Hydrophobic Ion Pairing of Polymyxin B with Oleic Acid: A Dissipative Particle Dynamics Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method
2.2. Model and Simulation Details
3. Results and Discussion
3.1. Cluster Formation in Polymyxin B and Oleate
3.2. Structure of Ion Paired Clusters
3.3. Effect of Solvent Philicity
3.4. Effect of Charge Ratio
3.5. Cluster Stability and Drug Release Rate
3.6. Kinetics of Ion Pair Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cristofoli, M.; Kung, C.-P.; Hadgraft, J.; Lane, M.E.; Sil, B.C. Ion Pairs for Transdermal and Dermal Drug Delivery: A Review. Pharmaceutics 2021, 13, 909. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.A.A.; Sovány, T.; Pamlényi, K.; Deák, M.; Hornok, V.; Csapó, E.; Regdon, G., Jr.; Csóka, I.; Kristó, K. QbD Approach-Based Preparation and Optimization of Hydrophobic Ion-Pairing Complex of Lysozyme with Sodium Dodecyl Sulphate to Enhance Stability in Lipid-Based Carriers. Pharmaceutics 2024, 16, 589. [Google Scholar] [CrossRef]
- Eslami, H.; Khanjari, N.; Müller-Plathe, F. Self-assembly Mechanisms of Triblock Janus Particles. J. Chem. Theory Comput. 2019, 15, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Kubackova, J.; Holas, O.; Zbytovska, J.; Vranikova, B.; Zeng, G.; Pavek, P.; Mullertz, A. Oligonucleotide Delivery across the Caco-2 Monolayer: The Design and Evaluation of Self-Emulsifying Drug Delivery Systems (SEDDS). Pharmaceutics 2021, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- Mudassir, J.; Raza, A.; Khan, M.A.; Hameed, H.; Shazly, G.A.; Irfan, A.; Rana, S.J.; Abbas, K.; Arshad, M.S.; Muhammad, S.; et al. Design and Evaluation of Hydrophobic Ion Paired Insulin Loaded Self Micro-Emulsifying Drug Delivery System for Oral Delivery. Pharmaceutics 2023, 15, 1973. [Google Scholar] [CrossRef]
- Song, Y.H.; Shin, E.; Wang, H.; Nolan, J.; Low, S.; Parsons, D.; Zale, S.; Ashton, S.; Ashford, M.; Ali, M.; et al. A Novel In Situ Hydrophobic Ion Pairing (HIP) Formulation Strategy for Clinical Product Selection of a Nanoparticle Drug Delivery System. J. Control. Release 2016, 229, 106–119. [Google Scholar] [CrossRef]
- Wang, J.; Stegger, M.; Moodley, A.; Yang, M. Drug Combination of Ciprofloxacin and Polymyxin B for the Treatment of Multidrug–Resistant Acinetobacter baumannii Infections: A Drug Pair Limiting the Development of Resistance. Pharmaceutics 2023, 15, 720. [Google Scholar] [CrossRef]
- D’Addio, S.M.; Prud’homme, R.K. Controlling Drug Nanoparticle Formation by Rapid Precipitation. Adv. Drug Deliv. Rev. 2011, 63, 417–426. [Google Scholar] [CrossRef]
- Dubashynskaya, N.V.; Skorik, Y.A. Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals 2020, 13, 83. [Google Scholar] [CrossRef]
- Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and Recent Advances in Peptide and Protein Drug Delivery. Ther. Deliv. 2013, 4, 1443–1467. [Google Scholar] [CrossRef]
- Lu, H.D.; Rummaneethorn, P.; Ristroph, K.D.; Prud’homme, R.K. Hydrophobic Ion Pairing of Peptide Antibiotics for Processing into Controlled Release Nanocarrier Formulations. Mol. Pharm. 2018, 15, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.T.; Akova, M.; Paterson, D.L. Next-Generation Polymyxin Class of Antibiotics: A Ray of Hope Illuminating a Dark Road. Antibiotics 2022, 11, 1711. [Google Scholar] [CrossRef] [PubMed]
- Eslami, H.; Mehdipour, N. Local Chemical Potential and Pressure Tensor in Inhomogeneous Nanoconfined Fluids. J. Chem. Phys. 2012, 137, 144702. [Google Scholar] [CrossRef]
- Afandak, A.; Eslami, H. Ion-Pairing and Electrical Conductivity in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Methylsulfate [Bmim][MeSO4]: Molecular Dynamics Simulation Study. J. Phys. Chem. B 2017, 121, 7699–7708. [Google Scholar] [CrossRef]
- Gaines, E.; Tommaso, D.D. Solvation and Aggregation of Meta-Aminobenzoic Acid in Water: Density Functional Theory and Molecular Dynamics Study. Pharmaceutics 2018, 10, 12. [Google Scholar] [CrossRef]
- Puyathorn, N.; Tamdee, P.; Sirirak, J.; Okonogi, S.; Phaechamud, T.; Chantadee, T. Computational Insight of Phase Transformation and Drug Release Behaviour of Doxycycline-Loaded Ibuprofen-Based In-Situ Forming Gel. Pharmaceutics 2023, 15, 2315. [Google Scholar] [CrossRef]
- Khaknejad, Z.; Mehdipour, N.; Eslami, H. Molecular Dynamics Simulation of the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Methylsulfate [Bmim][MeSO4]: Interfacial Properties at the Silica and Vacuum Interfaces. ChemPhysChem 2020, 21, 1134–1145. [Google Scholar] [CrossRef]
- Latham, A.P.; Levy, E.S.; Sellers, B.D.; Leung, D.H. Utilizing Molecular Simulations to Examine Nanosuspension Stability. Pharmaceutics 2024, 16, 50. [Google Scholar] [CrossRef]
- Khani, M.; Materzok, T.; Eslami, H.; Gorb, S.; Müller-Plathe, F. Water Uptake by Gecko β-keratin and the Influence of Relative Humidity on its Mechanical and Volumetric Properties. J. R. Soc. Interface 2022, 192, 0220372. [Google Scholar] [CrossRef]
- Eslami, H.; Jafari, B.; Mehdipour, N. Coarse Grained Molecular Dynamics Simulation of Nanoconfined Water. ChemPhysChem 2013, 14, 1063–1070. [Google Scholar] [CrossRef]
- Lee, H. Recent Advances in Simulation Studies on the Protein Corona. Pharmaceutics 2024, 16, 1419. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadi, N.; Boland-Hemmat, M.; Barahmand, S.; Eslami, H. Coarse-Grained Molecular Dynamics Simulations of Poly(ethylene terephthalate). J. Chem. Phys. 2020, 152, 114901. [Google Scholar] [CrossRef] [PubMed]
- Keshtkar, M.; Mehdipour, N.; Eslami, H. Supramolecular Self-Assembly of Dipalmitoylphosphatidylcholine and Carbon Nanotubes: A Dissipative Particle Dynamics Simulation Study. Nanomaterials 2022, 12, 2653. [Google Scholar] [CrossRef] [PubMed]
- Hoogerbrugge, P.J.; Koelman, J.M.V.A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhys. Lett. 1992, 19, 155–160. [Google Scholar] [CrossRef]
- Groot, R.D.; Warren, P.B. Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107, 4423–4435. [Google Scholar] [CrossRef]
- Espanol, P.; Warren, P.B. Statistical Mechanics of Dissipative Particle Dynamics. Europhys. Lett. 1995, 30, 191. [Google Scholar] [CrossRef]
- Alessandri, R.; Barnoud, J.; Gertsen, A.S.; Patmanidis, I.; de Vries, A.H.; Souza, P.C.T.; Marrinik, S.J. Martini 3 Coarse-Grained Force Field: Small Molecules. Adv. Theory Simul. 2022, 5, 2100391. [Google Scholar] [CrossRef]
- Marrink, S.J.; de Vries, A.H.; Mark, A.E. Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 2004, 108, 750–760. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, Z.; Das, S.; Eslami, H.; Müller-Plathe, F. How Ethanolic Disinfectants Disintegrate Coronavirus Model Membranes: A Dissipative Particle Dynamics Simulation Study. J. Chem. Theory Comput. 2022, 18, 2597–2615. [Google Scholar] [CrossRef]
- Bahri, K.; Eslami, H.; Müller-Plathe, F. Self-Assembly of Model Triblock Janus Colloidal Particles in Two Dimensions. J. Chem. Theory Comput. 2022, 18, 1870–1882. [Google Scholar] [CrossRef]
- Gurtovenko, A.A.; Anwar, J. Interaction of Ethanol with Biological Membranes: The Formation of Non-bilayer Structures within the Membrane Interior and their Significance. J. Phys. Chem. B 2009, 113, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, L.; Fang, W. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-to-One Coarse-Grained Mapping Scheme. PLoS ONE 2016, 11, e0154568. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Shillcock, J.; Lipowsky, R. Improved Dissipative Particle Dynamics Simulations of Lipid Bilayers. J. Chem. Phys. 2007, 126, 015101. [Google Scholar] [CrossRef] [PubMed]
- Eslami, H.; Khani, M.; Müller-Plathe, F. Gaussian Charge Distributions for Incorporation of Electrostatic Interactions in Dissipative Particle Dynamics: Application to Self-Assembly of Surfactants. J. Chem. Theory Comput. 2019, 15, 4197–4207. [Google Scholar] [CrossRef]
- Müller-Plathe, F. YASP: A Molecular Simulation Package. Comput. Phys. Commun. 1993, 78, 77–94. [Google Scholar] [CrossRef]
- Gupta, K.M.; Chin, X.; Kanaujia, P. Molecular Interactions between APIs and Enteric Polymeric Excipients in Solid Dispersion: Insights from Molecular Simulations and Experiments. Pharmaceutics 2023, 15, 1164. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, P.; Yang, Y.; Yan, L.-T. Shearing Janus Nanoparticles Confined in Two-dimensional Space: Reshaped Cluster Configurations and Defined Assembling Kinetics. J. Phys. Chem. Lett. 2016, 7, 1966–1971. [Google Scholar] [CrossRef]
- Guo, R.; Liu, Z.; Xie, X.-M.; Yan, L.-T. Harnessing Dynamic Covalent Bonds in Patchy Nanoparticles: Creating Shape-shifting Building Blocks for Rational and Responsive Self-assembly. J. Phys. Chem. Lett. 2013, 4, 1221–1226. [Google Scholar] [CrossRef]
- Kozuch, D.J.; Ristroph, K.; Prud’homme, R.K.; Debenedetti, P.G. Insights into Hydrophobic Ion Pairing from Molecular Simulation and Experiment. ACS Nano 2020, 14, 6097–6106. [Google Scholar] [CrossRef]
- Romano, F.; Sciortino, F. Two Dimensional Assembly of Triblock Janus Particles into Crystal Phases in the Two Bond per Patch Limit. Soft Matter 2011, 7, 5799–5804. [Google Scholar] [CrossRef]
- Romano, F.; Sciortino, F. Patterning Symmetry in the Rational Design of Colloidal Crystals. Nat. Commun. 2012, 3, 975. [Google Scholar] [CrossRef] [PubMed]
- Gharibi, A.; Eslami, H.; Müller-Plathe, F. Self-Assembly of Model Three- and Four-Patch Colloidal Particles in Two Dimensions. J. Chem. Theory Comput. 2024, 20, 6858–6869. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.P.; Panagiotopoulos, A.Z. Determination of the Critical Micelle Concentration in Simulations of Surfactant Systems. J. Chem. Phys. 2016, 144, 044709. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Lee, M.-T.; Vishnyakov, A.; Neimark, A.V. Modeling Aggregation of Ionic Surfactants using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations. J. Phys. Chem. B 2015, 119, 11673–11683. [Google Scholar] [CrossRef]
- Anderson, R.L.; Bray, D.J.; Del Regno, A.; Seaton, M.A.; Ferrante, A.S.; Warren, P.B. Micelle Formation in Alkyl Sulfate Surfactants using Dissipative Particle Dynamics. J. Chem. Theory Comput. 2018, 14, 2633–2643. [Google Scholar] [CrossRef]
- Sanders, S.A.; Sammalkorpi, M.; Panagiotopoulos, A.Z. Atomistic Simulations of Micellization of Sodium Hexyl, Heptyl, Octyl, and Nonyl Sulfates. J. Phys. Chem. B 2012, 116, 2430–2437. [Google Scholar] [CrossRef]
- Benrraou, M.; Bales, B.L.; Zana, R. Effect of the Nature of the Counterion on the Properties of Anionic Surfactants. 1. CMC, Ionization Degree at the CMC and Aggregation Number of Micelles of Sodium, Cesium, Tetramethylammonium, Tetraethylammonium, Tetrapropylammonium, and Tetrabutylammonium Dodecyl Sulfates. J. Phys. Chem. B 2003, 107, 13432–13440. [Google Scholar]
- Ristroph, K.; Salim, M.; Clulow, A.J.; Boyd, B.J.; Prud’homme, R.K. Chemistry and Geometry of Counterions Used in Hydrophobic Ion Pairing Control Internal Liquid Crystal Phase Behavior and Thereby Drug Release. Mol. Pharm. 2021, 18, 1666–1676. [Google Scholar] [CrossRef]
- Volkova, T.; Simonova, O.; Perlovich, G. Mechanistic Insight in Permeability through Different Membranes in the Presence of Pharmaceutical Excipients: A Case of Model Hydrophobic Carbamazepine. Pharmaceutics 2024, 16, 184. [Google Scholar] [CrossRef]
- Borné, J.; Nylander, T.; Khan, A. Phase Behavior and Aggregate Formation for the Aqueous Monoolein System Mixed with Sodium Oleate and Oleic Acid. Langmuir 2001, 17, 7742–7751. [Google Scholar] [CrossRef]
- Salentinig, S.; Sagalowicz, L.; Glatter, O. Self-assembled Structures and pKa Value of Oleic Acid in Systems of Biological Relevance. Langmuir 2010, 26, 11670–11679. [Google Scholar] [CrossRef] [PubMed]
- Polacek, R.; Kaatze, U. Monomer Exchange Kinetics, Radial Diffusion, and Hydrocarbon Chain Isomerization of Sodium Dodecylsulfate Micelles in Water. J. Phys. Chem. B 2007, 111, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Ma, Y.; Lodge, T.P. Exchange Kinetics for a Single Block Copolymer in Micelles of Two Different Sizes. Macromolecules 2018, 51, 2312–2320. [Google Scholar] [CrossRef]
- Noskov, B.A. Kinetics of Adsorption from Micellar Solutions. Adv. Colloid Interface Sci. 2002, 95, 237–293. [Google Scholar] [CrossRef]
- Eslami, H.; Müller-Plathe, F. Self-Assembly Pathways of Triblock Janus Particles into Three-Dimensional Open Lattices. Small 2024, 20, 2306337. [Google Scholar] [CrossRef]
- Eslami, H.; Müller-Plathe, F. Metadynamics Simulations of Three-Dimensional Nanocrystals Self-Assembled from Triblock Janus Nanoparticles: Implications for Light Filtering. ACS Appl. Nano Mater. 2024, 7, 18045–18055. [Google Scholar] [CrossRef]
- Reinhart, W.F.; Panagiotopoulos, A.Z. Crystal Growth Kinetics of Triblock Janus Colloids. J. Chem. Phys. 2018, 148, 124506. [Google Scholar] [CrossRef]
- Eslami, H.; Bahri, K.; Müller-Plathe, F. Solid-liquid and Solid-Solid Phase Diagrams of Self-Assembled Triblock Janus Nanoparticles from Solution. J. Phys. Chem. C 2018, 122, 9235–9244. [Google Scholar] [CrossRef]
- Partington, J.R.; Hudson, R.F.; Bagnall, K.W. Self-diffusion of Aliphatic Alcohols. Nature 1952, 169, 583–584. [Google Scholar] [CrossRef]
- Walter, S.; Mileo, P.G.M.; Afzal, M.A.F.; Kyeremateng, S.O.; Degenhardt, M.; Browning, A.R.; Shelley, J.C. Predicting the Release Mechanism of Amorphous Solid Dispersions: A Combination of Thermodynamic Modeling and In Silico Molecular Simulation. Pharmaceutics 2024, 16, 1292. [Google Scholar] [CrossRef]
Bead Type | CH2CH2NH3+ | CH2COO− | NHCOCH | CH3CHOH | C4H8 | (H2O)4 |
---|---|---|---|---|---|---|
CH2CH2NH3+ | 100 | 100 | 100 | 102.5 | 125.5 | 100 |
CH2COO− | 100 | 100 | 100 | 102.5 | 125.5 | 100 |
NHCOCH | 100 | 100 | 100 | 102.5 | 110 | 100 |
CH3CHOH | 102.5 | 102.5 | 102.5 | 100 | 105 | 102.5 |
C4H8 | 125.5 | 125.5 | 110 | 105 | 100 | 125.5 |
(H2O)4 | 100 | 100 | 100 | 102.5 | 125.5 | 100 |
PMB5+ | OA− | Cl− | Na+ | Water | Total | Length of Cubic Box |
---|---|---|---|---|---|---|
800 | 4000 | 4000 | 4000 | 1,192,000 | 1,238,400 | 74.26 |
800 | 3200 | 4000 | 3200 | 1,196,800 | ||
800 | 2400 | 4000 | 2400 | 1,201,600 | ||
800 | 1600 | 4000 | 1600 | 1,206,400 | ||
800 | 800 | 4000 | 800 | 1,211,200 | ||
600 | 3000 | 3000 | 3000 | 1,119,400 | 1,228,800 | 74.12 |
600 | 2400 | 3000 | 2400 | 1,197,600 | ||
600 | 1800 | 3000 | 2800 | 1,201,200 | ||
600 | 1200 | 3000 | 1200 | 1,204,800 | ||
600 | 600 | 3000 | 600 | 1,208,400 | ||
400 | 2000 | 2000 | 2000 | 1,196,000 | 1,219,200 | 73.84 |
400 | 1600 | 2000 | 1600 | 1,198,400 | ||
400 | 1200 | 2000 | 1200 | 1,200,800 | ||
400 | 800 | 2000 | 800 | 1,203,200 | ||
400 | 400 | 2000 | 400 | 1,205,600 | ||
200 | 1000 | 1000 | 1000 | 1,198,000 | 1,209,600 | 73.70 |
200 | 800 | 1000 | 800 | 1,199,200 | ||
200 | 600 | 1000 | 600 | 1,200,400 | ||
200 | 400 | 1000 | 400 | 1,201,600 | ||
200 | 200 | 1000 | 200 | 1,202,800 | ||
80 | 400 | 400 | 400 | 1,199,200 | 1,203,840 | 73.55 |
80 | 320 | 400 | 320 | 1,199,680 | ||
80 | 240 | 400 | 240 | 1,200,160 | ||
80 | 160 | 400 | 160 | 1,200,640 | ||
80 | 80 | 400 | 80 | 1,201,120 | ||
40 | 200 | 200 | 200 | 1,199,600 | 1,201,920 | 73.55 |
40 | 160 | 200 | 160 | 1,199,840 | ||
40 | 120 | 200 | 120 | 1,200,080 | ||
40 | 80 | 200 | 80 | 1,200,320 | ||
40 | 40 | 200 | 40 | 1,200,560 | ||
30 | 150 | 150 | 150 | 1,199,700 | 1,201,440 | 73.70 |
30 | 120 | 150 | 120 | 1,199,880 | ||
30 | 90 | 150 | 90 | 1,200,060 | ||
30 | 60 | 150 | 60 | 1,200,240 | ||
30 | 30 | 150 | 30 | 1,200,420 | ||
20 | 100 | 100 | 100 | 1,199,800 | 1,200,960 | 73.69 |
20 | 80 | 100 | 80 | 1,199,920 | ||
20 | 60 | 100 | 60 | 1,200,040 | ||
20 | 40 | 100 | 40 | 1,200,160 | ||
20 | 20 | 100 | 20 | 1,200,280 | ||
10 | 50 | 50 | 50 | 1,199,920 | 1,200,480 | 73.68 |
10 | 40 | 50 | 40 | 1,199,960 | ||
10 | 30 | 50 | 30 | 1,200,020 | ||
10 | 20 | 50 | 20 | 1,200,080 | ||
10 | 10 | 50 | 10 | 1,200,140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehdipour, N.; Kiani, S.; Eslami, H. Hydrophobic Ion Pairing of Polymyxin B with Oleic Acid: A Dissipative Particle Dynamics Simulation Study. Pharmaceutics 2025, 17, 574. https://doi.org/10.3390/pharmaceutics17050574
Mehdipour N, Kiani S, Eslami H. Hydrophobic Ion Pairing of Polymyxin B with Oleic Acid: A Dissipative Particle Dynamics Simulation Study. Pharmaceutics. 2025; 17(5):574. https://doi.org/10.3390/pharmaceutics17050574
Chicago/Turabian StyleMehdipour, Nargess, Sima Kiani, and Hossein Eslami. 2025. "Hydrophobic Ion Pairing of Polymyxin B with Oleic Acid: A Dissipative Particle Dynamics Simulation Study" Pharmaceutics 17, no. 5: 574. https://doi.org/10.3390/pharmaceutics17050574
APA StyleMehdipour, N., Kiani, S., & Eslami, H. (2025). Hydrophobic Ion Pairing of Polymyxin B with Oleic Acid: A Dissipative Particle Dynamics Simulation Study. Pharmaceutics, 17(5), 574. https://doi.org/10.3390/pharmaceutics17050574