Tritium Extraction from Liquid Blankets of Fusion Reactors via Membrane Gas–Liquid Contactors
Abstract
:1. Introduction
2. Tritium Extraction from Liquid Blankets
The Permeator Against Vacuum (PAV)
3. MGLC for Tritium Extraction from Pb–Li
3.1. Hydrogen Isotopes Transport in MGLC
4. Design of the Membrane Gas–Liquid Contactor
4.1. Calculation of the MGLC Pore Size
4.2. Assessment of the MGLC Overall Mass Transfer Coefficient
- -
- The viscous (Poiseuille) regime occurring when the mean free path is smaller than the pore size (Kn < 0.01).
- -
- The molecular (Knudsen) regime occurring when the mean free path is larger than the pore size (Kn > 1).
5. Comparison of the Tritium Extraction Units Based on MGLC, PAV, and GLC (Packed Columns)
5.1. PAV
- -
- Permeable U-shaped Nb tubes inside a vacuum vessel;
- -
- V plates welded to stainless steel structures.
5.1.1. Nb PAV
5.1.2. V PAV
5.2. GLC
5.3. MGLC
5.4. Comparison of the Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
hydrogen isotope concentration in the Pb–Li (at. fr. m−3) | |
hydrogen concentration upstream the metal membrane (mol m−3) | |
hydrogen concentration downstream the metal membrane (mol m−3) | |
hydrogen concentration in Pb–Li (mol m−3) | |
d | pore diameter (m) |
diffusion coefficient of hydrogen through the metal lattice (m2 s−1) | |
DCLL | Dual Coolant Lithium Lead |
Sieverts’ constant activation energy (J mol−1) | |
GLC | Gas–Liquid Contactor |
overall mass transfer coefficient (mol m−2 s−1 Pa−1) | |
HCLL | Helium-Cooled Lithium Lead |
ITER | International Thermonuclear Reactor |
J | hydrogen flow rate (mol s−1) |
ka | adsorption coefficient (mol m−2 s−1 Pa−1) |
recombination coefficient (m4 mol−1 s−1) | |
kS | Sieverts’ constant (at. fr. m−3 Pa−0.5) |
Sieverts’ constant pre-exponential factor (at. fr. m−3 Pa−0.5) | |
Kn | Knudsen number |
MGLC | Membrane Gas–Liquid Contactor |
P | hydrogen isotopes partial pressure in the gas phase (Pa) |
PAV | Permeator Against Vacuum |
hydrogen permeability through the membrane pores (mol m−1 s−1 Pa−1) | |
PG | pressure of the gas phase (Pa) |
hydrogen partial pressure at the Gas–Liquid interface (Pa) | |
hydrogen partial pressure in the membrane lumen (Pa) | |
PL | pressure of the liquid phase (Pa) |
TBM | Test Blanket Module |
membrane thickness (m) | |
WCLL | Water-Cooled Lithium Lead |
Greek letters | |
Γ | surface tension of the liquid metal (N m−1) |
θ | contact angle of the penetrating liquid over the porous material (°) |
References
- IEA World Energy Outlook 2024. Available online: https://iea.blob.core.windows.net/assets/140a0470-5b90-4922-a0e9-838b3ac6918c/WorldEnergyOutlook2024.pdf (accessed on 16 April 2025).
- IAEA World Fusion Outlook 2023. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/FusionOutlook2023_web.pdf (accessed on 21 April 2025).
- Sustainable Development Goals (SDGs). Available online: https://unric.org/en/united-nations-sustainable-development-goals/ (accessed on 16 April 2025).
- Hsu, S.C. U.S. Fusion Energy Development via Public-Private Partnerships. J. Fusion Energy 2023, 42, 12. [Google Scholar] [CrossRef]
- Baus, C.; Barron, P.; D’Angio, A.; Hirata, Y.; Konishi, S.; Mund, J.; Nagao, T.; Nakahara, D.; Pearson, R.; Sakaguchi, M.; et al. Kyoto Fusioneering’s Mission to Accelerate Fusion Energy: Technologies, Challenges and Role in Industrialisation. J. Fusion Energy 2023, 42, 10. [Google Scholar] [CrossRef]
- Fukada, S.; Nishikawa, T.; Kinjo, M.; Katayama, K. Study of hydrogen recovery from Li-Pb using packed tower. Fusion Eng. Des. 2018, 135, 74–80. [Google Scholar] [CrossRef]
- Federici, G.; Boccaccini, L.; Cismondi, F.; Gasparotto, M.; Poitevin, Y.; Ricapito, I. An overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort. Fusion Eng. Des. 2019, 141, 30–42. [Google Scholar] [CrossRef]
- Boccaccini, L.V.; Aiello, G.; Aubert, J.; Bachmann, C.; Barrett, T.; Del Nevo, A.; Demange, D.; Forest, L.; Hernandez, F.; Norajitra, P.; et al. Objectives and status of EUROfusion DEMO blanket studies. Fusion Eng. Des. 2016, 109–111, 1199–1206. [Google Scholar] [CrossRef]
- Aubert, J.; Aiello, G.; Arena, P.; Barrett, T.; Boccaccini, L.V.; Bongiovì, G.; Boullon, R.; Cismondi, F.; Critescu, I.; Domalapally, P.K.; et al. Status of the EU DEMO HCLL breeding blanket design development. Fusion Eng. Des. 2018, 136, 1428–1432. [Google Scholar] [CrossRef]
- Rapisarda, D.; Fernández-Berceruelo, I.; García, A.; García, J.M.; Garcinuño, B.; González, M.; Moreno, C.; Palermo, I.; Urgorri, F.R.; Ibarra, A. The European Dual Coolant Lithium Lead breeding blanket for DEMO: Status and perspectives. Nucl. Fusion 2021, 61, 115001. [Google Scholar] [CrossRef]
- Arena, P.; Bongiovì, G.; Catanzaro, I.; Ciurluini, C.; Collaku, A.; Del Nevo, A.; Di Maio, P.A.; D’Onorio, M.; Giannetti, F.; Imbriani, V.; et al. Design and Integration of the EU-DEMO Water-Cooled Lead Lithium Breeding Blanket. Energies 2023, 16, 2069. [Google Scholar] [CrossRef]
- ITER. The Way to New Energy. Available online: https://www.iter.org/ (accessed on 16 April 2025).
- Valls, E.M.d.L.; Sedano, L.; Batet, L.; Ricapito, I.; Aiello, A.; Gastaldi, O.; Gabriel, F. Lead–lithium eutectic material database for nuclear fusion technology. J. Nucl. Mater. 2008, 376, 353–357. [Google Scholar] [CrossRef]
- Kinjo, M.; Fukada, S.; Katayama, K.; Edao, Y.; Hayashi, T. Experiment on Recovery of Hydrogen Isotopes from Li17Pb83 Blanket by Liquid-Gas Contact. Fusion Sci. Technol. 2017, 71, 520–526. [Google Scholar] [CrossRef]
- Alpy, N.; Terlain, A.; Lorentz, V. Hydrogen extraction from Pb–17Li: Results with a 800 mm high packed column. Fusion Eng. Des. 2000, 49–50, 775–780. [Google Scholar] [CrossRef]
- Utili, M.; Alberghi, C.; Candido, L.; Papa, F.; Tarantino, M.; Venturini, A. TRIEX-II: An experimental facility for the characterization of the tritium extraction unit of the WCLL blanket of ITER and DEMO fusion reactors. Nucl. Fusion 2022, 62, 066036. [Google Scholar] [CrossRef]
- Sacristán, R.; Veredas, G.; Bonjoch, I.; Fernandez, I.; Martín, G.; Sanmartí, M.; Sedano, L. Design, performance and manufacturing analysis for a compact permeator. Fusion Eng. Des. 2012, 87, 1495–1500. [Google Scholar] [CrossRef]
- Martínez, P.; Moreno, C.; Martínez, I.; Sedano, L. Optimizing tritium extraction from a Permeator Against Vacuum (PAV) by dimensional design using different tritium transport modeling tools. Fusion Eng. Des. 2012, 87, 1466–1470. [Google Scholar] [CrossRef]
- Park, C.H.; Nozawa, T.; Kasada, R.; Tosti, S.; Konishi, S.; Tanigawa, H. The effect of wall flow velocity on compatibility of high-purity SiC materials with liquid Pb-Li alloy by rotating disc testing for 3000 h up to 900 °C. Fusion Eng. Des. 2018, 136, 623–627. [Google Scholar] [CrossRef]
- Tosti, S. Supported and laminated Pd-based metallic membranes. Int. J. Hydrog. Energy 2003, 28, 1445–1454. [Google Scholar] [CrossRef]
- Garcinuno, B.; Rapisarda, D.; Fernández-Berceruelo, I.; Jiménez-Rey, D.; Sanz, J.; Moreno, C.; Palermo, I.; Ibarra, Á. Design and fabrication of a Permeator Against Vacuum prototype for small scale testing at Lead-Lithium facility. Fusion Eng. Des. 2017, 124, 871–875. [Google Scholar] [CrossRef]
- Papa, F.; Utili, M.; Venturini, A.; Caruso, G.; Savoldi, L.; Bonifetto, R.; Valerio, D.; Allio, A.; Collaku, A.; Tarantino, M. Engineering design of a Permeator against Vacuum mock-up with niobium membrane. Fusion Eng. Des. 2021, 166, 112313. [Google Scholar] [CrossRef]
- Tosti, S.; Pozio, A. Membrane Processes for the Nuclear Fusion Fuel Cycle. Membranes 2018, 8, 96. [Google Scholar] [CrossRef]
- Tosti, S.; Pozio, A.; Farina, L.; Incelli, M.; Santucci, A.; Alique, D. Membrane gas-liquid contactor for tritium extraction from Pb-Li alloys. Fusion Eng. Des. 2020, 158, 111737. [Google Scholar] [CrossRef]
- Tosti, S.; Farina, L.; Pozio, A.; Santucci, A.; Alique, D. Study of a stainless steel porous membrane for recovering tritium from Pb-Li alloys: Assessment of mass transfer coefficient. Fusion Eng. Des. 2021, 168, 112423. [Google Scholar] [CrossRef]
- Massey, B.S. Mechanics of Fluids, 6th ed.; Chapman & Hall: London, UK, 1989. [Google Scholar]
- Buxbaum, R.E. A chemical theory analysis of the solution thermodynamics of oxygen, nitrogen and hydrogen in lead-rich Li-Pb mixtures. J. Less Comm. Met. 1984, 97, 27–38. [Google Scholar] [CrossRef]
- Reiter, F. Solubility and diffusivity of hydrogen isotopes in liquid Pb17Li. Fusion Eng. Des. 1991, 14, 207–211. [Google Scholar] [CrossRef]
- Schumacher, R.; Weiss, A. Hydrogen solubility in the liquid alloys lithium-indium, lithium-lead, and lithium-tin. Phys. Chem. Chem. Phys. 1990, 94, 684–691. [Google Scholar] [CrossRef]
- Aiello, A.; Ciampichetti, A.; Benamati, G. Determination of hydrogen solubility in lead lithium using sole device. Fusion Eng. Des. 2006, 81, 639–644. [Google Scholar] [CrossRef]
- Pisarev, A.; Tanabe, T.; Terai, T.; Benamati, G.; Mullin, M. Modeling of In-Pile Experiments on Tritium Release from Molten Lithium-Lead. J. Nucl. Sci. Technol. 2002, 39, 377–381. [Google Scholar] [CrossRef]
- Bruni, G.; De Meis, D.; Sansovini, M.; Tosti, S. Testing of ceramic membranes for PEG separation and preliminary design of a membrane cascade. Fusion Eng. Des. 2019, 146, 1670–1675. [Google Scholar] [CrossRef]
- Utili, M.; Alberghi, C.; Bonifetto, R.; Candido, L.; Collaku, A.; Garcinuño, B.; Kordač, M.; Martelli, D.; Mozzillo, R.; Papa, F.; et al. Design and Integration of the WCLL Tritium Extraction and Removal System into the European DEMO Tokamak Reactor. Energies 2023, 16, 5231. [Google Scholar] [CrossRef]
- Bonifetto, R.; Utili, M.; Valerio, D.; Zanino, R. Conceptual design of a PAV-based tritium extractor for the WCLL breeding blanket of the EU DEMO: Effects of surface-limited vs. diffusion-limited modelling. Fusion Eng. Des. 2021, 167, 112363. [Google Scholar] [CrossRef]
- Cantore, M. Qualification of Tritium Extraction System from Pb15.7Li in TRIEX-II Facility. Available online: https://webthesis.biblio.polito.it/11312/1/tesi.pdf (accessed on 16 April 2025).
- Garcinuño, B.; Rapisarda, D.; Moreno, C.; Sanz, J.; Ibarra, A. Design of a System for Hydrogen isotopes Injection into Lead-Lithium. Fusion Eng. Des. 2018, 137, 427–434. [Google Scholar] [CrossRef]
- Garcinuño, B.; Rapisarda, D.; Fernández-Berceruelo, I.; Carella, E.; Sanz, J. The CIEMAT PbLi Loop Permeation Experiment. Fusion Eng. Des. 2019, 146, 1228–1232. [Google Scholar] [CrossRef]
ΔP, kPa | Pore Diameter, m | ||
---|---|---|---|
at 300 °C | at 400 °C | at 500 °C | |
50 | 2.80 × 10−5 | 2.73 × 10−5 | 2.67 × 10−5 |
100 | 1.40 × 10−5 | 1.37 × 10−5 | 1.33 × 10−5 |
200 | 7.00 × 10−6 | 6.83 × 10−6 | 6.66 × 10−6 |
300 | 4.67 × 10−6 | 4.55 × 10−6 | 4.44 × 10−6 |
400 | 3.50 × 10−6 | 3.41 × 10−6 | 3.33 × 10−6 |
500 | 2.80 × 10−6 | 2.73 × 10−6 | 2.67 × 10−6 |
1000 | 1.40 × 10−6 | 1.37 × 10−6 | 1.33 × 10−6 |
(mol m−3 Pa−0.5) | (J mol−1) | Ref. |
---|---|---|
1350 | Reiter [28] | |
6100 | Shumacher et al. [29] | |
12,844 | Aiello et al. [30] |
Adsorption Coefficient ka, mol m−2 s−1 Pa−1 | |||
---|---|---|---|
T, °C | Reiter [28] | Shumaker et al. [29] | Aiello et al. [30] |
300 | 6.76435 × 10−11 | 1.24669 × 10−8 | 5.72631 × 10−8 |
400 | 1.85834 × 10−10 | 4.60620 × 10−8 | 3.22229 × 10−7 |
500 | 3.93088 × 10−10 | 1.21368 × 10−7 | 1.15976 × 10−6 |
600 | 7.00370 × 10−10 | 2.56145 × 10−7 | 3.11293 × 10−6 |
Temperature, °C | 330 |
Tritium partial pressure, Pa | 55 |
Tritium conc. in Pb–Li, mol m−3 | 1.41 × 10−2 |
Total mass flow rate, kg/s | 1127 (OB) + 499 (IB) |
Surface-Limited Regime | Diffusion-Limited Regime | |
---|---|---|
vessel diameter, m | 6 | 4 |
height of tank, m | 8 | 6 |
number of tubes | 1600 | 855 |
tube diameter, mm | 9.2 | 9.2 |
tube length, m | 57 | 27.75 |
total surface area, m2 | 3723 | 968 |
width, m | 1.90 |
channel height, m | 5 × 10−3 |
length, m | 15 |
membrane thickness, m | 1× 10−3 |
total surface area, m2 | 2400 |
OB | IB | |
---|---|---|
height of the vessel, m | 9–11 | 4–5.5 |
external diameter of the vessel, m | 2–3 | 2–3 |
vessel diameter, m | 2 |
height of tank, m | 8 |
number of tubes | 178 |
tube diameter, mm | 9.2 |
tube length, m | 57 |
Nb PAV | V PAV | MGLC | |
---|---|---|---|
permeation area, m2 | 21,500 and 5600 1 | 70,900 | 2376 |
Nb PAV | V PAV | GLC | MGLC | |
---|---|---|---|---|
permeation area, m2 | 3723 and 968 1 | 6840 | - | 412 |
unit’s height, m | 8 and 6 1 | - | 9–11 | 8 |
unit’s volume, m3 | 226 and 75 1 | 34 | 71 | 25 |
technological issues to be verified/solved | Oxidation status of membrane surfaces and optimization of Nb-tubes geometry | Integrity of stainless steel V-weldings | Need of tritium extraction system from helium | Erosion–corrosion and closure of membrane pores by impurities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosti, S.; Farina, L. Tritium Extraction from Liquid Blankets of Fusion Reactors via Membrane Gas–Liquid Contactors. J. Nucl. Eng. 2025, 6, 13. https://doi.org/10.3390/jne6020013
Tosti S, Farina L. Tritium Extraction from Liquid Blankets of Fusion Reactors via Membrane Gas–Liquid Contactors. Journal of Nuclear Engineering. 2025; 6(2):13. https://doi.org/10.3390/jne6020013
Chicago/Turabian StyleTosti, Silvano, and Luca Farina. 2025. "Tritium Extraction from Liquid Blankets of Fusion Reactors via Membrane Gas–Liquid Contactors" Journal of Nuclear Engineering 6, no. 2: 13. https://doi.org/10.3390/jne6020013
APA StyleTosti, S., & Farina, L. (2025). Tritium Extraction from Liquid Blankets of Fusion Reactors via Membrane Gas–Liquid Contactors. Journal of Nuclear Engineering, 6(2), 13. https://doi.org/10.3390/jne6020013