Sichuan, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Dong, Q. Quantitative Evaluation and Prediction of Regional Metallogeny in Northern Segment of Three River Region, Southwest China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2009. (In Chinese with English Abstract). [Google Scholar]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Fu, H.; Fu, B.; Ninomiya, Y.; Shi, P. New Insights of Geomorphologic and Lithologic Features on Wudalianchi Volcanoes in the Northeastern China from the ASTER Multispectral Data. Remote Sens. 2019, 11, 2663. [Google Scholar] [CrossRef]
- Crósta, A.P.; De Souza Filho, C.R.; Azevedo, F.; Brodie, C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Sohrawordi, M.; Hossain, M.A. Prediction of lysine formylation sites using support vector machine based on the sample selection from majority classes and synthetic minority over-sampling techniques. Biochimie 2022, 192, 125–135. [Google Scholar] [CrossRef]
- Çelik, U.; Başarır, C. The Prediction of Precious Metal Prices via Artificial Neural Network by Using RapidMiner. Alphan. J. 2017, 1, 45–54. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J. Development and Application of Artificial Neural Network. Wireless Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Panda, L.; Tripathy, S.K. Performance prediction of gravity concentrator by using artificial neural network-a case study. Inter. J. Min. Sci. Technol. 2014, 24, 461–465. [Google Scholar] [CrossRef]
- Statistics, L.B.; Breiman, L. Random forests. Mach Learn. 2001, 45, 5–32. [Google Scholar]
- Breiman, L.I.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman and Hall: New York, NY, USA, 1984; Volume 40, p. 358. [Google Scholar]
- Vapnik, V. The nature of statistical learning theory; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, K.; Li, D. Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China. Earth. Sci. Inform. 2018, 11, 553–566. [Google Scholar] [CrossRef]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data. Min. Knowl. Disc. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Harris, J.R.; Wilkinson, L.; Heather, K. Application of GIS Processing Techniques for Producing Mineral Prospectivity Maps-A Case Study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Nat. Resour. Res. 2001, 10, 91–124. [Google Scholar] [CrossRef]
- Porwal, A.; Gonzalez-Alvarez, I.; Markwitz, V.; McCuaig, T.C.; Mamuse, A. Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geol. Rev. 2010, 38, 184–196. [Google Scholar] [CrossRef]
- Zhao, J.; Sui, Y.; Zhang, Z.; Zhou, M. Application of Logistic Regression and Weights of Evidence Methods for Mapping Volcanic-Type Uranium Prospectivity. Minerals 2023, 13, 608. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Comput. Geosci. 2009, 35, 2032–2046. [Google Scholar] [CrossRef]
- Hengl, T. Finding the right pixel size. Comput. Geosci. 2006, 32, 1283–1298. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M.; Faassen, C. Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geol. Rev. 2008, 33, 536–558. [Google Scholar] [CrossRef]
- Provost, F.J.; Kohavi, R. Guest Editors’ Introduction: On Applied Research in Machine Learning. Mach. Learn. 1998, 30, 127–132. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2015, 13, 361–378. [Google Scholar] [CrossRef]
- Moisen, G.G.; Frescino, T.S. Comparing five modelling techniques for predicting forest characteristics. Ecol. Modell. 2002, 157, 209–225. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, X.; Wang, G.; Liu, D.; Cui, N. A Multi-Model Ensemble Approach for Gold Mineral Prospectivity Mapping: A Case Study on the Beishan Region, Western China. Minerals 2020, 10, 1126. [Google Scholar] [CrossRef]
- Deng, H.; Yao, Y.; Peng, G.; Xia, H. Extraction of remote sensing alteration anomalies and prospecting prediction of porphyry Cu - Mo deposits in Narigongma, Qinghai Province. Remote Sens. Land. Resour. 2014, 26, 154–161. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Yan, Q.; Xue, L.; Li, Y.; Wang, R.; Ding, K.; Xu, Z. Mineral prospectivity mapping using geological map semantic knowledge graph embedding: A case study of gold prospecting in Ankang, Shaanxi Province, China. Int. J. Digit. Earth 2025, 18, 2517827. [Google Scholar] [CrossRef]
- Sheng, S.; Wang, Y.; Tian, J.; Chen, X.; Ning, Y.; Dong, Y. Graph attention network-based mineral prospectivity prediction: A case study of copper exploration in eastern Tien Shan, China. Ore Geol. Rev. 2025, 184, 106766. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.I.; Rüsenberg, K.A. A mineralogical-geomorphological terrain analysis of hotspot volcanic islands-The missing link between carbonatite-and pegmatite Nb-F-Zr-Li-Be-bearing REE deposits and new tools for their exploration (Canary Islands Archipelago, Spain). Ore Geol. Rev. 2023, 163, 105702. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.I.; Schmitt, D.; Heimhofer, U.; Techmer, A. Numerical terrain analysis of fluvial-marine watersheds on the Isle of Santiago, Cape Verde, based on satellite imagery, ground-truthing and landform indices-A preparatory study in search of Nb-Ta-REE deposits related to hotspot islands. J. Afr. Earth Sci. 2025, 227, 105548. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.I.; Kleyer, C. Compositional and Numerical Geomorphology Along a Basement–Foreland Transition, SE Germany, with Special Reference to Landscape-Forming Indices and Parameters in Genetic and Applied Terrain Analyses. Geosciences 2025, 15, 1–64. [Google Scholar] [CrossRef]

















| Indicator Mineral | PC1 | PC2 | PC3 | PC4 | |
|---|---|---|---|---|---|
| Jarosite | Band 1 | 0.515831 | 0.569512 | 0.577487 | 0.275831 |
| Band 2 | 0.319782 | 0.233001 | −0.078361 | −0.915046 | |
| Band 3 | 0.422136 | 0.294178 | −0.806408 | 0.291489 | |
| Band 4 | 0.673394 | −0.731318 | 0.100368 | 0.040519 | |
| Sericite | Band 1 | −0.242607 | −0.625232 | −0.538723 | −0.509906 |
| Band 4 | −0.960974 | 0.257465 | 0.089807 | 0.04664 | |
| Band 6 | 0.129648 | 0.668019 | −0.156013 | −0.715962 | |
| Band 7 | 0.029366 | 0.310719 | −0.823026 | 0.474573 | |
| Quartz | Band 2 | 0.51378 | 0.584924 | 0.47045 | 0.415417 |
| Band 3 | 0.534755 | 0.351563 | −0.618517 | −0.455935 | |
| Band 4 | 0.583442 | −0.664527 | −0.188246 | 0.427273 | |
| Band 6 | −0.331152 | 0.30442 | −0.600564 | 0.661052 | |
| Chlorite | Band 1 | −0.606167 | −0.664767 | −0.311625 | −0.305838 |
| Band 2 | −0.342449 | −0.276984 | 0.664372 | 0.603837 | |
| Band 5 | 0.030428 | −0.0503 | −0.674316 | 0.736099 | |
| Band 8 | −0.717192 | 0.691979 | −0.082453 | 0.001399 | |
| Epidote | Band 1 | −0.538364 | −0.648355 | −0.388355 | −0.372802 |
| Band 3 | −0.490353 | −0.278288 | 0.612255 | 0.554304 | |
| Band 5 | −0.684097 | 0.708246 | −0.091745 | −0.148262 | |
| Band 8 | −0.041582 | 0.024072 | −0.682574 | 0.729235 |
| Model | Parameter | Description | Reference Range | Optimal Parameter |
|---|---|---|---|---|
| ANN | Training cycles | Number of training cycles | 10–200 | 200 |
| Learning rate | Change rate of weight in the training process | 0–1 | 0.1 | |
| Momentum | Prevent local maxima and smooth optimization directions | 0–1 | 0.9 | |
| RF | Number of trees | Number of trees | 10–510 | 40 |
| Subset features ratio | Ratio of randomly chosen features for training | 0.2–1 | 0.4 | |
| Maximum depth | Restrict the depth for each random tree | 10–100 | 60 | |
| SVM | Gamma | A width parameter of radial basis function that determines the influencing range of each support vector | 0–1 | 0.2 |
| Cost | Penalty factor for misclassification error | 0.1–50.1 | 5.1 | |
| LR | Number of lambdas | Number of lambda values | 1–101 | 26 |
| Lambda min ratio | Smallest value for lambda as a fraction of lambda | 0–1 | 0.5 | |
| Alpha | Controls the distribution between the L1 (Lasso) and L2 (Ridge regression) penalties | 0–1 | 0.5 |
| Model | Mean Square Error | |||
|---|---|---|---|---|
| Minimum | Maximum | Mean | Standard Deviation | |
| ANN | 0.009 | 0.53 | 0.2047 | 0.1368 |
| RF | 0.0295 | 0.121 | 0.0675 | 0.1773 |
| SVM | 0.074 | 0.53 | 0.169 | 0.1209 |
| LR | 0.118 | 0.502 | 0.2244 | 0.135 |
| Indices | ANN | RF | SVM | LR |
|---|---|---|---|---|
| Sensitivity | 100.00% | 100.00% | 100.00% | 100.00% |
| Specificity | 93.33% | 87.50% | 87.50% | 77.78% |
| Positive predict value | 92.86% | 85.71% | 85.71% | 71.43% |
| Negative predict value | 100.00% | 100.00% | 100.00% | 100.00% |
| Accuracy | 96.43% | 92.86% | 92.86% | 85.71% |
| Kappa | 92.86% | 85.71% | 85.71% | 71.43% |
| No | Proportion of Target Region (%) | Number of Known Occurrences Included | Metallogenic Advantage |
|---|---|---|---|
| 1# | 1.83 | 5 | (i) Large intrusions are exposed; (ii) most of the geochemical anomalies in the target regions were in the high-value area; (iii) existence of fault structure and intersection; (iv) high-value area of 4 kinds of alteration |
| 2# | 2.35 | 9 | (i) Large intrusions are exposed; (ii) most of the geochemical anomalies in the target regions were in the high-value area; (iii) existence of fault structure and intersection; (iv) high-value area of 5 kinds of alteration |
| 3# | 0.62 | 0 | (i) A small amount of intrusion is exposed; (ii) Existence of fault structure and intersection |
| 4# | 0.16 | 0 | A small amount of intrusion is exposed |
| 5# | 0.2 | 0 | A small amount of intrusion is exposed |
| 6# | 1.2 | 0 | (i) A small amount of intrusion is exposed; (ii) existence of fault structure and intersection; (iii) high-value area of 2 kinds of alteration |
| 7# | 1.07 | 0 | (i) A small amount of intrusion is exposed; (ii) existence of fault structure and intersection; (iii) high-value area of 3 kinds of alteration |
| 8# | 0.81 | 0 | (i) A small amount of intrusion is exposed; (ii) existence of fault structure and intersection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Zhang, H.; Bai, R.; Zhang, J.; Sun, T. Mineral Prospectivity Mapping for Exploration Targeting of Porphyry Cu-Polymetallic Deposits Based on Machine Learning Algorithms, Remote Sensing and Multi-Source Geo-Information. Minerals 2025, 15, 1050. https://doi.org/10.3390/min15101050
Tang J, Zhang H, Bai R, Zhang J, Sun T. Mineral Prospectivity Mapping for Exploration Targeting of Porphyry Cu-Polymetallic Deposits Based on Machine Learning Algorithms, Remote Sensing and Multi-Source Geo-Information. Minerals. 2025; 15(10):1050. https://doi.org/10.3390/min15101050
Chicago/Turabian StyleTang, Jialiang, Hongwei Zhang, Ru Bai, Jingwei Zhang, and Tao Sun. 2025. "Mineral Prospectivity Mapping for Exploration Targeting of Porphyry Cu-Polymetallic Deposits Based on Machine Learning Algorithms, Remote Sensing and Multi-Source Geo-Information" Minerals 15, no. 10: 1050. https://doi.org/10.3390/min15101050
APA StyleTang, J., Zhang, H., Bai, R., Zhang, J., & Sun, T. (2025). Mineral Prospectivity Mapping for Exploration Targeting of Porphyry Cu-Polymetallic Deposits Based on Machine Learning Algorithms, Remote Sensing and Multi-Source Geo-Information. Minerals, 15(10), 1050. https://doi.org/10.3390/min15101050

