Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = k-Nearest Neighbours (kNN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1885 KiB  
Article
Applying Machine Learning to DEEC Protocol: Improved Cluster Formation in Wireless Sensor Networks
by Abdulla Juwaied and Lidia Jackowska-Strumillo
Network 2025, 5(3), 26; https://doi.org/10.3390/network5030026 - 24 Jul 2025
Viewed by 197
Abstract
Wireless Sensor Networks (WSNs) are specialised ad hoc networks composed of small, low-power, and often battery-operated sensor nodes with various sensors and wireless communication capabilities. These nodes collaborate to monitor and collect data from the physical environment, transmitting it to a central location [...] Read more.
Wireless Sensor Networks (WSNs) are specialised ad hoc networks composed of small, low-power, and often battery-operated sensor nodes with various sensors and wireless communication capabilities. These nodes collaborate to monitor and collect data from the physical environment, transmitting it to a central location or sink node for further processing and analysis. This study proposes two machine learning-based enhancements to the DEEC protocol for Wireless Sensor Networks (WSNs) by integrating the K-Nearest Neighbours (K-NN) and K-Means (K-M) machine learning (ML) algorithms. The Distributed Energy-Efficient Clustering with K-NN (DEEC-KNN) and with K-Means (DEEC-KM) approaches dynamically optimize cluster head selection to improve energy efficiency and network lifetime. These methods are validated through extensive simulations, demonstrating up to 110% improvement in packet delivery and significant gains in network stability compared with the original DEEC protocol. The adaptive clustering enabled by K-NN and K-Means is particularly effective for large-scale and dynamic WSN deployments where node failures and topology changes are frequent. These findings suggest that integrating ML with clustering protocols is a promising direction for future WSN design. Full article
Show Figures

Figure 1

20 pages, 12036 KiB  
Article
Spatiotemporal Mapping of Grazing Livestock Behaviours Using Machine Learning Algorithms
by Guo Ye and Rui Yu
Sensors 2025, 25(15), 4561; https://doi.org/10.3390/s25154561 - 23 Jul 2025
Viewed by 303
Abstract
Grassland ecosystems are fundamentally shaped by the complex behaviours of livestock. While most previous studies have monitored grassland health using vegetation indices, such as NDVI and LAI, fewer have investigated livestock behaviours as direct drivers of grassland degradation. In particular, the spatial clustering [...] Read more.
Grassland ecosystems are fundamentally shaped by the complex behaviours of livestock. While most previous studies have monitored grassland health using vegetation indices, such as NDVI and LAI, fewer have investigated livestock behaviours as direct drivers of grassland degradation. In particular, the spatial clustering and temporal concentration patterns of livestock behaviours are critical yet underexplored factors that significantly influence grassland ecosystems. This study investigated the spatiotemporal patterns of livestock behaviours under different grazing management systems and grazing-intensity gradients (GIGs) in Wenchang, China, using high-resolution GPS tracking data and machine learning classification. the K-Nearest Neighbours (KNN) model combined with SMOTE-ENN resampling achieved the highest accuracy, with F1-scores of 0.960 and 0.956 for continuous and rotational grazing datasets. The results showed that the continuous grazing system failed to mitigate grazing pressure when grazing intensity was reduced, as the spatial clustering of livestock behaviours did not decrease accordingly, and the frequency of temporal peaks in grazing behaviour even showed an increasing trend. Conversely, the rotational grazing system responded more effectively, as reduced GIGs led to more evenly distributed temporal activity patterns and lower spatial clustering. These findings highlight the importance of incorporating livestock behavioural patterns into grassland monitoring and offer data-driven insights for sustainable grazing management. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

17 pages, 469 KiB  
Article
Similarity-Based Decision Support for Improving Agricultural Practices and Plant Growth
by Iulia Baraian, Honoriu Valean, Oliviu Matei and Rudolf Erdei
Appl. Sci. 2025, 15(12), 6936; https://doi.org/10.3390/app15126936 - 19 Jun 2025
Cited by 1 | Viewed by 340
Abstract
Similarity-based decision support systems have become essential tools for providing tailored and adaptive guidance across various domains. In agriculture, where managing extensive land areas poses significant challenges, the primary objective is often to maximize harvest yields while reducing costs, preserving crop health, and [...] Read more.
Similarity-based decision support systems have become essential tools for providing tailored and adaptive guidance across various domains. In agriculture, where managing extensive land areas poses significant challenges, the primary objective is often to maximize harvest yields while reducing costs, preserving crop health, and minimizing the use of chemical adjuvants. The application of similarity-based analysis enables the development of personalized farming recommendations, refined through shared data and insights, which contribute to improved plant growth and enhanced annual harvest outcomes. This study employs two algorithms, K-Nearest Neighbour (KNN) and Approximate Nearest Neighbour (ANN) using Locality Sensitive Hashing (LSH) to evaluate their effectiveness in agricultural decision-making. The results demonstrate that, under comparable farming conditions, KNN yields more accurate recommendations due to its reliance on exact matches, whereas ANN provides a more scalable solution well-suited for large datasets. Both approaches support improved agricultural decisions and promote more sustainable farming strategies. While KNN is more effective for smaller datasets, ANN proves advantageous in real-time applications that demand fast response times. The implementation of these algorithms represents a significant advancement toward data-driven and efficient agricultural practices. Full article
(This article belongs to the Special Issue Biosystems Engineering: Latest Advances and Prospects)
Show Figures

Figure 1

39 pages, 4295 KiB  
Article
Evaluation of Smart Building Integration into a Smart City by Applying Machine Learning Techniques
by Mustafa Muthanna Najm Shahrabani and Rasa Apanaviciene
Buildings 2025, 15(12), 2031; https://doi.org/10.3390/buildings15122031 - 12 Jun 2025
Cited by 1 | Viewed by 634
Abstract
Smart buildings’ role is crucial for advancing smart cities’ performance in achieving environmental sustainability, resiliency, and efficiency. The integration barriers continue due to technology, infrastructure, and operations misalignments and are escalated due to inadequate assessment frameworks and classification systems. The existing literature on [...] Read more.
Smart buildings’ role is crucial for advancing smart cities’ performance in achieving environmental sustainability, resiliency, and efficiency. The integration barriers continue due to technology, infrastructure, and operations misalignments and are escalated due to inadequate assessment frameworks and classification systems. The existing literature on assessment methodologies reveals diverging evaluation frameworks for smart buildings and smart cities, non-uniform metrics and taxonomies that hinder scalability, and the low use of machine learning in predictive integration modelling. To fill these gaps, this paper introduces a novel machine learning model to predict smart building integration into smart city levels and assess their impact on smart city performance by leveraging data from 147 smart buildings in 13 regions. Six optimised machine learning algorithms (K-Nearest Neighbours (KNNs), Support Vector Regression (SVR), Random Forest, Adaptive Boosting (AdaBoost), Decision Tree (DT), and Extra Tree (ET)) were employed to train the model and perform feature engineering and permutation importance analysis. The SVR-trained model substantially outperformed other models, achieving an R-squared of 0.81, Root Mean Square Error (RMSE) of 0.33 and Mean Absolute Error (MAE) of 0.27, enabling precise integration prediction. Case studies revealed that low-integration buildings gain significant benefits from progressive target upgrades, whilst those buildings that have already implemented some integrated systems tend to experience diminishing marginal benefits with further, potentially disruptive upgrades. The conclusion of this study states that by utilising the developed machine learning model, owners and policymakers are capable of significantly improving the integration of smart buildings to build better, more sustainable, and resilient urban environments. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 775 KiB  
Article
A Multi-Objective Bio-Inspired Optimization for Voice Disorders Detection: A Comparative Study
by Maria Habib, Victor Vicente-Palacios and Pablo García-Sánchez
Algorithms 2025, 18(6), 338; https://doi.org/10.3390/a18060338 - 4 Jun 2025
Viewed by 454
Abstract
As early detection of voice disorders can significantly improve patients’ situation, the automated detection using Artificial Intelligence techniques can be crucial in various applications in this scope. This paper introduces a multi-objective bio-inspired, AI-based optimization approach for the automated detection of voice disorders. [...] Read more.
As early detection of voice disorders can significantly improve patients’ situation, the automated detection using Artificial Intelligence techniques can be crucial in various applications in this scope. This paper introduces a multi-objective bio-inspired, AI-based optimization approach for the automated detection of voice disorders. Different multi-objective evolutionary algorithms (the Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA-II), and the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)) have been compared to detect voice disorders by optimizing two conflicting objectives: error rate and the number of features. The optimization problem has been formulated as a wrapper-based algorithm for feature selection and multi-objective optimization relying on four machine learning algorithms: K-Nearest Neighbour algorithm (KNN), Random Forest (RF), Multilayer Perceptron (MLP), and Support Vector Machine (SVM). Three publicly available voice disorder datasets have been utilized, and results have been compared based on Inverted-Generational Distance, Hypervolume, spacing, and spread. The results reveal that NSGA-II with the MLP algorithm attained the best convergence and performance. Further, the conformal prediction is leveraged to quantify uncertainty in the feature-selected models, ensuring statistically valid confidence intervals for predictions. Full article
Show Figures

Graphical abstract

19 pages, 2079 KiB  
Article
Evaluation of Feature Selection and Regression Models to Predict Biomass of Sweet Basil by Using Drone and Satellite Imagery
by Luana Centorame, Nicolò La Porta, Michela Papandrea, Adriano Mancini and Ester Foppa Pedretti
Appl. Sci. 2025, 15(11), 6227; https://doi.org/10.3390/app15116227 - 31 May 2025
Viewed by 938
Abstract
The integration of precision agriculture technologies, such as remote sensing through drones and satellites, has significantly enhanced real-time crop monitoring. This study is among the first to combine multispectral data from both a drone equipped with Altum-PT camera and PlanetScope satellite imagery to [...] Read more.
The integration of precision agriculture technologies, such as remote sensing through drones and satellites, has significantly enhanced real-time crop monitoring. This study is among the first to combine multispectral data from both a drone equipped with Altum-PT camera and PlanetScope satellite imagery to predict fresh biomass in sweet basil grown in an open field, demonstrating the added value of integrating different spatial scales. A dataset of 40 sampling points was built by combining remote sensing data with field measurements, and seven vegetation indices were calculated for each point. Feature selection was performed using three different methods (F-score, Recursive Feature Elimination, and model-based selection), and the most informative features were then processed through Principal Component Analysis. Eight regression models were trained and evaluated using leave-one-out cross-validation. The best-performing models were Random Forest (R2 = 0.96 in training, R2 = 0.65 in testing) and k-Nearest Neighbours (R2 = 0.74 in training, R2 = 0.94 in testing), with kNN demonstrating superior generalization capability on unseen data. These findings highlight the potential of combining drone and satellite imagery for modelling basil agronomic traits, offering valuable insights for optimizing crop management strategies. Full article
(This article belongs to the Special Issue Applications of Image Processing Technology in Agriculture)
Show Figures

Figure 1

21 pages, 14355 KiB  
Article
Methodology for Feature Selection of Time Domain Vibration Signals for Assessing the Failure Severity Levels in Gearboxes
by Antonio Pérez-Torres, René-Vinicio Sánchez and Susana Barceló-Cerdá
Appl. Sci. 2025, 15(11), 5813; https://doi.org/10.3390/app15115813 - 22 May 2025
Viewed by 491
Abstract
Early failure detection in gear systems reduces unplanned downtime and associated maintenance costs in rotating machinery. Although numerous indicators can be extracted from vibration signals, selecting the most relevant ones remains challenging. This study proposes a methodology for selecting time-domain features to classify [...] Read more.
Early failure detection in gear systems reduces unplanned downtime and associated maintenance costs in rotating machinery. Although numerous indicators can be extracted from vibration signals, selecting the most relevant ones remains challenging. This study proposes a methodology for selecting time-domain features to classify fault severity levels in spur gearboxes. Vibration signals are acquired using six accelerometers and processed to extract 64 statistical condition indicators (CIs). The most informative subset of CIs is identified and selected through a wrapper-based selection approach and artificial intelligence tools. The selected features are then evaluated based on the classification accuracy and the area under the curve (AUC) in receiver operating characteristic (ROC) achieved using Random Forest (RF) and K-nearest neighbours (K-NN) models, with performance exceeding 98%. Additionally, the effect of sensor position and inclination on signal quality and classification performance is analysed using factorial analysis of variance (ANOVA) and multiple comparison tests. The results confirm the robustness of the selected CIs and the minimal influence of sensor placement variability, supporting the practical applicability of the proposed approach in industrial settings. The methodology offers a structured framework for selecting condition indicators in vibration signals, experimentally validated using multiple sensors and fault severity levels, and it is both automated and straightforward to implement. Full article
Show Figures

Figure 1

9 pages, 1886 KiB  
Proceeding Paper
Modeling the Quantitative Structure–Activity Relationships of 1,2,4-Triazolo[1,5-a]pyrimidin-7-amine Analogs in the Inhibition of Plasmodium falciparum
by Inalegwu S. Apeh, Thecla O. Ayoka, Charles O. Nnadi and Wilfred O. Obonga
Eng. Proc. 2025, 87(1), 52; https://doi.org/10.3390/engproc2025087052 - 21 Apr 2025
Viewed by 720
Abstract
Triazolopyrimidine and its analogs represent an important scaffold in medicinal chemistry research. The heterocycle of 1,2,4-triazolo[1,5-a] pyrimidine (1,2,4-TAP) serves as a bioisostere candidate for purine scaffolds, N-acetylated lysine, and carboxylic acid. This study modeled the quantitative structure–activity relationship (QSAR) of 125 congeners of [...] Read more.
Triazolopyrimidine and its analogs represent an important scaffold in medicinal chemistry research. The heterocycle of 1,2,4-triazolo[1,5-a] pyrimidine (1,2,4-TAP) serves as a bioisostere candidate for purine scaffolds, N-acetylated lysine, and carboxylic acid. This study modeled the quantitative structure–activity relationship (QSAR) of 125 congeners of 1,2,4-TAP from the ChEMBL database in the inhibition of Plasmodium falciparum using six machine learning algorithms. The most significant features among 306 molecular descriptors, including one molecular outlier, were selected using recursive feature elimination. A ratio of 20% was used to split the x- and y-matrices into 99 training and 24 test compounds. The regression models were built using machine learning sci-kit-learn algorithms (multiple linear regression (MLR), k-nearest neighbours (kNN), support vector regressor (SVR), random forest regressor (RFR) RIDGE regression, and LASSO). Model performance was evaluated using the coefficient of determination (R2), mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE), p-values, F-statistic, and variance inflation factor (VIF). Five significant variables were considered in constructing the model (p < 0.05) with the following regression equation: pIC50 = 5.90 − 0.71npr1 − 1.52pmi3 + 0.88slogP − 0.57vsurf-CW2 + 1.11vsurf-W2. On five-fold cross-validation, three algorithms—kNN (MSE = 0.46, R2 = 0.54, MAE = 0.54, RMSE = 0.68), SVR (MSE = 0.33, R2 = 0.67, MAE = 0.46, RMSE = 0.57), and RFR (MSE = 0.43, R2 = 0.58, MAE = 0.51, RMSE = 0.66)—showed strong robustness, efficiency, and reliability in predicting the pIC50 of 1,2,4-triazolo[1,5-a]pyrimidine. The models provided useful data on the functionalities necessary for developing more potent 1,2,4-TAP analogs as anti-malarial agents. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

26 pages, 5018 KiB  
Article
Data-Driven Pavement Performance: Machine Learning-Based Predictive Models
by Mohammad Fahad and Nurullah Bektas
Appl. Sci. 2025, 15(7), 3889; https://doi.org/10.3390/app15073889 - 2 Apr 2025
Cited by 2 | Viewed by 1260
Abstract
Traditional methods for predicting pavement performance rely on complex finite element modelling and empirical equations, which are computationally expensive and time-consuming. However, machine learning models offer a time-efficient solution for predicting pavement performance. This study utilizes a range of machine learning algorithms, including [...] Read more.
Traditional methods for predicting pavement performance rely on complex finite element modelling and empirical equations, which are computationally expensive and time-consuming. However, machine learning models offer a time-efficient solution for predicting pavement performance. This study utilizes a range of machine learning algorithms, including linear regression, decision tree, random forest, gradient boosting, K-nearest neighbour, Support Vector Regression, LightGBM and CatBoost, to analyse their effectiveness in predicting pavement performance. The input variables include axle load, truck load, traffic speed, lateral wander modes, asphalt layer thickness, traffic lane width and tire types, while the output variables consist of number of passes to fatigue damage, number of passes to rutting damage, fatigue life reduction in number of years and rut depth at 1.3 million passes. A k-fold cross-validation technique was employed to optimize hyperparameters. Results indicate that LightGBM and CatBoost outperform other models, achieving the lowest mean squared error and highest R² values. In contrast, linear regression and KNN demonstrated the lowest performance, with MSE values up to 188% higher than CatBoost. This study concludes that integrating machine learning with finite element analysis provides further improvements in pavement performance predictions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

33 pages, 25375 KiB  
Article
Digital Twin Based on CFD Modelling for Analysis of Two-Phase Flows During Pipeline Filling–Emptying Procedures
by Duban A. Paternina-Verona, Oscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, Manuel Saba and Helena M. Ramos
Appl. Sci. 2025, 15(5), 2643; https://doi.org/10.3390/app15052643 - 28 Feb 2025
Cited by 3 | Viewed by 2265
Abstract
Pipeline filling and emptying are critical hydraulic procedures involving transient two-phase air–water interactions, which can cause pressure surges and structural risks. Traditional Digital Twin models rely on one-dimensional (1D) approaches, which cannot capture air–water interactions. This study integrates Computational Fluid Dynamics (CFD) models [...] Read more.
Pipeline filling and emptying are critical hydraulic procedures involving transient two-phase air–water interactions, which can cause pressure surges and structural risks. Traditional Digital Twin models rely on one-dimensional (1D) approaches, which cannot capture air–water interactions. This study integrates Computational Fluid Dynamics (CFD) models into a Digital Twin framework for improved predictive analysis. A CFD-based Digital Twin is developed and validated using real-time pressure measurements, incorporating 2D and 3D CFD models, mesh sensitivity analysis, and calibration procedures. Key contributions include a CFD-driven Digital Twin for real-time monitoring and machine learning (ML) techniques to optimise pressure surges. ML models trained with experimental and CFD data reduce reliance on computationally expensive CFD simulations. Among the 31 algorithms tested, decision trees, efficient linear models, and ensemble classifiers achieved 100% accuracy for filling processes, while k-Nearest Neighbours (KNN) provided 97.2% accuracy for emptying processes. These models effectively predict hazardous pressure peaks and vacuum conditions, confirming their reliability in optimising pipeline operations while significantly reducing computational time. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

12 pages, 634 KiB  
Article
Post-COVID-19 Condition Prediction in Hospitalised Cancer Patients: A Machine Learning-Based Approach
by Sara Mahvash Mohammadi, Mikhail Rumyantsev, Elina Abdeeva, Dina Baimukhambetova, Polina Bobkova, Yasmin El-Taravi, Maria Pikuza, Anastasia Trefilova, Aleksandr Zolotarev, Margarita Andreeva, Ekaterina Iakovleva, Nikolay Bulanov, Sergey Avdeev, Ekaterina Pazukhina, Alexey Zaikin, Valentina Kapustina, Victor Fomin, Andrey A. Svistunov, Peter Timashev, Nina Avdeenko, Yulia Ivanova, Lyudmila Fedorova, Elena Kondrikova, Irina Turina, Petr Glybochko, Denis Butnaru, Oleg Blyuss, Daniel Munblit and Sechenov StopCOVID Research Teamadd Show full author list remove Hide full author list
Cancers 2025, 17(4), 687; https://doi.org/10.3390/cancers17040687 - 18 Feb 2025
Viewed by 1185
Abstract
Background: The COVID-19 pandemic has led to widespread long-term complications, known as post-COVID conditions (PCC), particularly affecting vulnerable populations such as cancer patients. This study aims to predict the incidence of PCC in hospitalised cancer patients using the data from a longitudinal cohort [...] Read more.
Background: The COVID-19 pandemic has led to widespread long-term complications, known as post-COVID conditions (PCC), particularly affecting vulnerable populations such as cancer patients. This study aims to predict the incidence of PCC in hospitalised cancer patients using the data from a longitudinal cohort study conducted in four major university hospitals in Moscow, Russia. Methods: Clinical data have been collected during the acute phase and follow-ups at 6 and 12 months post-discharge. A total of 49 clinical features were evaluated, and machine learning classifiers including logistic regression, random forest, support vector machine (SVM), k-nearest neighbours (KNN), and neural network were applied to predict PCC. Results: Model performance was assessed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. KNN demonstrated the highest predictive performance, with an AUC of 0.80, sensitivity of 0.73, and specificity of 0.69. Severe COVID-19 and pre-existing comorbidities were significant predictors of PCC. Conclusions: Machine learning models, particularly KNN, showed some promise in predicting PCC in cancer patients, offering the potential for early intervention and personalised care. These findings emphasise the importance of long-term monitoring for cancer patients recovering from COVID-19 to mitigate PCC impact. Full article
(This article belongs to the Collection The Impact of COVID-19 Infection in Cancer)
Show Figures

Figure 1

29 pages, 5837 KiB  
Article
Enhancing Clustering Efficiency in Heterogeneous Wireless Sensor Network Protocols Using the K-Nearest Neighbours Algorithm
by Abdulla Juwaied, Lidia Jackowska-Strumillo and Artur Sierszeń
Sensors 2025, 25(4), 1029; https://doi.org/10.3390/s25041029 - 9 Feb 2025
Cited by 3 | Viewed by 1432
Abstract
Wireless Sensor Networks are formed by tiny, self-contained, battery-powered computers with radio links that can sense their surroundings for events of interest and store and process the sensed data. Sensor nodes wirelessly communicate with each other to relay information to a central base [...] Read more.
Wireless Sensor Networks are formed by tiny, self-contained, battery-powered computers with radio links that can sense their surroundings for events of interest and store and process the sensed data. Sensor nodes wirelessly communicate with each other to relay information to a central base station. Energy consumption is the most critical parameter in Wireless Sensor Networks (WSNs). Network lifespan is directly influenced by the energy consumption of the sensor nodes. All sensors in the network send and receive data from the base station (BS) using different routing protocols and algorithms. These routing protocols use two main types of clustering: hierarchical clustering and flat clustering. Consequently, effective clustering within Wireless Sensor Network (WSN) protocols is essential for establishing secure connections among nodes, ensuring a stable network lifetime. This paper introduces a novel approach to improve energy efficiency, reduce the length of network connections, and increase network lifetime in heterogeneous Wireless Sensor Networks by employing the K-Nearest Neighbours (KNN) algorithm to optimise node selection and clustering mechanisms for four protocols: Low-Energy Adaptive Clustering Hierarchy (LEACH), Stable Election Protocol (SEP), Threshold-sensitive Energy Efficient sensor Network (TEEN), and Distributed Energy-efficient Clustering (DEC). Simulation results obtained using MATLAB (R2024b) demonstrate the efficacy of the proposed K-Nearest Neighbours algorithm, revealing that the modified protocols achieve shorter distances between cluster heads and nodes, reduced energy consumption, and improved network lifetime compared to the original protocols. The proposed KNN-based approach enhances the network’s operational efficiency and security, offering a robust solution for energy management in WSNs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

27 pages, 4232 KiB  
Article
Data-Driven Machine-Learning-Based Seismic Response Prediction and Damage Classification for an Unreinforced Masonry Building
by Nagavinothini Ravichandran, Butsawan Bidorn, Oya Mercan and Balamurugan Paneerselvam
Appl. Sci. 2025, 15(4), 1686; https://doi.org/10.3390/app15041686 - 7 Feb 2025
Cited by 1 | Viewed by 2109
Abstract
Unreinforced masonry buildings are highly vulnerable to earthquake damage due to their limited ability to withstand lateral loads, compared to other structures. Therefore, a detailed assessment of the seismic response and resultant damage associated with such buildings becomes necessary. The present study employs [...] Read more.
Unreinforced masonry buildings are highly vulnerable to earthquake damage due to their limited ability to withstand lateral loads, compared to other structures. Therefore, a detailed assessment of the seismic response and resultant damage associated with such buildings becomes necessary. The present study employs machine learning models to effectively predict the seismic response and classify the damage level for a benchmark unreinforced masonry building. In this regard, eight regression-based models, namely, Linear Regression (LR), Stepwise Linear Regression (SLR), Ridge Regression (RR), Support Vector Machine (SVM), Gaussian Process Regression (GPR), Decision Tree (DT), Random Forest (RF), and Neural Networks (NN), were used to predict the building’s responses. Additionally, eight classification-based models, namely, Naïve Bayes (NB), Discriminant Analysis (DA), K-Nearest Neighbours (KNN), Adaptive Boosting (AB), DT, RF, SVM, and NN, were explored for the purpose of categorizing the damage states of the building. The material properties of the masonry and the earthquake intensity were considered as the input parameters. The results from the regression models indicate that the GPR model efficiently predicts the seismic response with larger coefficients of determination and smaller root mean square error values than other models. Among the classification-based models, the RF, AB, and NN models effectively classify the damage states with accuracy levels of 92.9%, 91.1%, and 92.6%, respectively. In conclusion, the overall performance of the non-parametric models, such as GPR, NN, and RF, was found to be better than that of the parametric models. Full article
(This article belongs to the Special Issue Structural Seismic Design and Evaluation)
Show Figures

Figure 1

36 pages, 12469 KiB  
Article
Advancing Iron Ore Grade Estimation: A Comparative Study of Machine Learning and Ordinary Kriging
by Mujigela Maniteja, Gopinath Samanta, Angesom Gebretsadik, Ntshiri Batlile Tsae, Sheo Shankar Rai, Yewuhalashet Fissha, Natsuo Okada and Youhei Kawamura
Minerals 2025, 15(2), 131; https://doi.org/10.3390/min15020131 - 29 Jan 2025
Cited by 3 | Viewed by 2364
Abstract
Mineral grade estimation is a vital phase in mine planning and design, as well as in the mining project’s economic assessment. In mining, commonly accepted methods of ore grade estimation include geometrical approaches and geostatistical techniques such as kriging, which effectively capture the [...] Read more.
Mineral grade estimation is a vital phase in mine planning and design, as well as in the mining project’s economic assessment. In mining, commonly accepted methods of ore grade estimation include geometrical approaches and geostatistical techniques such as kriging, which effectively capture the spatial grade variation within a deposit. The application of machine-learning (ML) techniques has been explored in the estimation of mineral resources, where complex correlations need to be captured. In this paper, the authors developed four machine-learning regression models, i.e., support vector regression (SVR), random forest regression (RFR), k-nearest neighbour (KNN) regression, and extreme gradient boost (XGBoost) regression, using a geological database to predict the grade in an Indian iron ore deposit. When compared with ordinary kriging (R2 = 0.74; RMSE = 2.09), the RFR (R2 = 0.74; RMSE = 2.06), XGBoost (R2 = 0.73; RMSE = 2.12), and KNN (R2 = 0.73; RMSE = 2.11) regression models produced similar results. The block model predictions generated using the RFR, XGBoost, and KNN models show comparable accuracy and spatial trends to those of ordinary kriging, whereas SVR was identified as less effective. When integrated with geological methods, these models demonstrate significant potential for enhancing and optimizing mine planning and design processes in similar iron ore deposits. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

24 pages, 9092 KiB  
Article
Research on Coal and Gas Outburst Prediction and Sensitivity Analysis Based on an Interpretable Ali Baba and the Forty Thieves–Transformer–Support Vector Machine Model
by Yanping Wang, Zhixin Qin, Zhenguo Yan, Jun Deng, Yuxin Huang, Longcheng Zhang, Yuqi Cao and Yiyang Wang
Fire 2025, 8(2), 37; https://doi.org/10.3390/fire8020037 - 22 Jan 2025
Cited by 2 | Viewed by 938
Abstract
Coal and gas outbursts pose significant threats to underground personnel, making the development of accurate prediction models crucial for reducing casualties. By addressing the challenges of highly nonlinear relationships among predictive parameters, poor interpretability of models, and limited sample data in existing studies, [...] Read more.
Coal and gas outbursts pose significant threats to underground personnel, making the development of accurate prediction models crucial for reducing casualties. By addressing the challenges of highly nonlinear relationships among predictive parameters, poor interpretability of models, and limited sample data in existing studies, this paper proposes an interpretable Ali Baba and the Forty Thieves–Transformer–Support Vector Machine (AFT-Transformer-SVM) model with high predictive accuracy. The Ali Baba and the Forty Thieves (AFT) algorithm is employed to optimise a Transformer-based feature extraction, thereby reducing the degree of nonlinearity among sample data. A Transformer-SVM model is constructed, wherein the Support Vector Machine (SVM) model provides negative feedback to refine the Transformer feature extraction, enhancing the prediction accuracy of coal and gas outbursts. Various classification assessment methods, such as TP, TN, FP, FN tables, and SHAP analysis, are utilised to improve the interpretability of the model. Additionally, the permutation feature importance (PFI) method is applied to conduct a sensitivity analysis, elucidating the relationship between the sample data and outburst risks. Through a comparative analysis with algorithms such as eXtreme gradient boosting (XGBoost), k-nearest neighbour (KNN), radial basis function networks (RBFNs), and Bayesian classifiers, the proposed method demonstrates superior accuracy and effectively predicts coal and gas outburst risks, achieving 100% accuracy in the sample dataset. The influence of parameters on the model is analysed, highlighting that the coal seam gas content is the primary factor driving the outburst risks. The proposed approach provides technical support for coal and gas outburst predictions across different mines, enhancing emergency response and prevention capabilities for underground mining operations. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires)
Show Figures

Figure 1

Back to TopTop