Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (202)

Search Parameters:
Keywords = kinematic inspiration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4680 KiB  
Article
Gecko-Inspired Robots for Underground Cable Inspection: Improved YOLOv8 for Automated Defect Detection
by Dehai Guan and Barmak Honarvar Shakibaei Asli
Electronics 2025, 14(15), 3142; https://doi.org/10.3390/electronics14153142 - 6 Aug 2025
Abstract
To enable intelligent inspection of underground cable systems, this study presents a gecko-inspired quadruped robot that integrates multi-degree-of-freedom motion with a deep learning-based visual detection system. Inspired by the gecko’s flexible spine and leg structure, the robot exhibits strong adaptability to confined and [...] Read more.
To enable intelligent inspection of underground cable systems, this study presents a gecko-inspired quadruped robot that integrates multi-degree-of-freedom motion with a deep learning-based visual detection system. Inspired by the gecko’s flexible spine and leg structure, the robot exhibits strong adaptability to confined and uneven tunnel environments. The motion system is modeled using the standard Denavit–Hartenberg (D–H) method, with both forward and inverse kinematics derived analytically. A zero-impact foot trajectory is employed to achieve stable gait planning. For defect detection, the robot incorporates a binocular vision module and an enhanced YOLOv8 framework. The key improvements include a lightweight feature fusion structure (SlimNeck), a multidimensional coordinate attention (MCA) mechanism, and a refined MPDIoU loss function, which collectively improve the detection accuracy of subtle defects such as insulation aging, micro-cracks, and surface contamination. A variety of data augmentation techniques—such as brightness adjustment, Gaussian noise, and occlusion simulation—are applied to enhance robustness under complex lighting and environmental conditions. The experimental results validate the effectiveness of the proposed system in both kinematic control and vision-based defect recognition. This work demonstrates the potential of integrating bio-inspired mechanical design with intelligent visual perception to support practical, efficient cable inspection in confined underground environments. Full article
(This article belongs to the Special Issue Robotics: From Technologies to Applications)
21 pages, 6561 KiB  
Article
Design and Experimental Study of a Flapping–Twist Coupled Biomimetic Flapping-Wing Mechanism
by Rui Meng, Bifeng Song, Jianlin Xuan and Yugang Zhang
Drones 2025, 9(8), 535; https://doi.org/10.3390/drones9080535 - 30 Jul 2025
Viewed by 251
Abstract
Medium and large-sized birds exhibit remarkable agility and maneuverability in flight, with their flapping motion encompassing degrees of freedom in flapping, twist, and swing, which enables them to adapt effectively to harsh ecological environments. This study proposes a flapping–twist coupled driving mechanism for [...] Read more.
Medium and large-sized birds exhibit remarkable agility and maneuverability in flight, with their flapping motion encompassing degrees of freedom in flapping, twist, and swing, which enables them to adapt effectively to harsh ecological environments. This study proposes a flapping–twist coupled driving mechanism for large-scale flapping-wing aircraft by mimicking the motion patterns of birds. The mechanism generates simultaneous twist and flapping motions based on the phase difference of double cranks, allowing for the adjustment of twist amplitude through modifications in crank radius and phase difference. The objective of this work is to optimize the lift and thrust of the flapping wing to enhance its flight performance. To achieve this, we first derived the kinematic model of the mechanism and conducted motion simulations. To mitigate the effects of the flapping wing’s flexibility, a rigid flapping wing was designed and manufactured. Through wind tunnel experiments, the flapping wing system was tested. The results demonstrated that, compared to the non-twist condition, there exists an optimal twist amplitude that slightly increases the lift of the flapping wing while significantly enhancing the thrust. It is hoped that this study will provide guidance for the design of multi-degree-of-freedom flapping wing mechanisms. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

17 pages, 2319 KiB  
Article
Coordinating the Redundant DOFs of Humanoid Robots
by Pietro Morasso
Actuators 2025, 14(7), 354; https://doi.org/10.3390/act14070354 - 18 Jul 2025
Viewed by 154
Abstract
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with [...] Read more.
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs of such agents. This approach is based on the ideomotor theory of action, combined with the passive motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic inversion, while producing coordinated motor patterns structured according to the typical features of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate the computational loop parallel modules that exploit the redundancy of the system for satisfying geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the humanoid robot to improve the energetic efficiency of the generated actions. Full article
Show Figures

Figure 1

22 pages, 6051 KiB  
Article
CPG-Based Control of an Octopod Biomimetic Machine Lobster for Mining Applications: Design and Implementation in Challenging Underground Environments
by Jianwei Zhao, Haokun Zhang, Mingsong Bao, Boxiang Yin, Yiteng Zhang and Zhen Jiang
Sensors 2025, 25(14), 4331; https://doi.org/10.3390/s25144331 - 11 Jul 2025
Viewed by 315
Abstract
Central pattern generators (CPGs) have been extensively researched and validated as a well-established methodology for bionic control, particularly within the field of legged robotics. However, investigations concerning octopod robots remain relatively sparse. This study presents the design of an octopod robotic system inspired [...] Read more.
Central pattern generators (CPGs) have been extensively researched and validated as a well-established methodology for bionic control, particularly within the field of legged robotics. However, investigations concerning octopod robots remain relatively sparse. This study presents the design of an octopod robotic system inspired by the biological characteristics of lobsters. The machine lobster utilizes remote sensing technology to execute designated tasks in subterranean and mining environments, with its motion regulated by CPGs, accompanied by a comprehensive simulation analysis. The research commenced with the modeling of a biomimetic lobster robot, which features a three-degree-of-freedom leg structure and torso, interconnected by shape memory alloys (SMAs) that serve as muscle actuators. Mathematically, both forward and inverse kinematics were formulated for the robot’s legs, and a 24-degree-of-freedom (DOF) gait pattern was designed and validated through MATLAB 2020a simulations. Subsequently, a multi-layer mesh CPG neural network model was developed utilizing the Kuramoto model, which incorporated frustration effects as the rhythm generator. The control model was constructed and evaluated in Simulink, while dynamic simulations were conducted using Adams 2022 software. The findings demonstrate the feasibility, robustness, and efficiency of the proposed CPG network in facilitating the forward locomotion of the lobster robot, thereby broadening the range of control methodologies applicable to octopod biomimetic robots. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

23 pages, 3268 KiB  
Article
Symmetry-Informed Optimization and Verification of Loader Working Device Based on Improved Genetic Algorithm
by Zhikui Dong, Lingchao Meng, Ding Song, Zixian Wang, Peng Gao, Long Ma, Yongkuan Sun, Huibin Liu and Menglong Zhang
Symmetry 2025, 17(7), 1084; https://doi.org/10.3390/sym17071084 - 7 Jul 2025
Viewed by 250
Abstract
The translation of motion lift, as an important performance metric of a reversing six-link loader working device, is influenced by multiple factors, such as the mechanical structure, system components, and operational experience. To ensure that the loader’s motion lift performance is optimized, this [...] Read more.
The translation of motion lift, as an important performance metric of a reversing six-link loader working device, is influenced by multiple factors, such as the mechanical structure, system components, and operational experience. To ensure that the loader’s motion lift performance is optimized, this paper takes the fork trajectory and the horizontal angle between the bucket cylinder and the ground as the main optimization objectives. Kinematic modeling and multi-objective optimization are conducted to reduce the influence of external factors on the motion lift process. Firstly, a parametric model of the reversing six-link mechanism is established based on its geometric and symmetric characteristics, and the expressions for the fork’s motion trajectory and the cylinder–ground angle are derived. Then, an optimization model is constructed with the aim of minimizing both the translational error during fork lifting and the horizontal angle of the bucket cylinder. An improved multi-objective genetic algorithm is employed for the global search and optimization. Inspired by the principle of symmetry, the algorithm incorporates a structured search strategy that enhances convergence efficiency and solution balance. A multi-criteria decision function is further applied to identify the optimal solution from the Pareto front. Finally, a real-vehicle experiment validates the optimization results. The findings confirm that the proposed method significantly improves the translational performance of the fork and effectively controls the horizontal angle of the cylinder while also enhancing the driver’s visibility and coordination of the entire system. These results provide a theoretical and engineering basis for the symmetry-informed multi-objective performance optimization of loader working devices. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

33 pages, 5024 KiB  
Article
An Enhanced Dynamic Model of a Spatial Parallel Mechanism Receiving Direct Constraints from the Base at Two Point-Contact Higher Kinematic Pairs
by Chen Cheng, Xiaojing Yuan and Yenan Li
Biomimetics 2025, 10(7), 437; https://doi.org/10.3390/biomimetics10070437 - 3 Jul 2025
Viewed by 350
Abstract
In this paper, a biologically congruent parallel mechanism (PM) inspired by the masticatory system of human beings has been proposed to recreate complete chewing behaviours in three-dimensional space. The mechanism is featured by direct constraints from the base (DCFB) to its end effector [...] Read more.
In this paper, a biologically congruent parallel mechanism (PM) inspired by the masticatory system of human beings has been proposed to recreate complete chewing behaviours in three-dimensional space. The mechanism is featured by direct constraints from the base (DCFB) to its end effector at two higher kinematic pairs (HKPs), which greatly raise its topological complexity. Meanwhile, friction effects occur at HKPs and actuators, causing wear and then reducing motion accuracy. Regarding these, an inverse dynamic model that can raise the computational efficiency and the modelling fidelity is proposed, being prepared to be applied to realise accurate real-time motion and/or force control. In it, Euler parameters are employed to express the motions of the constrained end effector, and Newton–Euler’s law is applied, which can conveniently incorporate friction effects at both HKPs and actuators into the dynamic model. Numerical results show that the time consumption of the model using Euler parameters is only approximately 23% of that of the model using Euler angles, and friction effects significantly increase the model’s nonlinearity. Further, from the comparison between the models of the target PM and its counterpart free of DCFB, these constraints sharply raise the modelling complexity in terms of the transformation between Euler parameters and Euler angles in the end effector and the computational cost of inverse dynamics. Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
Show Figures

Figure 1

16 pages, 2144 KiB  
Article
Neural Correlates of Flight Acceleration in Pigeons: Gamma-Band Activity and Local Functional Network Dynamics in the AId Region
by Suchen Li, Zhuo Tang, Mengmeng Li, Lifang Yang and Zhigang Shang
Animals 2025, 15(13), 1851; https://doi.org/10.3390/ani15131851 - 23 Jun 2025
Viewed by 342
Abstract
Flight behavior in pigeons is governed by intricate neural mechanisms that regulate movement patterns and flight dynamics. Among various kinematic parameters, flight acceleration provides critical information for the brain to modulate movement intensity, speed, and direction. However, the neural representation mechanisms underlying flight [...] Read more.
Flight behavior in pigeons is governed by intricate neural mechanisms that regulate movement patterns and flight dynamics. Among various kinematic parameters, flight acceleration provides critical information for the brain to modulate movement intensity, speed, and direction. However, the neural representation mechanisms underlying flight acceleration remain insufficiently understood. To address this, we conducted outdoor free-flight experiments in homing pigeons, during which GPS data, flight posture, and eight-channel local field potentials (LFPs) were synchronously recorded. Our analysis revealed that gamma-band activity in the dorsal intermediate arcopallium (AId) region was more prominent during behaviorally demanding phases of flight. In parallel, local functional network analysis showed that the clustering coefficient of gamma-band activity in the AId followed a nonlinear, U-shaped relationship with flight acceleration—exhibiting the strongest and most widespread connectivity during deceleration, moderate connectivity during acceleration, and the weakest network coupling during steady flight. This pattern likely reflects the increased neural demands associated with flight phase transitions, where greater cognitive and sensorimotor integration is required. Furthermore, using LFP signals from five distinct frequency bands as input, machine learning models were developed to decode flight acceleration, further confirming the role of gamma-band dynamics in motor regulation during natural flight. This study provides the first evidence that gamma-band activity in the avian AId region encodes flight acceleration, offering new insights into the neural representation of motor states in natural flight and implications for bio-inspired flight control systems. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

28 pages, 6847 KiB  
Article
Bionic Energy-Efficient Inverse Kinematics Method Based on Neural Networks for the Legs of Hydraulic Legged Robots
by Jinbo She, Xiang Feng, Bao Xu, Linyang Chen, Yuan Wang, Ning Liu, Wenpeng Zou, Guoliang Ma, Bin Yu and Kaixian Ba
Biomimetics 2025, 10(6), 403; https://doi.org/10.3390/biomimetics10060403 - 14 Jun 2025
Viewed by 431
Abstract
Hydraulic legged robots, with advantages such as high load capacity and power density, have become a strategic driving force in advancing intelligent mobile platform technologies. However, their high energy consumption significantly limits long-duration endurance and efficient operational performance. In this paper, inspired by [...] Read more.
Hydraulic legged robots, with advantages such as high load capacity and power density, have become a strategic driving force in advancing intelligent mobile platform technologies. However, their high energy consumption significantly limits long-duration endurance and efficient operational performance. In this paper, inspired by the excellent autonomous energy-efficient consciousness of mammals endowed by natural evolution, a bionic energy-efficient inverse kinematics method based on neural networks (EIKNN) is proposed for the energy-efficient motion planning of hydraulic legged robots with redundant degrees of freedom (RDOFs). Firstly, the dynamic programming (DP) algorithm is used to solve the optimal joint configuration with minimum energy loss as the goal, and the training data set is generated. Subsequently, the inverse kinematic model of the leg with minimum energy loss is learned based on neural network (NN) simulation of the autonomous energy-efficient consciousness endowed to mammals by natural evolution. Finally, extensive comparative experiments validate the effectiveness and superiority of the proposed method. This method not only significantly reduces energy dissipation in hydraulic legged robots but also lays a crucial foundation for advancing hydraulic legged robot technology toward high efficiency, environmental sustainability, and long-term developmental viability. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

27 pages, 3222 KiB  
Article
DNN-Augmented Kinematically Decoupled Three-DoF Origami Parallel Robot for High-Precision Heave and Tilt Control
by Gaokun Shi, Hassen Nigatu, Zhijian Wang and Yongsheng Huang
Actuators 2025, 14(6), 291; https://doi.org/10.3390/act14060291 - 13 Jun 2025
Viewed by 346
Abstract
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic [...] Read more.
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic motion. The elimination of parasitic motion is critical, allowing the use of this device in applications requiring high precision. The robot’s key kinematic features include a parasitic motion-free workspace, large orientational capability, compactness, decoupled motion, simplicity in manufacturing and control, mechanically pivoted rotation of the moving platform, and scalability. These characteristics make the robot particularly well-suited for micromanipulation tasks in both manufacturing and medical applications. In manufacturing, it can enable high-precision operations such as micro-assembly, optical fiber alignment, and semiconductor packaging. In medicine, it can support delicate procedures such as microsurgery and cell injection, where sub-micron accuracy, high stability, and precise motion decoupling are critical requirements. The use of nearly identical limbs simplifies the architecture, facilitating easier design, manufacture, and control. The kinematics of the robot is analyzed using reciprocal screw theory for an analytic constraint-embedded Jacobian. To further enhance operational accuracy and robustness, particularly in the presence of uncertainties or disturbances, a deep neural network (DNN)-based state estimation method is integrated, providing accurate forward kinematic predictions. The construction of the robot utilizes origami-inspired limbs and joints, enhancing miniaturization, manufacturing simplicity, and foldability. Although capable of being scaled up or further miniaturized, its current size is 66 mm × 68 mm × 100 mm. The robot’s moving platform is theoretically and experimentally proven to be free of parasitic motion and possesses a large orientation capability. Its unique features are demonstrated, and its potential for high-precision applications is thoroughly discussed. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

17 pages, 10685 KiB  
Article
Development of a Cuttlefish-Inspired Amphibious Robot with Wave-Motion Propulsion and Rigid–Flexible Coupling
by Yichao Gao, Felix Pancheri, Tim C. Lueth and Yilun Sun
Biomimetics 2025, 10(6), 396; https://doi.org/10.3390/biomimetics10060396 - 12 Jun 2025
Viewed by 590
Abstract
Amphibious robots require efficient locomotion strategies to enable smooth transitions between terrestrial and aquatic environments. Drawing inspiration from the undulatory movements of aquatic organisms such as cuttlefish and knifefish, this study introduces a bio-inspired propulsion system that emulates natural wave-based locomotion to improve [...] Read more.
Amphibious robots require efficient locomotion strategies to enable smooth transitions between terrestrial and aquatic environments. Drawing inspiration from the undulatory movements of aquatic organisms such as cuttlefish and knifefish, this study introduces a bio-inspired propulsion system that emulates natural wave-based locomotion to improve adaptability and propulsion efficiency. A novel mechanism combining crank–rocker and sliding components is proposed to generate wave-like motions in robotic legs and fins, supporting both land crawling and aquatic paddling. By adopting a rigid–flexible coupling design, the system achieves a balance between structural integrity and motion flexibility. The effectiveness of the mechanism is systematically investigated through kinematic modeling, animation-based simulation, and experimental validation. The developed kinematic model captures the principles of wave propagation via the Crank–Slider–Rocker structure, offering insights into motion efficiency and thrust generation. Animation simulations are employed to visually validate the locomotion patterns and assess coordination across the mechanism. A functional prototype is fabricated and tested in both terrestrial and aquatic settings, demonstrating successful amphibious locomotion. The findings confirm the feasibility of the proposed design and underscore its potential in biomimetic robotics and amphibious exploration. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics: Design, Fabrication and Applications)
Show Figures

Figure 1

23 pages, 29181 KiB  
Article
Design and Implementation of a Bionic Marine Iguana Robot for Military Micro-Sensor Deployment
by Gang Chen, Xin Tang, Baohang Guo, Guoqi Li, Zhengrui Wu, Weizhe Huang, Yidong Xu, Ming Lu, Jianfei Liang and Zhen Liu
Machines 2025, 13(6), 505; https://doi.org/10.3390/machines13060505 - 9 Jun 2025
Viewed by 1194
Abstract
Underwater sensor deployment in military applications requires high precision, yet existing robotic solutions often lack the maneuverability and adaptability required for complex aquatic environments. To address this gap, this study proposes a bio-inspired underwater robot modeled after the marine iguana, which exhibits effective [...] Read more.
Underwater sensor deployment in military applications requires high precision, yet existing robotic solutions often lack the maneuverability and adaptability required for complex aquatic environments. To address this gap, this study proposes a bio-inspired underwater robot modeled after the marine iguana, which exhibits effective crawling and swimming capabilities. The research aims to develop a compact, multi-functional robot capable of precise sensor deployment and environmental detection. The methodology integrates a biomimetic mechanical design—featuring leg-based crawling, tail-driven swimming, a deployable head mechanism, and buoyancy control—with a multi-sensor control system for navigation and data acquisition. Gait and trajectory planning are optimized using kinematic modeling for both terrestrial and aquatic locomotion. Experimental results demonstrate the robot’s ability to perform accurate underwater sensor deployment, validating its potential for military applications. This work provides a novel approach to underwater deployment robotics, bridging the gap between biological inspiration and functional engineering. Full article
(This article belongs to the Special Issue Design and Application of Bionic Robots)
Show Figures

Figure 1

23 pages, 742 KiB  
Article
Task Scheduling of Multiple Humanoid Robot Manipulators by Using Symbolic Control
by Mete Özbaltan, Nihan Özbaltan, Hazal Su Bıçakcı Yeşilkaya, Murat Demir, Cihat Şeker and Merve Yıldırım
Biomimetics 2025, 10(6), 346; https://doi.org/10.3390/biomimetics10060346 - 24 May 2025
Viewed by 613
Abstract
Task scheduling for multiple humanoid robot manipulators in industrial and collaborative settings remains a significant challenge due to the complexity of coordination, resource sharing, and real-time decision-making. In this study, we propose a framework for modeling task scheduling for multiple humanoid robot manipulators [...] Read more.
Task scheduling for multiple humanoid robot manipulators in industrial and collaborative settings remains a significant challenge due to the complexity of coordination, resource sharing, and real-time decision-making. In this study, we propose a framework for modeling task scheduling for multiple humanoid robot manipulators by using the symbolic discrete controller synthesis technique. We encode the task scheduling problem as discrete events using parallel synchronous dataflow equations and apply our synthesis algorithms to manage the task scheduling of multiple humanoid robots via the resulting controller. The control objectives encompass the fundamental behaviors of the system, strict rules, and mutual exclusions over shared resources, categorized as the safety property, whereas the optimization objectives are directed toward maximizing the throughput of robot-processed products with optimal efficiency. The humanoid robots considered in this study consist of two pairs of six-degree-of-freedom (6-DOF) robot manipulators, and the inverse kinematics problem of the 6-DOF arms is addressed using metaheuristic approaches inspired by biomimetic principles. Our approach is experimentally validated, and the results demonstrate high accuracy and performance compared to other approaches reported in the literature. Our approach achieved an average efficiency improvement of 40% in 70-robot systems, 20% in 30-robot systems, and 10% in 10-robot systems in terms of production throughput compared to systems without a controller. Full article
Show Figures

Figure 1

31 pages, 15164 KiB  
Article
Coordinated Locomotion Control for a Quadruped Robot with Bionic Parallel Torso
by Yaguang Zhu, Ao Cao, Zhimin He, Mengnan Zhou and Ruyue Li
Biomimetics 2025, 10(5), 335; https://doi.org/10.3390/biomimetics10050335 - 20 May 2025
Viewed by 593
Abstract
This paper presents the design and control of a quadruped robot equipped with a six-degree-of-freedom (6-DOF) bionic active torso based on a parallel mechanism. Inspired by the compliant and flexible torsos of quadrupedal mammals, the proposed torso structure enhances locomotion performance [...] Read more.
This paper presents the design and control of a quadruped robot equipped with a six-degree-of-freedom (6-DOF) bionic active torso based on a parallel mechanism. Inspired by the compliant and flexible torsos of quadrupedal mammals, the proposed torso structure enhances locomotion performance by enabling coordinated motion between the torso and legs. A complete kinematic model of the bionic torso and the whole body of the quadruped robot is developed. To address the variation in inertial properties caused by torso motion, a model predictive control (MPC) strategy with a variable center of mass (CoM) is proposed for integrated whole-body motion control. Comparative simulations under trot gait are conducted between rigid-torso and active-torso configurations. Results show that the active torso significantly improves gait flexibility, postural stability, and locomotion efficiency. This study provides a new approach to enhancing biomimetic locomotion in quadruped robots through active torso-leg coordination. Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
Show Figures

Figure 1

19 pages, 26314 KiB  
Article
Effects of Wing Kinematics on Aerodynamics Performance for a Pigeon-Inspired Flapping Wing
by Tao Wu, Kai Wang, Qiang Jia and Jie Ding
Biomimetics 2025, 10(5), 328; https://doi.org/10.3390/biomimetics10050328 - 17 May 2025
Viewed by 622
Abstract
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of [...] Read more.
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of the real flapping motion. The purpose of this article was to study the effects of wing kinematics on aerodynamic performance for a pigeon-inspired flapping wing. In this article, the dynamic geometric shape of a flapping wing was reconstructed based on data of the pigeon wing profile. The 3D wingbeat kinematics of a flying pigeon was extracted from the motion trajectories of the wingtip and the wrist during cruise flight. Then, we used a hybrid RANS/LES method to study the effects of wing kinematics on the aerodynamic performance and flow patterns of the pigeon-inspired flapping wing. First, we investigated the effects of dynamic spanwise twisting on the lift and thrust performance of the flapping wing. Numerical results show that the twisting motion weakens the leading-edge vortex (LEV) on the upper surface of the wing during the downstroke by reducing the effective angle of attack, thereby significantly reducing the time-averaged lift and power consumption. Then, we further studied the effects of the 3D sweeping motion on the aerodynamic performance of the flapping wing. Backward sweeping reduces the wing area and weakens the LEV on the lower surface of the wing, which increases the lift and reduces the aerodynamic power consumption significantly during the upstroke, leading to a high lift efficiency. These conclusions are significant for improving the aerodynamic performance of bionic flapping-wing micro air vehicles. Full article
Show Figures

Figure 1

26 pages, 2703 KiB  
Article
Design of Actuators for a Humanoid Robot with Anthropomorphic Characteristics and Running Capability
by Chathura Semasinghe, Drake Taylor and Siavash Rezazadeh
Actuators 2025, 14(5), 243; https://doi.org/10.3390/act14050243 - 13 May 2025
Viewed by 3321
Abstract
In this paper, we present the details of the actuator design for our humanoid robot, Mithra. Mithra has been designed to match an average adult human in terms of kinematic and kinetic characteristics. This poses various challenges in actuator design that we have [...] Read more.
In this paper, we present the details of the actuator design for our humanoid robot, Mithra. Mithra has been designed to match an average adult human in terms of kinematic and kinetic characteristics. This poses various challenges in actuator design that we have addressed in this work. First, we discuss how the high-level design can help in achieving anthropomorphic traits. Next, the detailed design is verified and finalized using stress and fatigue analyses. Further, we conduct experiments to validate the actuator’s bandwidth and backdrivability, and discuss the outcomes in comparison with human characteristics. The results show that Mithra’s actuators have sufficient structural strength to withstand high running forces, and at the same time, provide human-like traits and capabilities to accommodate human-inspired control paradigms. Full article
Show Figures

Figure 1

Back to TopTop