Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Poly(AA) Hydrogel
2.3. Preparation of Fe3O4/Poly (AA) Hydrogel Composite
2.4. Characterization of Hydrogels
2.5. Determination of the Point of Zero Charge (pHpzc)
2.6. Swelling Study and pH-Response
2.7. Adsorption Studies of MB and CV Dye
2.8. Adsorption–Desorption Experiments
3. Results
3.1. Characterization
3.2. Swelling Assessment
3.3. Adsorption Determination
3.3.1. pH Assessment
3.3.2. Dose Assessment
3.3.3. Time Assessment
3.3.4. Concentration Assessment
3.3.5. Temperature Assessment
3.4. Reuse Determination
3.5. Mechanism Adsorption
3.6. Comparison with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouras, H.D.; Isik, Z.; Arikan, E.B.; Yeddou, A.R.; Bouras, N.; Chergui, A.; Favier, L.; Amrane, A.; Dizge, N. Biosorption Characteristics of Methylene Blue Dye by Two Fungal Biomasses. Int. J. Environ. Stud. 2021, 78, 365–381. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Abdul Hameed, M.M.; Al-Aizari, F.A.; Thamer, B.M. Synthesis of a Novel Clay/Polyacrylic Acid-Tannic Acid Hydrogel Composite for Efficient Removal of Crystal Violet Dye with Low Swelling and High Adsorption Performance. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133130. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- Ihaddaden, S.; Aberkane, D.; Boukerroui, A.; Robert, D. Removal of Methylene Blue (Basic Dye) by Coagulation-Flocculation with Biomaterials (Bentonite and Opuntia Ficus Indica). J. Water Process Eng. 2022, 49, 102952. [Google Scholar] [CrossRef]
- El-Mas, S.M.; Hassaan, M.A.; El-Subruiti, G.M.; Eltaweil, A.S.; El Nemr, A. Box-Behnken Design Optimization of 2D Ti3C2Tx MXene Nanosheets as a Microwave-Absorbing Catalyst for Methylene Blue Dye Degradation. Chem. Eng. J. 2024, 500, 156969. [Google Scholar] [CrossRef]
- Rashid Ahmed, H.; Kayani, K.F. A Comparative Review of Fenton-like Processes and Advanced Oxidation Processes for Methylene Blue Degradation. Inorg. Chem. Commun. 2024, 170, 113467. [Google Scholar] [CrossRef]
- Sutar, S.; Jadhav, J. A Comparative Assessment of the Methylene Blue Dye Adsorption Capacity of Natural Biochar versus Chemically Altered Activated Carbons. Bioresour. Technol. Rep. 2024, 25, 101726. [Google Scholar] [CrossRef]
- Badawi, A.K.; Emam, H.E.; Hamad, H.N.; Idrus, S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers 2022, 14, 783. [Google Scholar] [CrossRef]
- Visan, A.I.; Negut, I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025, 11, 72. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, M.; Nimesh, D.; Gupta, R. Exploring the Potential of Hydrogel Adsorbents for Antibiotic Removal from Water: A Review. J. Mol. Liq. 2025, 426, 127383. [Google Scholar] [CrossRef]
- Panda, S.K.; Aggarwal, I.; Kumar, H.; Prasad, L.; Kumar, A.; Sharma, A.; Vo, D.V.N.; Van Thuan, D.; Mishra, V. Magnetite Nanoparticles as Sorbents for Dye Removal: A Review. Environ. Chem. Lett. 2021, 19, 2487–2525. [Google Scholar] [CrossRef]
- Safarzadeh, H.; Peighambardoust, S.J.; Mousavi, S.H.; Foroutan, R.; Mohammadi, R.; Peighambardoust, S.H. Adsorption Ability Evaluation of the Poly(Methacrylic Acid-Co-Acrylamide)/Cloisite 30B Nanocomposite Hydrogel as a New Adsorbent for Cationic Dye Removal. Env. Res. 2022, 212, 113349. [Google Scholar] [CrossRef] [PubMed]
- Hingrajiya, R.D.; Patel, M.P. Fe3O4 Modified Chitosan Based Co-Polymeric Magnetic Composite Hydrogel: Synthesis, Characterization and Evaluation for the Removal of Methylene Blue from Aqueous Solutions. Int. J. Biol. Macromol. 2023, 244, 125251. [Google Scholar] [CrossRef]
- Noori, M.; Tahmasebpoor, M.; Foroutan, R. Enhanced Adsorption Capacity of Low-Cost Magnetic Clinoptilolite Powders/Beads for the Effective Removal of Methylene Blue: Adsorption and Desorption Studies. Mater. Chem. Phys. 2022, 278, 125655. [Google Scholar] [CrossRef]
- Oyarce, E.; Pizarro, G.D.C.; Oyarzún, D.P.; Martin-Trasanco, R.; Sánchez, J. Adsorption of Methylene Blue in Aqueous Solution Using Hydrogels Based on 2-Hydroxyethyl Methacrylate Copolymerized with Itaconic Acid or Acrylic Acid. Mater. Today Commun. 2020, 25, 101324. [Google Scholar] [CrossRef]
- Huaman, M.A.L.; Manco, A.E.Q.; de Liss Meza López, F.; Carrasco, R.L.A.; Chacón, A.M.L.; Khan, S. Removal of Methylene Blue Dye from Water with Fe3O4/Poly(HEMA-Co-AMPS) Magnetic Hydrogels. Results Chem. 2024, 7, 101454. [Google Scholar] [CrossRef]
- Ccoyo Ore, F.; María Lechuga Chacon, A.; Leonor Aranzábal Carrasco, R.; de Liss Meza López, F.; Cecilia Valderrama Negrón, A.; Azael Ludeña Huaman, M. Preparation of Nanocomposite Hydrogel Based on Fe3O4-TMSPM/Poly(HEMA-PEG6MA-IA) for the Removal of Methylene Blue Dye from Aqueous Solution. Results Chem. 2024, 12, 101888. [Google Scholar] [CrossRef]
- Zhang, W.; Lan, Y.; Ma, M.; Chai, S.; Zuo, Q.; Kim, K.H.; Gao, Y. A Novel Chitosan–Vanadium-Titanium-Magnetite Composite as a Superior Adsorbent for Organic Dyes in Wastewater. Env. Int. 2020, 142, 105798. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, Y.; Cui, Y.; Dai, R.; Shan, Z.; Chen, H. Fabrication of Starch-Based High-Performance Adsorptive Hydrogels Using a Novel Effective Pretreatment and Adsorption for Cationic Methylene Blue Dye: Behavior and Mechanism. Chem. Eng. J. 2021, 405, 126953. [Google Scholar] [CrossRef]
- Bui, T.Q.; Cao, V.D.; Wang, W.; Kjøniksen, A.L. Recovered Energy from Salinity Gradients Utilizing Various Poly(Acrylic Acid)-Based Hydrogels. Polymers 2021, 13, 645. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Xu, Z.; Liu, Y.; Guo, X.; Ou, M.; Xu, X. Highly Efficient Removal of Uranium (vi) from Wastewater by Polyacrylic Acid Hydrogels. RSC Adv. 2017, 7, 6278–6287. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, H.; Lan, W.; Miao, F.; Qin, M.; Wei, Y.; Hu, Y.; Liang, Z.; Huang, D. Fabrication of Adhesive Hydrogels Based on Poly (Acrylic Acid) and Modified Hyaluronic Acid. J. Mech. Behav. Biomed. Mater. 2022, 126, 105044. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Yadav, S.; Mehta, S.K.; Dan, A. In Situ Incorporation of Magnetic Nanoparticles within the Carboxymethyl Cellulose Hydrogels Enables Dye Removal. J. Macromol. Sci. Part. A 2022, 59, 271–284. [Google Scholar] [CrossRef]
- Ludeña, M.A.; Meza, F.d.L.; Huamán, R.I.; Lechuga, A.M.; Valderrama, A.C. Preparation and Characterization of Fe3O4/Poly(HEMA-Co-IA) Magnetic Hydrogels for Removal of Methylene Blue from Aqueous Solution. Gels 2023, 10, 15. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, D.; Wang, S.; Qi, S.; Zuo, H. Structure, Property Optimization, and Adsorption Properties of N,N′-Methylenebisacrylamide Cross-Linked Polyacrylic Acid Hydrogels under Different Curing Conditions. Polymers 2024, 16, 1990. [Google Scholar] [CrossRef]
- Ganguly, S.; Ray, D.; Das, P.; Maity, P.P.; Mondal, S.; Aswal, V.K.; Dhara, S.; Das, N.C. Mechanically Robust Dual Responsive Water Dispersible-Graphene Based Conductive Elastomeric Hydrogel for Tunable Pulsatile Drug Release. Ultrason. Sonochemistry 2018, 42, 212–227. [Google Scholar] [CrossRef]
- Cha, H.R.; Ramesh Babu, V.; Krishna Rao, K.S.V.; Kim, Y.H.; Mei, S.; Joo, W.H.; Lee, Y.I. Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-Co-Acryloyl Phenylalanine) and Their Antimicrobial Studies. Bull. Korean Chem. Soc. 2012, 33, 3191–3195. [Google Scholar] [CrossRef]
- Huaman, M.A.L.; Vega-Chacón, J.; Quispe, R.I.H.; Negrón, A.C.V. Synthesis and Swelling Behaviors of Poly(2-Hydroxyethyl Methacrylate-Co-Itaconic Acid) and Poly(2-Hydroxyethyl Methacrylate-Co-Sodium Itaconate) Hydrogels as Potential Drug Carriers. Results Chem. 2023, 5, 100917. [Google Scholar] [CrossRef]
- Ozay, O.; Ekici, S.; Baran, Y.; Aktas, N.; Sahiner, N. Removal of Toxic Metal Ions with Magnetic Hydrogels. Water Res. 2009, 43, 4403–4411. [Google Scholar] [CrossRef]
- Paulino, A.T.; Belfiore, L.A.; Kubota, L.T.; Muniz, E.C.; Almeida, V.C.; Tambourgi, E.B. Effect of Magnetite on the Adsorption Behavior of Pb(II), Cd(II), and Cu(II) in Chitosan-Based Hydrogels. Desalination 2011, 275, 187–196. [Google Scholar] [CrossRef]
- Ahmadi, A.; Foroutan, R.; Esmaeili, H.; Peighambardoust, S.J.; Hemmati, S.; Ramavandi, B. Montmorillonite Clay/Starch/CoFe2O4 Nanocomposite as a Superior Functional Material for Uptake of Cationic Dye Molecules from Water and Wastewater. Mater. Chem. Phys. 2022, 284, 126088. [Google Scholar] [CrossRef]
- Goswami, K.; Ulaganambi, M.; Sukumaran, L.K.; Tetala, K.K.R. Synthesis and Application of Iron Based Metal Organic Framework for Efficient Adsorption of Azo Dyes from Textile Industry Samples. Adv. Sample Prep. 2023, 7, 100080. [Google Scholar] [CrossRef]
- Li, K.; Yan, J.; Zhou, Y.; Li, B.; Li, X. β-Cyclodextrin and Magnetic Graphene Oxide Modified Porous Composite Hydrogel as a Superabsorbent for Adsorption Cationic Dyes: Adsorption Performance, Adsorption Mechanism and Hydrogel Column Process Investigates. J. Mol. Liq. 2021, 335, 116291. [Google Scholar] [CrossRef]
- Faizan, S.; Bakhtawara; Ali Shah, L. Facile Fabrication of Hydrogels for Removal of Crystal Violet from Wastewater. Int. J. Environ. Sci. Technol. 2022, 19, 4815–4826. [Google Scholar] [CrossRef]
- Hu, X.S.; Liang, R.; Sun, G. Super-Adsorbent Hydrogel for Removal of Methylene Blue Dye from Aqueous Solution. J. Mater. Chem. A 2018, 6, 17612–17624. [Google Scholar] [CrossRef]
- Foroutan, R.; Mohammadi, R.; Ahmadi, A.; Bikhabar, G.; Babaei, F.; Ramavandi, B. Impact of ZnO and Fe3O4 Magnetic Nanoscale on the Methyl Violet 2B Removal Efficiency of the Activated Carbon Oak Wood. Chemosphere 2022, 286, 131632. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Peighambardoust, S.H.; Ramavandi, B. Development of New Magnetic Adsorbent of Walnut Shell Ash/Starch/Fe3O4 for Effective Copper Ions Removal: Treatment of Groundwater Samples. Chemosphere 2022, 296, 133978. [Google Scholar] [CrossRef] [PubMed]
- Dibaji, Y.; Zilouei, H.; Bazarganipour, M. Removal of MTBE from Aqueous Solution Using Reduced Graphene Oxide/Fe3O4 Nanocomposite. Env. Nanotechnol. Monit. Manag. 2023, 20, 100842. [Google Scholar] [CrossRef]
- Pashaei-Fakhri, S.; Peighambardoust, S.J.; Foroutan, R.; Arsalani, N.; Ramavandi, B. Crystal Violet Dye Sorption over Acrylamide/Graphene Oxide Bonded Sodium Alginate Nanocomposite Hydrogel. Chemosphere 2021, 270, 129419. [Google Scholar] [CrossRef]
- Alsohaimi, I.H.; Alhumaimess, M.S.; Alqadami, A.A.; Hassan, H.M.A.; Chen, Q.; Alamri, M.S.; Alanzi, M.M.J.; Alraddadi, T.S. Chitosan-Carboxylic Acid Grafted Multifunctional Magnetic Nanocomposite as a Novel Adsorbent for Effective Removal of Methylene Blue Dye from Aqueous Environment. Chem. Eng. Sci. 2023, 280, 119017. [Google Scholar] [CrossRef]
- Hegazy, S.; Abdelwahab, N.A.; Ramadan, A.M.; Mohamed, S.K. Magnetic Fe3O4-Grafted Cellulose/Graphene Oxide Nanocomposite for Methylene Blue Removal from Aqueous Solutions: Synthesis and Characterization. Next Mater. 2024, 3, 100064. [Google Scholar] [CrossRef]
- Ilgin, P.; Onder, A.; Kıvanç, M.R.; Ozay, H.; Ozay, O. Adsorption of Methylene Blue from Aqueous Solution Using Poly(2-Acrylamido-2-Methyl-1-Propanesulfonic Acid-Co-2-Hydroxyethyl Methacrylate) Hydrogel Crosslinked by Activated Carbon. J. Macromol. Sci. Part A 2023, 60, 135–149. [Google Scholar] [CrossRef]
- Somsesta, N.; Sricharoenchaikul, V.; Aht-Ong, D. Adsorption Removal of Methylene Blue onto Activated Carbon/Cellulose Biocomposite Films: Equilibrium and Kinetic Studies. Mater. Chem. Phys. 2020, 240, 122221. [Google Scholar] [CrossRef]
- Alver, E.; Metin, A.Ü.; Brouers, F. Methylene Blue Adsorption on Magnetic Alginate/Rice Husk Bio-Composite. Int. J. Biol. Macromol. 2020, 154, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, M.; Ji, M.; Zhang, L.; Qin, Z.; Zhang, Y.; Gao, L.; Jiao, T. Magnetic graphene oxide-containing chitosan-sodium alginate hydrogel beads for highly efficient and sustainable removal of cationic dyes. Int. J. Biol. Macromol. 2021, 193, 2221–2231. [Google Scholar] [CrossRef]
- Kurdtabar, M.; Akhlaghi, F.; Marandi, G.B.; Nakhjiri, M.T.; Zargazi, M.H. Magnetic, Biocompatible and Biodegradable Carboxymethyl Cellulose-Based Hydrogel for Cationic Dye Adsorption. ChemistrySelect 2024, 9, e202303594. [Google Scholar] [CrossRef]
Models | Parameters | Fe3O4/Poly(AA) Adsorbent | |
---|---|---|---|
MB | CV | ||
Pseudo-first order | Q(exp) (mg/g) | 99.5 | 94.5 |
Q(cal) (mg/g) | 98.15 | 97.01 | |
k1 (1/h) | 0.526 | 0.390 | |
R2 | 0.97 | 0.90 | |
Adj R2 | 0.97 | 0.89 | |
Pseudo-second order | Q(exp) (mg/g) | 99.5 | 94.5 |
Q(cal) (mg/g) | 111.78 | 116.04 | |
k2 (g/mg·h) | 0.007 | 0.0038 | |
R2 | 0.95 | 0.83 | |
Adj R2 | 0.94 | 0.81 | |
Elovich | α (mg/mg·h) | 328.34 | 102.499 |
β (g/mg) | 0.053 | 0.039 | |
R2 | 0.82 | 0.74 | |
Adj R2 | 0.8 | 0.71 | |
Intra-particle | C1 (mg/g) | −3.42 | −76.43 |
KIP,1 (mg/g·h0.5) | 47.15 | 88.39 | |
R2 | 0.9515 | 0.9857 | |
Adj R2 | 0.9030 | 0.9714 | |
C2 (mg/g) | 39.31 | 62.82 | |
KIP,2 (mg/g·h0.5) | 21.593 | 10.25 | |
R2 | 0.9348 | 0.9493 | |
Adj R2 | 0.9185 | 0.9391 | |
C3 (mg/g) | 97.54 | 92.97 | |
KIP,3 (mg/g·h0.5) | 0.22 | 0.10 | |
R2 | 0.9884 | 0.9382 | |
Adj R2 | 0.9826 | 0.8765 |
Models | Parameters | Fe3O4/Poly(AA) Adsorbent | |
---|---|---|---|
MB | CV | ||
Langmuir | Qmax (mg/g) | 571 | 321 |
KL (L/mg) | 0.543 | 0.17 | |
R2 | 0.91 | 0.88 | |
Adj R2 | 0.8900 | 0.86 | |
RL | 0.0073–0.0355 | 0.02–0.11 | |
Freundlich | KF (mg/g) | 199 | 55.06 |
1/n | 0.714 | 0.58 | |
R2 | 0.94 | 0.93 | |
Adj R2 | 0.93 | 0.92 | |
Temkin | KT (L/g) | 12.72 | 2.24 |
bT (J/mol) | 32.847 | 39.18 | |
R2 | 0.8500 | 0.87 | |
Adj R2 | 0.830 | 0.85 | |
Dubinin–Radushkevich (D–R) | E (kJ/mol) | 1.12 | 0.403 |
Qmax (mg/g) | 228.08 | 178 | |
β (mol2/kJ2) | 0.40 | 3.08 | |
R2 | 0.81 | 0.73 | |
Adj R2 | 0.78 | 0.69 |
Dye | T °C | ΔG° (KJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol·K) |
---|---|---|---|---|
MB | 25 | −14.318 | −45.862 | −105.796 |
35 | −13.261 | |||
45 | −12.203 | |||
CV | 25 | −8.3387 | −15.948 | −25.521 |
35 | −8.0835 | |||
45 | −7.8283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ccoyo Ore, F.; López, F.d.L.M.; Valderrama Negrón, A.C.; Ludeña Huaman, M.A. Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media. Chemistry 2025, 7, 156. https://doi.org/10.3390/chemistry7050156
Ccoyo Ore F, López FdLM, Valderrama Negrón AC, Ludeña Huaman MA. Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media. Chemistry. 2025; 7(5):156. https://doi.org/10.3390/chemistry7050156
Chicago/Turabian StyleCcoyo Ore, Fiorela, Flor de Liss Meza López, Ana Cecilia Valderrama Negrón, and Michael Azael Ludeña Huaman. 2025. "Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media" Chemistry 7, no. 5: 156. https://doi.org/10.3390/chemistry7050156
APA StyleCcoyo Ore, F., López, F. d. L. M., Valderrama Negrón, A. C., & Ludeña Huaman, M. A. (2025). Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media. Chemistry, 7(5), 156. https://doi.org/10.3390/chemistry7050156