Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = kinetic permeation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 236
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Mechanistic Insights into Corrosion and Protective Coating Performance of X80 Pipeline Steel in Xinjiang’s Cyclic Freeze–Thaw Saline Soil Environments
by Gang Cheng, Yuqi Wang, Yiming Dai, Shiyi Zhang, Bin Wei, Chang Xiao and Xian Zhang
Coatings 2025, 15(8), 881; https://doi.org/10.3390/coatings15080881 - 28 Jul 2025
Viewed by 443
Abstract
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to [...] Read more.
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to quantify temporal–spatial corrosion behavior across 30 freeze–thaw cycles. Experimental results revealed a distinctive corrosion resistance pattern: initial improvement (cycles 1–10) attributed to protective oxide layer formation, followed by accelerated degradation (cycles 10–30) due to microcrack propagation and chloride accumulation. Synchrotron X-ray diffraction analyses identified sulfate–chloride ion synergism as the primary driver of localized corrosion disparities in heterogeneous soil matrices. A comparative evaluation of asphalt-coated specimens demonstrated a 62%–89% corrosion rate reduction, with effectiveness directly correlating with coating integrity and thickness (200–500 μm range). Molecular dynamics simulations using Materials Studio revealed atomic-scale ion transport dynamics at coating–substrate interfaces, showing preferential Cl permeation through coating defects. These multiscale findings establish quantitative relationships between environmental stressors, coating parameters, and corrosion kinetics, providing a mechanistic framework for optimizing protective coatings in cold-region pipeline applications. Full article
Show Figures

Figure 1

14 pages, 2997 KiB  
Article
The Development of a Multilayer Transdermal Patch Platform Based on Electrospun Nanofibers for the Delivery of Caffeine
by Jorge Teno, Zoran Evtoski, Cristina Prieto and Jose M. Lagaron
Pharmaceutics 2025, 17(7), 921; https://doi.org/10.3390/pharmaceutics17070921 - 16 Jul 2025
Viewed by 380
Abstract
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various [...] Read more.
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various permeation enhancers. A backing layer made of annealed electrospun polycaprolactone (PCL) facilitated the lamination of the two layers to form the final multilayer patch. Comprehensive characterization was conducted, utilizing scanning electron microscopy (SEM) to assess the fiber morphology, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for chemical detection and to assess the stability of the caffeine, and differential scanning calorimetry (DSC) along with wide-angle X-ray scattering (WAXS) to analyze the physical state of the caffeine within the fibers of the active layer. Additionally, Franz cell permeation studies were performed using both synthetic membranes (Strat-M) and ex vivo human stratum corneum (SC) to evaluate and model the permeation kinetics. Results: These experiments demonstrated the significant role of enhancers in modulating the caffeine permeation rates provided by the patch, achieving permeation rates of up to 0.73 mg/cm2 within 24 h. Conclusions: This work highlights the potential of using electro-hydrodynamic processing technology to develop innovative transdermal delivery systems for drugs, offering a promising strategy for enhancing efficacy and innovative therapeutic direct plasma administration. Full article
(This article belongs to the Special Issue Dermal and Transdermal Drug Delivery Systems)
Show Figures

Figure 1

33 pages, 19356 KiB  
Article
Hoffman–Lauritzen Analysis of Crystallization of Hydrolyzed Poly(Butylene Succinate-Co-Adipate)
by Anna Svarcova and Petr Svoboda
Crystals 2025, 15(7), 645; https://doi.org/10.3390/cryst15070645 - 14 Jul 2025
Viewed by 344
Abstract
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening [...] Read more.
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening its polydispersity index (PDI from ~2 to 7 after 64 days). Differential scanning calorimetry (DSC) analysis revealed that hydrolytic degradation dramatically accelerated crystallization rates, reducing crystallization time roughly 10-fold (e.g., from ~3000 s to ~300 s), and crystallinity increased from 34% to 63%. Multiple melting peaks suggested the presence of lamellae with varying thicknesses, consistent with the Gibbs–Thomson equation. Isothermal crystallization kinetics were evaluated using the Avrami equation (with n ≈ 3), reciprocal half-time of crystallization, and a novel inflection point slope method, all confirming accelerated crystallization; for instance, the slope increased from 0.00517 to 0.05203. Polarized optical microscopy (POM) revealed evolving spherulite morphologies, including hexagonal and flower-like dendritic spherulites with diamond-shape ends, while wide-angle X-ray diffraction (WAXD) showed a crystallization range shift to higher temperatures (e.g., from 72–61 °C to 82–71 °C) and a 14% increase in crystallite diameter, aligning with increased melting point and lamellar thickness and overall increased crystallinity. Full article
Show Figures

Figure 1

15 pages, 3754 KiB  
Article
Green Regenerative Bamboo Lignin-Based Epoxy Resin: Preparation, Curing Behavior, and Performance Characterization
by Jiayao Yang, Jie Fei and Xingxing Wang
Sustainability 2025, 17(13), 6201; https://doi.org/10.3390/su17136201 - 6 Jul 2025
Viewed by 435
Abstract
The dependence of conventional epoxy resins on fossil fuels and the environmental and health hazards associated with bisphenol A (BPA) demand the creation of sustainable alternatives. Because lignin is a natural resource and has an aromatic ring skeleton structure, it could be used [...] Read more.
The dependence of conventional epoxy resins on fossil fuels and the environmental and health hazards associated with bisphenol A (BPA) demand the creation of sustainable alternatives. Because lignin is a natural resource and has an aromatic ring skeleton structure, it could be used as an alternative to fossil fuels. This study effectively resolved this challenge by utilizing a sustainable one-step epoxidation process to transform lignin into a bio-based epoxy resin. The results verified the successful synthesis of epoxidized bamboo lignin through systematic characterization employing Fourier transform infrared spectroscopy, hydrogen spectroscopy/two-dimensional heteronuclear single-quantum coherent nuclear magnetic resonance, quantitative phosphorus spectroscopy, and gel permeation chromatography. Lignin-based epoxy resins had an epoxy equivalent value of 350–400 g/mol and a weight-average molecular weight of 4853 g/mol. Studies on the curing kinetics revealed that polyetheramine (PEA-230) demonstrated the lowest apparent activation energy (46.2 kJ/mol), signifying its enhanced curing efficiency and potential for energy conservation. Mechanical testing indicated that the PEA-230 cured network demonstrated the maximum tensile strength (>25 MPa), whereas high-molecular-weight polyetheramine (PEA-2000) imparted enhanced elongation to the material. Lignin-based epoxy resins demonstrated superior heat stability. This study demonstrates the conversion of bamboo lignin into bio-based epoxy resins using a simple, environmentally friendly synthesis process, demonstrating the potential to reduce fossil resource use, efficiently use waste, develop sustainable thermosetting materials, and promote a circular bioeconomy. Full article
Show Figures

Figure 1

18 pages, 3387 KiB  
Article
Kringle-Dependent Inhibition of Plasmin-Mediated Fibrinolysis by Native and Citrullinated Core Histones
by Erzsébet Komorowicz, Anna Gurabi, András Wacha, László Szabó, Olivér Ozohanics and Krasimir Kolev
Int. J. Mol. Sci. 2025, 26(12), 5799; https://doi.org/10.3390/ijms26125799 - 17 Jun 2025
Viewed by 479
Abstract
The fibrin matrix of thrombi is intertwined with neutrophil extracellular traps (NETs) containing histones that render resistance to fibrinolysis. During NET formation, histones are citrullinated. Our study addresses the question of whether citrullination modifies the fibrin-stabilizing effects of histones. We studied the structure [...] Read more.
The fibrin matrix of thrombi is intertwined with neutrophil extracellular traps (NETs) containing histones that render resistance to fibrinolysis. During NET formation, histones are citrullinated. Our study addresses the question of whether citrullination modifies the fibrin-stabilizing effects of histones. We studied the structure and viscoelastic properties of fibrin formed in the presence of native or citrullinated H1 and core histones by scanning electron microscopy, clot permeation, and oscillation rheometry. The kinetics of fibrin formation and its dissolution were followed by turbidimetry and thromboelastometry. Co-polymerizing H1 with fibrin enhanced the mechanical strength of the clots, thickened the fibrin fibers, and enlarged the gel pores. In contrast, the addition of core histones resulted in a reduction in the fiber diameter, and the pores were only slightly larger, whereas the mechanical stability was not modified. Plasmin-mediated fibrinogen degradation was delayed by native and citrullinated core histones, but not by H1, and the action of des-kringle1-4-plasmin was not affected. Plasmin-mediated fibrinolysis was inhibited by native and citrullinated core histones, and this effect was moderated when the kringle domains of plasmin were blocked or deleted. These findings suggest that in NET-containing thrombi that are rich in core histones, alternative fibrinolytic enzymes lacking kringle domains are more efficient lytic agents than the classic plasmin-dependent fibrinolysis. Full article
(This article belongs to the Special Issue The Role of Extracellular Histones in Patho(physio)logical Hemostasis)
Show Figures

Figure 1

25 pages, 3318 KiB  
Review
Solute–Vehicle–Skin Interactions and Their Contribution to Pharmacokinetics of Skin Delivery
by Pronalis Tapfumaneyi, Khanh Phan, Yicheng Huang, Kewaree Sodsri, Sarika Namjoshi, Howard Maibach and Yousuf Mohammed
Pharmaceutics 2025, 17(6), 764; https://doi.org/10.3390/pharmaceutics17060764 - 10 Jun 2025
Viewed by 3040
Abstract
Human skin provides an effective route of delivery for selected drugs. Topical penetration of molecules is largely attributed to passive diffusion, and the degree of penetration can be represented by in silico, in vitro, and ex vivo models. Percutaneous absorption of pharmaceutical ingredients [...] Read more.
Human skin provides an effective route of delivery for selected drugs. Topical penetration of molecules is largely attributed to passive diffusion, and the degree of penetration can be represented by in silico, in vitro, and ex vivo models. Percutaneous absorption of pharmaceutical ingredients is a delicate balance between the molecular properties of the drug, the skin properties of the patients, and the formulation properties. Understanding this interplay can aid in the development of products applied to the skin. The kinetics of percutaneous absorption and an understanding of the rate-limiting steps involved can facilitate the optimization of these systems and enhance the degree to which skin drug delivery can be achieved. Solute–vehicle, vehicle–skin, and solute–skin interactions contribute notably to product release as well as the rate of absorption and diffusion across skin layers. These interactions alter the degree of permeation by interfering with the skin barrier or solubility and thermodynamic activity of the active pharmaceutical ingredient. This article aims to provide a concise understanding of some of the factors involved in the skin absorption of topical products, i.e., the pharmacokinetics of percutaneous absorption as well as the solute–vehicle–skin interactions that determine the rate of release of products and the degree of drug diffusion across the skin. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

13 pages, 951 KiB  
Article
Optimization of the Treatment of Beer Lees for Their Use in Sustainable Biomass Production of Lactic Acid Bacteria
by Natalia S. Brizuela, Marina E. Navarro, Gabriel Rivas, Gabriel Gómez, Carolina Pérez, Liliana Semorile, Emma E. Tymczyszyn and Bárbara Bravo-Ferrada
Appl. Microbiol. 2025, 5(2), 51; https://doi.org/10.3390/applmicrobiol5020051 - 30 May 2025
Viewed by 416
Abstract
Beer lees (BL), a by-product of beer production, consist mainly of dead yeast cells with potential nutritional value. On the other hand, yeast extract (YE), obtained through the lysis of yeast cells, is commonly used as a nutrient-rich supplement for the growth of [...] Read more.
Beer lees (BL), a by-product of beer production, consist mainly of dead yeast cells with potential nutritional value. On the other hand, yeast extract (YE), obtained through the lysis of yeast cells, is commonly used as a nutrient-rich supplement for the growth of fastidious microorganisms such as lactic acid bacteria (LAB). However, YE is a high-cost ingredient. Therefore, the aim of this study was to optimize the use of BL as a low-cost alternative source of YE through different lysis treatments, evaluating its suitability to support the growth of UNQLpc 10 and UNQLp 11 strains in a whey permeate (WP)-based medium. Growth kinetics and cell viability were compared with those obtained in MRS broth. The best results were observed with sonicated BL, up to 10 logarithmic units, which supported LAB growth comparable to MRS. Although autolyzed BL promoted lower bacterial growth than sonicated BL, it showed greater cell disruption and higher levels of nitrogen, proteins, and amino acids (5.32%, 26.0%, and 277 nM, respectively). Additionally, autolyzed BL exhibited lower concentrations of reducing sugars and a higher presence of Maillard reaction products, as indicated by colorimetric analysis. These changes, which may be related to the formation of Maillard reaction products during the autolysis process, could have negatively affected the nutritional quality of the extract and, thus, reduced its effectiveness as a bacterial growth promoter. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 3rd Edition)
Show Figures

Figure 1

15 pages, 1451 KiB  
Article
Tritium Extraction from Liquid Blankets of Fusion Reactors via Membrane Gas–Liquid Contactors
by Silvano Tosti and Luca Farina
J. Nucl. Eng. 2025, 6(2), 13; https://doi.org/10.3390/jne6020013 - 8 May 2025
Cited by 1 | Viewed by 692
Abstract
The exploitation of fusion energy in tokamak reactors relies on efficient and reliable tritium management. The tritium needed to sustain the deuterium–tritium fusion reaction is produced in the Li-based blanket surrounding the plasma chamber, and, therefore, the effective extraction and purification of the [...] Read more.
The exploitation of fusion energy in tokamak reactors relies on efficient and reliable tritium management. The tritium needed to sustain the deuterium–tritium fusion reaction is produced in the Li-based blanket surrounding the plasma chamber, and, therefore, the effective extraction and purification of the tritium bred in the Li-blankets is needed to guarantee the tritium self-sufficiency of future fusion plants. This work introduces a new technology for the extraction of tritium from the Pb–Li eutectic alloy used in liquid blankets. Process units based on the concept of Membrane Gas–Liquid Contactor (MGLC) have been studied for the extraction of tritium from the Pb–Li in the Water Cooled Lithium Lead blankets of the DEMO reactor. MGLC units have been preliminarily designed and then compared in terms of the permeation areas and sizes with the tritium extraction technologies presently under study, namely the Permeator Against Vacuum (PAV) and the Gas–Liquid Contactors (GLCs). The results of this study show that the DEMO WCLL tritium extraction systems using MGLC require smaller permeation areas and quicker permeation kinetics than those based on PAV (Permeator Against Vacuum) devices. Accordingly, the MGLC extraction unit exhibits volumes smaller than those of both PAV and GLC. Full article
Show Figures

Figure 1

23 pages, 19564 KiB  
Article
Simulation of Biofouling Caused by Bacillus halotolerans MCC1 on FeNP-Coated RO Membranes
by Maria Magdalena Armendáriz-Ontiveros, Teresa Romero-Cortes, Victor Hugo Pérez España, Jaime A. Cuervo-Parra, Martin Peralta-Gil, Maria del Rosario Martinez Macias and Gustavo Adolfo Fimbres Weihs
Processes 2025, 13(5), 1422; https://doi.org/10.3390/pr13051422 - 7 May 2025
Viewed by 579
Abstract
Reverse osmosis (RO) desalination technology offers a promising solution for mitigating water scarcity. However, one of the major challenges faced by RO membranes is biofouling, which significantly increases the desalination costs. Traditional simulation models often overlook environmental variability and do not incorporate the [...] Read more.
Reverse osmosis (RO) desalination technology offers a promising solution for mitigating water scarcity. However, one of the major challenges faced by RO membranes is biofouling, which significantly increases the desalination costs. Traditional simulation models often overlook environmental variability and do not incorporate the effects of membrane-surface modifications. This paper develops a bacterial growth model for the prediction of seawater desalination performance, applicable to commercial RO membranes, which can be either uncoated or coated with iron nanoparticles (FeNPs or nZVI). FeNPs were selected due to their known antimicrobial properties and potential to mitigate biofilm formation. The native seawater bacterium Bacillus halotolerans MCC1 was used as a model biofouling bacterium. Growth kinetics were determined at different temperatures (from 26 to 50 °C) and pH values (from 4 to 10) to obtain growth parameters. Microbial growth on RO membranes was modeled using the Monod equation. The desalination performance was evaluated in terms of hydraulic resistance and permeate flux under clean and biofouled conditions. The model was validated using desalination data obtained at the laboratory scale. Bacteria grew faster at 42 °C and pH 10. The pH had a more significant effect than temperature on the bacterial growth rate. The FeNP-coated membranes exhibited lower resistance and maintained a higher long-term water flux than the commercial uncoated membrane. This modeling approach is useful for improving the monitoring of feed water parameters and assessing the operational conditions for minimum biofouling of RO membranes. In addition, it introduces a novel integration of environmental parameters and membrane coating effects, offering a predictive tool to support operational decisions for improved RO performance. Full article
Show Figures

Figure 1

18 pages, 2870 KiB  
Article
Preparation and Properties of Environmentally Friendly Carboxyl Graphene Oxide/Silicone Coatings
by Zhenhua Chu, Jiahao Lu, Wan Tang, Yuchen Xu, Quantong Jiang and Jingxiang Xu
Materials 2025, 18(9), 2122; https://doi.org/10.3390/ma18092122 - 5 May 2025
Viewed by 433
Abstract
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix [...] Read more.
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix via mechanical blending, the microstructure, corrosion resistance, and long-term corrosion kinetics of the coatings were systematically investigated. The results demonstrate that the coating with 0.15 wt.% CGO (designated as KCG15) exhibited optimal comprehensive performance: its corrosion current density (Icorr = 4.37 × 10−8 A/cm2) was two orders of magnitude lower than that of the pure resin coating, while its low-frequency impedance modulus (∣Z0.1Hz = 4.99 × 106 Ω⋅cm2) is significantly enhanced, accompanied by improved surface compactness. The coating achieved a 97% inhibition rate against sulfate-reducing bacteria (SRB) through synergistic physical disruption and electrostatic repulsion mechanisms. Long-term corrosion kinetics analysis via 60-day seawater immersion identified three degradation phases—permeation (0–1 day), blockage (1–4 days), and failure (7–60 days)—with structural evolution from microcrack networks to foam-like blistering ultimately reducing by 97.8%. Furthermore, a 180-day atmospheric exposure test confirms the superior weatherability and adhesion of the KCG15 coating, with only minor discoloration observed due to its hydrophobic surface. This work provides theoretical and technical foundations for developing marine anti-corrosion coatings that synergize environmental sustainability with long-term protective performance. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

29 pages, 6444 KiB  
Article
Novel Gels for Post-Piercing Care: Evaluating the Efficacy of Pranoprofen Formulations in Reducing Inflammation
by Negar Ahmadi, Maria Rincón, Mireia Mallandrich, Joaquim Suñer-Carbó, Lilian Sosa, Mireya Zelaya, Sergio Martinez-Ruiz, Cecilia Cordero and Ana C. Calpena
Gels 2025, 11(5), 334; https://doi.org/10.3390/gels11050334 - 30 Apr 2025
Viewed by 877
Abstract
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral [...] Read more.
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral NSAIDs may have systemic side effects; for this reason, we propose a topical anti-inflammatory approach. Four pranoprofen-loaded gels were created using different gelling agents: Sepigel® 305 (PF-Gel-Sep), Carbopol® 940 (PF-Gel-Car), Pluronic® F-68 (PF-Gel-Plu), and Lutrol® F-127 (PF-Gel-Lut). The gels were assessed for pH, morphology, FT-IR spectroscopy, rheological properties, spreadability, swelling and degradation, drug release kinetics, skin permeation (cow and human skin), irritation potential (HET-CAM assay), and impact on skin barrier function (TEWL and SCH). The gels exhibited varied rheological properties with PF-Gel-Car showing high viscosity and PF-Gel-Plu very low viscosity. All gels had similar spreadability with PF-Gel-Lut showing the highest. PF-Gel-Car showed the highest amounts of PF released, whereas PF-Gel-Plu led to the highest amount of pranoprofen retained in human and bovine skin. The HET-CAM assay indicated that none of the PF-Gels were irritating. Additionally, PF-Gel-Car and PF-Gel-Plu showed no cytotoxic effects on HaCaT cells. In vivo testing on mice showed that PF-Gel-Car prevented inflammation, while the rest of the gels were able to revert it in 25 min. Skin tolerance tests revealed the gels did not affect TEWL, and some gels improved SCH. The study successfully formulated and characterized four PF-loaded topical gels with potential to be used as an alternative for treating inflammation from piercings and ear tags. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

17 pages, 4078 KiB  
Article
Hydrophobic Ion Pairing of Polymyxin B with Oleic Acid: A Dissipative Particle Dynamics Simulation Study
by Nargess Mehdipour, Sima Kiani and Hossein Eslami
Pharmaceutics 2025, 17(5), 574; https://doi.org/10.3390/pharmaceutics17050574 - 27 Apr 2025
Viewed by 495
Abstract
Background: Hydrophobic ion pairing is a technique for reducing the hydrophilicity of charged molecules (drugs) by pairing them with oppositely charged hydrophobic counterions. This method is used to control the solubility of charged molecules in a solvent and is of particular importance in [...] Read more.
Background: Hydrophobic ion pairing is a technique for reducing the hydrophilicity of charged molecules (drugs) by pairing them with oppositely charged hydrophobic counterions. This method is used to control the solubility of charged molecules in a solvent and is of particular importance in drug delivery. Methods: Dissipative particle dynamics simulations were performed to provide a microscopic understanding of hydrophobic ion pairing in polymyxin B (PMB) and oleate (OA) ions. Solvents and ions were explicitly included in the simulations. Results: We investigated the effects of relative concentrations of PMB and OA (the charge ratio), solvent philicity, and the concentrations of PMB and OA at a fixed composition on the structural stability and the hydrophobicity of the ion paired cluster, as well as the kinetics of assembly. The maximum hydrophobicity belongs to PMB:OA charge ratio 1:1. The clustering efficiency in mixed ethanol–water solutions decreases with the increasing ethanol content of water. The dynamics of PMB/OA exchange between hydrophobic cluster and the surrounding solution reveal two distinct relaxation processes, whose relaxation times differ by two orders of magnitude. Conclusions: The hydrophobicity of the cluster is controlled by the charge ratio. The core of the ion paired cluster acts as the primary barrier and its surface layer acts as the secondary barrier against alcohol permeation into it. The exchange of surface PMB/OA ions with the surrounding is a much faster dynamic process than the establishment of equilibrium between the PMB/OA ions in the cluster and the solution. The time scale for the slower process provides useful information on the rate of drug release from the hydrophobic ion paired complex. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

22 pages, 8377 KiB  
Article
Study on the Corrosion and Wear Mechanism of a Core Friction Pair in Methanol-Fueled Internal Combustion Engines
by Wenjuan Zhang, Hao Gao, Qianting Wang, Dong Liu and Enlai Zhang
Materials 2025, 18(9), 1966; https://doi.org/10.3390/ma18091966 - 25 Apr 2025
Cited by 1 | Viewed by 512
Abstract
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, [...] Read more.
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, generated during combustion severely limits the durability of methanol engines. In this study, we employed a systematic approach combining the construction of a corrosion liquid concentration gradient experiment with a full-load and full-speed bench test to elucidate the synergistic corrosion–wear mechanism of core friction pairs (cylinder liner, piston, and piston ring) in methanol-fueled engines. The experiment employed corrosion-resistant gray cast iron (CRGCI), high chromium cast iron (HCCI), and nodular cast iron (NCI) cylinder liners, along with F38MnVS steel and ZL109 aluminum alloy pistons. Piston rings with DLC, PVD, and CKS coatings were also tested. Corrosion kinetic analysis was conducted in a formaldehyde/methanoic acid gradient corrosion solution, with a concentration range of 0.5–2.5% for formaldehyde and 0.01–0.10% for methanoic acid, simulating the combustion products of methanol. The results showed that the corrosion depth of CRGCI was the lowest in low-concentration corrosion solutions, measuring 0.042 and 0.055 μm. The presence of microalloyed Cr/Sn/Cu within its pearlite matrix, along with the directional distribution of flake graphite, effectively inhibited the micro-cell effect. In high-concentration corrosion solutions (#3), HCCI reduced the corrosion depth by 60.7%, resulting in a measurement of 0.232 μm, attributed to the dynamic reconstruction of the Cr2O3-Fe2O3 composite passive film. Conversely, galvanic action between spherical graphite and the surrounding matrix caused significant corrosion in NCI, with a depth reaching 1.241 μm. The DLC piston coating obstructed the permeation pathway of formate ions due to its amorphous carbon structure. In corrosion solution #3, the recorded weight loss was 0.982 mg, which accounted for only 11.7% of the weight loss observed with the CKS piston coating. Following a 1500 h bench test, the combination of the HCCI cylinder liner and DLC-coated piston ring significantly reduced the wear depth. The average wear amounts at the top and bottom dead centers were 5.537 and 1.337 μm, respectively, representing a reduction of 67.7% compared with CRGCI, where the wear amounts were 17.152 and 4.244 μm. This research confirmed that the HCCI ferrite–Cr carbide matrix eliminated electrochemical heterogeneity, while the DLC piston coating inhibited abrasive wear. Together, these components reduced the wear amount at the top dead center on the push side by 80.1%. Furthermore, mismatches between the thermal expansion coefficients of the F38MnVS steel piston (12–14 × 10−6/°C) and gray cast iron (11 × 10−6/°C) resulted in a tolerance exceeding 0.105 mm in the cylinder fitting gap after 3500 h of testing. Notably, the combination of a HCCI matrix and DLC coating successfully maintained the gap within the required range of 50–95 μm. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

30 pages, 7964 KiB  
Article
Fabrication and Performance of PVAc-Incorporated Porous Self-Standing Zeolite-Based Geopolymer Membranes for Lead (Pb(II)) Removal in Water Treatment
by Samar Amari, Mariam Darestani, Graeme Millar and Bob Boshrouyeh
Polymers 2025, 17(9), 1155; https://doi.org/10.3390/polym17091155 - 24 Apr 2025
Viewed by 693
Abstract
This study explores the fabrication, structural characteristics, and performance of an innovative porous geopolymer membrane made from waste natural zeolite powder for Pb(II) removal, with potential applications in wastewater treatment. A hybrid geopolymer membrane incorporating polyvinyl acetate (PVAc) (10, 20, and 30 wt.%) [...] Read more.
This study explores the fabrication, structural characteristics, and performance of an innovative porous geopolymer membrane made from waste natural zeolite powder for Pb(II) removal, with potential applications in wastewater treatment. A hybrid geopolymer membrane incorporating polyvinyl acetate (PVAc) (10, 20, and 30 wt.%) was synthesized and thermally treated at 300 °C to achieve a controlled porous architecture. Characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), revealed the disappearance of characteristic C=O and C-H stretching bands (~1730 cm−1 and ~2900 cm−1, respectively), confirming the full degradation of PVAc. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) indicated a total mass loss of approximately 14.5% for the sample with PVAc 20 wt.%, corresponding to PVAc decomposition and water loss. Energy-dispersive spectroscopy (EDS) elemental mapping showed the absence of carbon residues post-annealing, further validating complete PVAc removal. X-ray diffraction (XRD) provided insight into the crystalline phases of the raw zeolite and geopolymer structure. Once PVAc removal was confirmed, the second phase of characterization assessed the membrane’s mechanical properties and filtration performance. The thermally treated membrane, with a thickness of 2.27 mm, exhibited enhanced mechanical properties, measured with a nano-indenter, showing a hardness of 1.8 GPa and an elastic modulus of 46.7 GPa, indicating improved structural integrity. Scanning electron microscopy (SEM) revealed a well-defined porous network. Filtration performance was evaluated using a laboratory-scale dead-end setup for Pb(II) removal. The optimal PVAc concentration was determined to be 20 wt.%, resulting in a permeation rate of 78.5 L/(m2·h) and an 87% rejection rate at an initial Pb(II) concentration of 50 ppm. With increasing Pb(II) concentrations, the flux rates declined across all membranes, while maximum rejection was achieved at 200 ppm. FTIR and EDS analyses confirmed Pb(II) adsorption onto the zeolite-based geopolymer matrix, with elemental mapping showing a uniform Pb(II) distribution across the membrane surface. The next step is to evaluate the membrane’s performance in a multi-cation water treatment environment, assessing the sorption kinetics and its selectivity and efficiency in removing various heavy metal contaminants from complex wastewater systems. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Graphical abstract

Back to TopTop