Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (734)

Search Parameters:
Keywords = kinetic and thermodynamic analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4393 KB  
Article
Recovery of Rare Earth Elements from Calciothermic Reduction Slag by Sulfation Roasting–Water Leaching Method
by Jinqiu Huang, Lizhi Zhang, Wen Yu, Jiangan Chen, Xinwei Li, Qizhi Li, Ting Liao and Xiaoning Mo
Minerals 2025, 15(10), 1025; https://doi.org/10.3390/min15101025 - 28 Sep 2025
Abstract
The calciothermic reduction slag (CRS) generated in heavy rare earth metal production, is rich in rare earth elements (REE) and highly amenable to recovery. In the present study, the CRS was treated with a H2SO4 roasting–water leaching method for the [...] Read more.
The calciothermic reduction slag (CRS) generated in heavy rare earth metal production, is rich in rare earth elements (REE) and highly amenable to recovery. In the present study, the CRS was treated with a H2SO4 roasting–water leaching method for the recovery of REEs. The feasibility of this process was confirmed by thermodynamic analysis. Key roasting and leaching factors governing the leaching efficiency of REE were identified and optimized. The maximum REE extraction efficiency reached 94.65% under the optimal conditions: roasting at 150 °C for 240 min with 15 mL of H2SO4, followed by water leaching at 20 °C for 60 min at a liquid–solid ratio of 15:1. Results of XRD, SEM, and EDS revealed that the REEs in the CRS were transformed into water-soluble rare earth sulfates after roasting. In the leaching process, the rare earth sulfate is efficiently extracted, whereas CaSO4 has low solubility in water. A CaSO4 product with a 98.10% purity was obtained with a calcium recovery of 90.79%, and the removal rate of fluorine in the CRS was 99.99%. The leaching kinetics of the REEs follow a diffusion plus interfacial transfer model with an apparent activation energy of –46.45 kJ·mol−1. This study demonstrates that sulfation roasting–water leaching is a viable route for the comprehensive utilization of CRS. Full article
Show Figures

Graphical abstract

22 pages, 4674 KB  
Article
Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media
by Fiorela Ccoyo Ore, Flor de Liss Meza López, Ana Cecilia Valderrama Negrón and Michael Azael Ludeña Huaman
Chemistry 2025, 7(5), 156; https://doi.org/10.3390/chemistry7050156 - 26 Sep 2025
Abstract
An increase in the production of cationic dyes is expected over the next decade, which will have an impact on health and the environment. This work reports an adsorbent hydrogel composed of poly(acrylic acid) [poly(AA)] and Fe3O4 particles, prepared by [...] Read more.
An increase in the production of cationic dyes is expected over the next decade, which will have an impact on health and the environment. This work reports an adsorbent hydrogel composed of poly(acrylic acid) [poly(AA)] and Fe3O4 particles, prepared by radical polymerization and in situ co-precipitation of Fe3+ and Fe2+. This Fe3O4/poly(AA) composite hydrogel was used to evaluate its potential for removing the cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. Instrumental characterization of the hydrogel was performed by FTIR, XRD, TGA, VSM, and physicochemical analysis (swelling and response to changes in pH). The results show that the incorporation of Fe3O4 particles improves the adsorption capacity of MB and CV dyes to a maximum adsorption of 571 and 321 mg/g, respectively, under the best conditions (pH 6.8, dose 1 g/L, time 24 h). The adsorption data best fit the pseudo-first order (PFO) kinetic model and the Freundlich isothermal model, indicating mass transfer via internal and/or external diffusion and active sites with different adsorption potentials. Moreover, the thermodynamic analysis confirmed that the adsorption process was spontaneous and exothermic, with physisorption as the dominant mechanism. In addition, the Fe3O4/poly(AA) hydrogel is capable of removing 95% of the dyes after ten consecutive adsorption–desorption cycles, demonstrating the potential of hydrogels loaded with Fe3O4 particles for the treatment of wastewater contaminated with dyes. Full article
(This article belongs to the Section Catalysis)
Show Figures

Graphical abstract

21 pages, 3237 KB  
Article
Multi-Scale Modeling of Doped Magnesium Hydride Nanomaterials for Hydrogen Storage Applications
by Younes Chrafih, Rubayyi T. Alqahtani, Abdelhamid Ajbar and Bilal Lamrani
Nanomaterials 2025, 15(19), 1470; https://doi.org/10.3390/nano15191470 - 25 Sep 2025
Abstract
This work presents the development of a novel multi-scale modeling framework for investigating the beneficial impact of Ti-, Zr-, and V-doped magnesium hydride nanomaterials on hydrogen storage performance. The proposed model integrates atomistic-scale simulations based on density functional theory (DFT) with system-level dynamic [...] Read more.
This work presents the development of a novel multi-scale modeling framework for investigating the beneficial impact of Ti-, Zr-, and V-doped magnesium hydride nanomaterials on hydrogen storage performance. The proposed model integrates atomistic-scale simulations based on density functional theory (DFT) with system-level dynamic heat and mass transfer modeling. At the nanoscale, DFT analysis provides key thermodynamic and kinetic parameters, including reaction enthalpy, entropy, and activation energy, which are incorporated into the macroscopic model to predict the hydrogenation behavior of MgH2 nanostructures under realistic thermal boundary conditions. Model validation is performed through comparison with experimental data from the literature, showing excellent agreement. The DFT analysis reveals that doping MgH2 nanomaterials with Ti, V, and Zr modifies their thermodynamic properties, including enthalpy of formation and desorption temperature. At the reactor scale, these modifications lead to enhanced hydrogenation kinetics and improved thermal management. Compared to pristine MgH2, hydrogenation time is reduced by 21%, 40%, and 42% for Ti-, Zr-, and V-doped nanomaterials, respectively, while thermal energy consumption during hydrogenation decreases by ~17% for V doping. These results highlight the strong correlation between nanoscale modifications and macroscopic system performance. The proposed multi-scale model provides a powerful tool for guiding the design and optimization of advanced nanostructured hydrogen storage materials for sustainable energy applications. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Figure 1

14 pages, 1653 KB  
Article
Efficient Adsorptive Removal of Phosphonate Antiscalant HEDP by Mg-Al LDH
by Changjin Guo, Lejiaqi Zhang, Qi Zhang, Congcong Ni, Ning Deng and Xin Huang
Separations 2025, 12(10), 259; https://doi.org/10.3390/separations12100259 - 24 Sep 2025
Viewed by 57
Abstract
Phosphonate-based antiscalants such as 1-hydroxyethane-1,1-diphosphonic acid (HEDP) are extensively employed in industrial water treatment but pose significant environmental challenges due to their persistence and phosphorus content. In this study, Mg-Al layered double hydroxide (Mg-Al LDH) was synthesized and evaluated for its capacity to [...] Read more.
Phosphonate-based antiscalants such as 1-hydroxyethane-1,1-diphosphonic acid (HEDP) are extensively employed in industrial water treatment but pose significant environmental challenges due to their persistence and phosphorus content. In this study, Mg-Al layered double hydroxide (Mg-Al LDH) was synthesized and evaluated for its capacity to adsorb and remove HEDP. Mg-Al LDH showed a pronounced adsorption affinity and an exceptionally high capacity of 276.0 mg g−1 at pH 7.0. The adsorption process was remarkably fast, attaining 97% of equilibrium uptake within 45 min at 298 K. The adsorption data fit well to the Elovich kinetic model and the Langmuir isotherm, indicating that the adsorption process is dominated by chemisorption. Thermodynamic analysis further confirmed its spontaneous nature. Additionally, Mg-Al LDH demonstrated strong tolerance to environmental fluctuations. Characterization techniques, including XRD, FTIR, and zeta potential measurements, confirmed that HEDP adsorption onto Mg-Al LDH primarily occurs via surface complexation with metal sites and electrostatic attraction. These findings demonstrate that Mg-Al LDH is a highly effective adsorbent for removing persistent phosphonate pollutants from wastewater streams. Full article
Show Figures

Figure 1

15 pages, 2291 KB  
Article
Eco-Friendly Dye Removal: Black Cumin Seed Press Cake for Toluidine Blue Adsorption
by Galia Gentscheva, Paunka Vassileva, Christina Tzvetkova, Aleksandar Pashev, Ina Yotkovska, Metodi Mladenov and Tsvetan Vassilev
Separations 2025, 12(10), 258; https://doi.org/10.3390/separations12100258 - 23 Sep 2025
Viewed by 182
Abstract
This research investigates the potential of Seed Press Cake of Nigella sativa (SPCN) as a low-cost, eco-friendly biosorbent for the removal of the cationic dye Toluidine Blue (TB) from aqueous solutions. The physicochemical properties of the material were characterized using Fourier-transform infrared (FTIR) [...] Read more.
This research investigates the potential of Seed Press Cake of Nigella sativa (SPCN) as a low-cost, eco-friendly biosorbent for the removal of the cationic dye Toluidine Blue (TB) from aqueous solutions. The physicochemical properties of the material were characterized using Fourier-transform infrared (FTIR) spectroscopy, nitrogen adsorption–desorption isotherms, and scanning electron microscopy (SEM). Adsorption performance was evaluated under varying conditions, with the process best described by the pseudo-second-order kinetic model and the Langmuir isotherm, indicating monolayer adsorption. The maximum adsorption capacity was determined to be 305 mg·g−1 at 20 °C. Thermodynamic analysis revealed that the adsorption is spontaneous, exothermic, and entropy-driven. FTIR analysis indicated that TB interacts with SPCN primarily via physical interactions, including electrostatic attraction, van der Waals forces, and hydrogen bonding, without strong chemical bonding. These findings demonstrate the high potential of black cumin seed waste as a sustainable and efficient biosorbent for dye removal in wastewater treatment. Full article
(This article belongs to the Special Issue Applications of Adsorbent Materials in Water and Wastewater Treatment)
Show Figures

Graphical abstract

25 pages, 4992 KB  
Article
Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation
by Doaa S. Al-Raimi, Reem M. Alghanmi, Ghalia S. Aljeddani and Ragaa A. Hamouda
Polymers 2025, 17(18), 2555; https://doi.org/10.3390/polym17182555 - 22 Sep 2025
Viewed by 195
Abstract
This work reports a one-step, green synthesis of silver-micro cellulose nanocomposite (Ag@Ce NCs) using Azadirachta indica A. Juss leaf extract to load micro-cellulose isolated from peanut shells with silver nanoparticles, followed by comprehensive physicochemical characterization (FTIR, TEM, EDX-SEM, zeta potential, and XRD). The [...] Read more.
This work reports a one-step, green synthesis of silver-micro cellulose nanocomposite (Ag@Ce NCs) using Azadirachta indica A. Juss leaf extract to load micro-cellulose isolated from peanut shells with silver nanoparticles, followed by comprehensive physicochemical characterization (FTIR, TEM, EDX-SEM, zeta potential, and XRD). The composite has pHPZC ≈ 5.0 and was tested for simultaneous removal of methylene blue (MB) and safranin O (SO) under batch conditions across various pH levels, doses, contact times, initial concentrations, ionic strengths, and temperatures. The high removal efficiencies observed at pH 10 for MB and 6.0 for SO. The adsorption reached the maximum at 45 min before partially declining, indicating reversible binding on saturated surfaces. Isotherm study favored the Langmuir model, with similar affinities (KL ≈ 0.106, and 0.110 L/mg) and monolayer capacities of 17.99 mg/g for MB and 14.90 mg/g for SO, suggesting non-selective competition on uniform sites. Kinetic data fitted the pseudo-second-order model, while thermodynamic analysis indicated mainly exothermic and physisorption interactions. Higher ionic strength reduced removal efficiency (at 1.0 M NaCl, %RE ≈ 33–48%), highlighting salt sensitivity typical of electrostatic attraction. The adsorbent maintained about 90% of its initial performance after five adsorption–desorption cycles in 0.1 M H2SO4, indicating excellent reusability. Overall, Ag@Ce NCs provide an inexpensive, eco-friendly, and reuseable platform for treating binary mixtures of cationic dyes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

26 pages, 3508 KB  
Article
Optimization of Organic Micropollutant Adsorption onto Granular Activated Carbon Using Response Surface Methodology
by Nora Samghouli, Najoua Labjar, Meryem Bensemlali, Hamid Nasrellah and Souad El Hajjaji
Separations 2025, 12(9), 254; https://doi.org/10.3390/separations12090254 - 21 Sep 2025
Viewed by 226
Abstract
Water pollution from pharmaceutical and textile industries urgently requires effective treatment solutions due to environmental and health risks. Effective treatment methods are desperately needed for water pollution from the textile and pharmaceutical industries because of the dangers to the environment and human health. [...] Read more.
Water pollution from pharmaceutical and textile industries urgently requires effective treatment solutions due to environmental and health risks. Effective treatment methods are desperately needed for water pollution from the textile and pharmaceutical industries because of the dangers to the environment and human health. To treat these micropollutants, the optimized granular activated carbon (OGAC) produced from olive fruit stones was utilized as an adsorbent in this study. The central composite design (CCD) of response surface methodology (RSM) was statistically used to optimize the operating factors for rhodamine B (RhB) and thiamphenicol (THI) removal efficiency on the optimized granular activated carbon. This study evaluated the influence of factors such as the solution’s pH, initial RhB and THI concentration, and OGAC dose, along with their interactions to model outcomes and determined optimal adsorption conditions on OGAC. The adsorption kinetic data will be analyzed using the intra-particle diffusion, pseudo-second-order, and pseudo-first-order models. Equilibrium data will be analyzed using the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms. The adsorption thermodynamics of the various systems under investigation will also be examined. Finally, a study on OGAC regeneration has been conducted. Results showed that THI and RhB removal is primarily influenced by pH, initial pollutant concentration, and dose. RSM indicated the optimal adsorption parameters for THI and RhB on OGAC as pH = 5.7, an initial concentration of C0 = 2.5 mg/L, and a dose of 6 g/L. The kinetic study revealed that THI and RhB retention on OGAC generally follows a pseudo-second-order kinetic model, indicating chemisorption as the primary mechanism controlling adsorption. The adsorption isotherm data analysis showed that chemisorption has a significant role in the THI and RhB adsorption process on OGAC. Furthermore, thermodynamic parameters suggest that THI adsorption on OGAC is exothermic, while RhB adsorption is endothermic. Activated carbon regeneration tests demonstrated its cost-effectiveness, and activated carbon was successfully regenerated over three cycles, achieving efficiencies of 62.39% for RhB and 59.6% for THI. These results demonstrate that the studied OGAC is an effective adsorbent for THI and RhB removal. Full article
(This article belongs to the Special Issue Adsorption Methods for Environmental Purification)
Show Figures

Figure 1

16 pages, 3060 KB  
Article
Abnormal Adsorption Characteristics of Copper, Zinc, and Manganese Ions on Natural Diatomite in a Liquid/Solid Heterogeneous System
by Jieying Wang, Qihao He, Mingjing Lei, Jing Han, Jiacheng Wang, Wenmin Li, Ying Xiao, Hongchun Huang, Xindeng Huang and Jian Zhu
Water 2025, 17(18), 2782; https://doi.org/10.3390/w17182782 - 20 Sep 2025
Viewed by 210
Abstract
In order to investigate the adsorption characteristics of Cu2+, Zn2+, and Mn2+ on natural diatomite in liquid/solid systems and to provide reliable theoretical support for the application of these materials, we conducted a series of adsorption studies. The [...] Read more.
In order to investigate the adsorption characteristics of Cu2+, Zn2+, and Mn2+ on natural diatomite in liquid/solid systems and to provide reliable theoretical support for the application of these materials, we conducted a series of adsorption studies. The results revealed a non-monotonic relationship between the adsorption capacity of natural diatomite and ion concentration. The maximum adsorption capacities for Cu2+, Zn2+, and Mn2+ were found to be 3.56, 6.23, and 3.82 mg·g−1, at concentrations of 200, 500, and 300 mg·L−1. Optimal adsorption conditions were determined by investigating environmental factors such as pH and temperature: pH 6, temperature 30 °C, and contact time 40 min. The adsorption kinetics were found to be in accordance with the pseudo-second-order model (R2 > 0.997). Fitting adsorption isotherms for Cu2+, Zn2+, and Mn2+ using various models revealed that the Langmuir (R2 > 0.993), Temkin (R2 > 0.953), and Freundlich (R2 > 0.997) models most accurately describe their adsorption behaviour. Thermodynamic analysis confirmed that adsorption is a spontaneous, endothermic, physical process (ΔG° < 0, ΔH° > 0, ΔS° > 0) and that the overall adsorption rate is limited by micropore adsorption. Consequently, natural diatomaceous earth can serve as an efficient, low-cost adsorbent for removing heavy metals from contaminated water. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 4620 KB  
Article
Ethanol Molecule Engineering Toward Stabilized 1T-MoS2 with Extraordinary Sodium Storage Performance
by Xue’er Bi, Xuelian Wang, Xiaobo Shen, Haijun Yu, Xian Zhang and Jin Bai
Molecules 2025, 30(18), 3801; https://doi.org/10.3390/molecules30183801 - 18 Sep 2025
Viewed by 201
Abstract
Phase molybdenum disulfide (1T-MoS2) holds significant promise as an anode material for sodium-ion batteries (SIBs) due to its metallic conductivity and expanded interlayer distance. However, the practical application of 1T-MoS2 is hindered by its inherent thermodynamic metastability, which poses substantial [...] Read more.
Phase molybdenum disulfide (1T-MoS2) holds significant promise as an anode material for sodium-ion batteries (SIBs) due to its metallic conductivity and expanded interlayer distance. However, the practical application of 1T-MoS2 is hindered by its inherent thermodynamic metastability, which poses substantial challenges for the synthesis of high-purity, long-term stable 1T phase MoS2. Herein, a synergetic ethanol molecule intercalation and electron injection engineering is adopted to induce the formation and stabilization of 1T-MoS2 (E-1T MoS2). The obtained E-1T MoS2 consists of regularly arranged sphere-like ultrasmall few-layered 1T-MoS2 nanosheets with expanded interlayer spacing. The high intrinsic conductivity and enlarged interlayer spacing are greatly favorable for rapid Na+ or e transport. The elaborated nanosheets structure can effectively relieve volume variation during Na+ intercalating/deintercalating processes, shorten transport path of Na+, and enhance diffusion kinetics. Furthermore, a novel sodium reaction mechanism involving the formation of MoS2 nanoclusters during cycling is revealed to produce the higher surface pseudocapacitive contribution to Na+ storage capacity, accelerating Na+ reaction kinetics, as confirmed by the kinetics analysis and ex-situ structural characterizations. Consequently, the E-1T MoS2 electrode exhibits an excellent sodium storage performance. This work provides an important reference for synthesis and reaction mechanism analysis of metastable metal sulfides for advanced SIBs. Full article
Show Figures

Graphical abstract

17 pages, 2405 KB  
Article
Thermodynamic Constraints on the “Hidden” Folding Intermediates
by Timur A. Mukhametzyanov, Mikhail I. Yagofarov and Christoph Schick
Liquids 2025, 5(3), 24; https://doi.org/10.3390/liquids5030024 - 13 Sep 2025
Viewed by 230
Abstract
Experimental data on the folding and unfolding of small globular proteins are often well described assuming a two-state equilibrium process. It means that after careful analysis by a combination of experimental techniques, only folded and unfolded states of the protein are found to [...] Read more.
Experimental data on the folding and unfolding of small globular proteins are often well described assuming a two-state equilibrium process. It means that after careful analysis by a combination of experimental techniques, only folded and unfolded states of the protein are found to be populated under various external conditions with no detectable intermediates. One of the consequences of the two-state behavior is that the equilibrium ratio of the folded to unfolded protein states follows a simple thermodynamic relation, and the enthalpy difference between states can be obtained from the temperature dependence of the equilibrium constant. In this paper, we theoretically investigate the criteria for the two-state equilibrium behavior and discuss the thermodynamic constraint on the properties of the “hidden” folding intermediates. The literature data on the folding mechanism of lysozyme in water and glycerol, which follows a two-state equilibrium behavior but includes kinetic intermediates, is analysed in light of this constraint. Full article
(This article belongs to the Section Chemical Physics of Liquids)
Show Figures

Figure 1

21 pages, 14313 KB  
Article
Experimental Study and Practical Application of Existing Crack Repair in Concrete Dam Tunnels Using MICP and EICP
by Xu Zhang, Yu Zhang, Huiheng Luo, Bo Peng, Yongzhi Zhang, Jiahui Yao and Mateusz Jan Jedrzejko
Buildings 2025, 15(18), 3275; https://doi.org/10.3390/buildings15183275 - 10 Sep 2025
Viewed by 355
Abstract
Cracks in concrete dam tunnels compromise structural safety, watertightness, and durability, while conventional repair materials such as epoxy and cement impose environmental burdens. This study investigates biomineralization methods, namely Microbially Induced Calcium Carbonate Precipitation (MICP) and Enzyme-Induced Carbonate Precipitation (EICP), for repairing fine [...] Read more.
Cracks in concrete dam tunnels compromise structural safety, watertightness, and durability, while conventional repair materials such as epoxy and cement impose environmental burdens. This study investigates biomineralization methods, namely Microbially Induced Calcium Carbonate Precipitation (MICP) and Enzyme-Induced Carbonate Precipitation (EICP), for repairing fine cracks in a large hydropower dam tunnel. Laboratory tests and field applications were conducted by injecting urea–calcium solutions with Sporosarcina pasteurii for MICP and soybean-derived urease for EICP, applied twice daily over three days. Both techniques achieved effective sealing, with precipitation efficiencies of 93.75% for MICP and 84.17% for EICP. XRD analysis revealed that MICP produced a mixture of vaterite and calcite, reflecting biologically influenced crystallization, whereas EICP yielded predominantly calcite, the thermodynamically stable phase. SEM confirmed that MICP generated irregular layered clusters shaped by microbial activity, while EICP formed smoother spherical and more uniform deposits under enzyme-driven conditions. The results demonstrate that MICP provides higher efficiency and localized nucleation control, while EICP offers faster kinetics and more uniform deposition. Both methods present eco-friendly and field-applicable alternatives to conventional repair, combining technical performance with environmental sustainability for hydraulic infrastructure maintenance. Full article
Show Figures

Figure 1

42 pages, 8010 KB  
Article
Predicting Methane Dry Reforming Performance via Multi-Output Machine Learning: A Comparative Study of Regression Models
by Sheila Devasahayam, John Samuel Thella and Manoj K. Mohanty
Energies 2025, 18(18), 4807; https://doi.org/10.3390/en18184807 - 9 Sep 2025
Cited by 1 | Viewed by 798
Abstract
Dry reforming of methane (DRM) offers a sustainable route to convert two major greenhouse gases—CH4 and CO2—into synthesis gas (syngas), enabling low-carbon hydrogen production and carbon utilization. This study applies fifteen machine learning (ML) regression models to simultaneously predict CH [...] Read more.
Dry reforming of methane (DRM) offers a sustainable route to convert two major greenhouse gases—CH4 and CO2—into synthesis gas (syngas), enabling low-carbon hydrogen production and carbon utilization. This study applies fifteen machine learning (ML) regression models to simultaneously predict CH4 conversion, CO2 conversion, H2 yield, and CO yield using a published dataset of 27 experiments with Ni/CaFe2O4-catalyzed DRM. The comparative evaluation covers linear, tree-based, ensemble, and kernel-based algorithms under a unified multi-output learning framework. Feature importance analysis highlights reaction temperature, CH4/CO2 feed ratio, and Ni metal loading as the most influential variables. Predictions from the top-performing models (CatBoost and Random Forest) identify optimal performance windows—feed ratio near 1.0 and temperature between 780–820 °C—consistent with thermodynamic and kinetic expectations. Although no new catalysts are introduced, the study demonstrates how ML can extract actionable parametric insights from small experimental datasets, guiding future DRM experimentation and process optimization for hydrogen-rich syngas production. Full article
Show Figures

Figure 1

22 pages, 3041 KB  
Article
Biosorption of Manganese Using Moringa oleifera Seed Pods: A Sustainable Approach to Water Treatment
by Laura Adriane de Moraes Pinto, Fernanda de Oliveira Tavares, Rosangela Bergamasco, Marcelo Fernandes Vieira and Angélica Marquetotti Salcedo Vieira
Separations 2025, 12(9), 246; https://doi.org/10.3390/separations12090246 - 9 Sep 2025
Viewed by 434
Abstract
Manganese (Mn) has emerged as a contaminant of concern due to its occurrence at concentrations exceeding regulatory limits in various environmental matrices, driven by both anthropogenic activities and natural geochemical processes. Although Mn is an essential micronutrient, excessive exposure poses risks to human [...] Read more.
Manganese (Mn) has emerged as a contaminant of concern due to its occurrence at concentrations exceeding regulatory limits in various environmental matrices, driven by both anthropogenic activities and natural geochemical processes. Although Mn is an essential micronutrient, excessive exposure poses risks to human health and ecosystems. This study investigates the potential application of Moringa oleifera seed pods, an agro-industrial byproduct, as low-cost biosorbents for Mn ion removal from aqueous solutions. Biosorbents were prepared from raw seed pods and chemically modified using NaOH and HCl. Surface characterization was performed using SEM, EDS, and FTIR techniques. Kinetic analysis indicated that Mn ion adsorption by all biosorbents followed a pseudo-second-order model, with equilibrium reached within 30 min. Among the tested materials, the alkali-treated biosorbent exhibited the highest removal efficiency (94%) under optimal conditions (288 K, pH 6.0, 60 min). Equilibrium data fitted both Langmuir and the Freundlich isotherms, with a maximum adsorption capacity of 7.64 mg g−1 for alkali-treated pods and 6.00 mg g−1 for the unmodified pods. Thermodynamic analysis revealed negative Gibbs free energy values, confirming the spontaneous nature of the biosorption process. Enthalpy values below 40 kJ mol−1 (PodNA: 11.88 kJ mol−1; PodAC: 1.08 kJ mol−1; PodBA: 8.94 kJ mol−1) suggest that physisorption is the predominant mechanism. These findings demonstrate the viability of Moringa oleifera pods as effective biosorbents for Mn ion remediation, supporting the valorization of agricultural waste within sustainable water treatment strategies. Full article
Show Figures

Graphical abstract

17 pages, 3299 KB  
Article
Co-Pyrolysis Behavior of Energetic Materials and Pine Sawdust
by Cui Quan, Yufen Wang and Ningbo Gao
Energies 2025, 18(17), 4768; https://doi.org/10.3390/en18174768 - 8 Sep 2025
Viewed by 486
Abstract
Incineration is a widely adopted method for the disposal of waste energetic materials (SP). Nevertheless, this approach is associated with considerable thermal energy loss and significant environmental pollution. To address these limitations, this study proposes a co-pyrolysis process incorporating pine sawdust (SD) with [...] Read more.
Incineration is a widely adopted method for the disposal of waste energetic materials (SP). Nevertheless, this approach is associated with considerable thermal energy loss and significant environmental pollution. To address these limitations, this study proposes a co-pyrolysis process incorporating pine sawdust (SD) with SP. This technique utilizes the exothermic decomposition of energetic substances and the endothermic pyrolysis of biomass. Through this synergistic thermal interaction, the process enables efficient energy recovery and facilitates the resource valorization of SP. The pyrolysis kinetics and thermodynamics of SP, SD, and their blends were investigated. Synchronous thermal analysis examined the co-pyrolysis reaction heat at varying blend ratios, while the temperature’s effects on the gas–liquid–solid product distribution were explored. The results indicate that the apparent activation energy (Ea) required for co-pyrolysis of the SP and SD exhibits an initial increase followed by a decrease in both Stage 1 and Stage 2. Furthermore, the mean apparent activation energy (Eavg) during Stage 1 (FWO: 101.87 kJ/mol; KAS: 94.02 kJ/mol) is lower than that in Stage 2 (FWO: 110.44 kJ/mol; KAS: 100.86 kJ/mol). Co-pyrolysis reaction heat calculations indicated that SD addition significantly mitigates the exothermic intensity, shifts decomposition to higher temperatures (the primary exothermic zone shifted from 180–245 °C to 265–400 °C), and moderates heat release. Elevated temperatures increase the gas yield (CO and H2 are dominant). High temperatures promote aromatic bond cleavage and organic component release; the char’s calorific value correlates positively with the carbon content. Higher co-pyrolysis temperatures increase the nitrogenous compounds in the oil, while the aldehyde content peaks then declines. This work proposes a resource recovery pathway for SP, providing fundamental data for co-pyrolysis valorization or the development of catalytic conversion precursors. Full article
Show Figures

Figure 1

18 pages, 2238 KB  
Article
Discovery of Novel N-[(dimethylamino)methylene]thiourea (TUFA)-Functionalized Lignin for Efficient Cr(VI) Removal from Wastewater
by Haixin Wang, Tao Shen, Yiming Wang, Zongxiang Lv, Yu Liu, Juan Wu, Tai Li, Shui Wang and Yanguo Shang
Toxics 2025, 13(9), 759; https://doi.org/10.3390/toxics13090759 - 7 Sep 2025
Viewed by 417
Abstract
This study developed a novel adsorbent for Cr (VI) removal from wastewater by grafting N-[(dimethylamino)methylene]thiourea (TUFA) onto lignin. The resulting TUFA-functionalized lignin adsorbent AL was comprehensively characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and X-ray [...] Read more.
This study developed a novel adsorbent for Cr (VI) removal from wastewater by grafting N-[(dimethylamino)methylene]thiourea (TUFA) onto lignin. The resulting TUFA-functionalized lignin adsorbent AL was comprehensively characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS). Batch adsorption experiments systematically evaluated the influence of solution pH, contact time, temperature, initial Cr (VI) concentration, and adsorbent dosage. AL exhibited high adsorption capacity (593.9 mg g−1 at 40 °C), attributed to its abundant nitrogen and sulfur-containing functional groups. Kinetic analysis revealed that the adsorption process followed pseudo-second-order kinetics. Equilibrium isotherm data were best described by the Langmuir model, indicating predominant monolayer chemisorption. Thermodynamic parameters demonstrated that Cr (VI) adsorption onto AL is spontaneous, endothermic, and entropy-driven. The adsorption mechanism involves membrane diffusion and intra-particle diffusion processes. This work successfully synthesized a stable, effective, and low-cost adsorbent (AL) using an amine agent incorporating both nitrogen and sulfur functional groups, offering a promising approach for treating Cr (VI)-contaminated wastewater. Full article
Show Figures

Graphical abstract

Back to TopTop