Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = jumbo phage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 987 KiB  
Article
In Vitro Interactions Between Bacteriophages and Antibacterial Agents of Various Classes Against Multidrug-Resistant Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Clinical Isolates
by Paschalis Paranos, Sophia Vourli, Spyros Pournaras and Joseph Meletiadis
Pharmaceuticals 2025, 18(3), 343; https://doi.org/10.3390/ph18030343 - 27 Feb 2025
Cited by 1 | Viewed by 840
Abstract
Background: Combination therapy with antibiotics and phages has been suggested to increase the antibacterial activity of both antibiotics and phages. We tested the in vitro activity of five antibiotics belonging to different classes in combination with lytic bacteriophages against multidrug-resistant metallo-β-lactamase (MBL)-producing Pseudomonas [...] Read more.
Background: Combination therapy with antibiotics and phages has been suggested to increase the antibacterial activity of both antibiotics and phages. We tested the in vitro activity of five antibiotics belonging to different classes in combination with lytic bacteriophages against multidrug-resistant metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa isolates. Material/Methods: A total of 10 non-repetitive well-characterized MBL-producing P. aeruginosa isolates (5 NDM, 5 VIM) co-resistant to aminoglycosides and quinolones were used. Phage–antibiotic interactions were assessed using an ISO-20776-based broth microdilution checkerboard assay in 96-well microtitration plates. Two-fold dilutions of colistin (8–0.125 mg/L), ciprofloxacin, meropenem, aztreonam, and amikacin (256–4 mg/L) were combined with ten-fold dilutions of five different phages (5 × 109–5 × 100 PFU/mL) belonging to Pakpunavirus, Phikzvirus, Pbunavirus, and Phikmvvirus genus. Plates were incubated at 35 ± 2 °C for 24 h, and the minimum inhibitory concentration of antibiotics (MICA) and phages (MICP) were determined as the lowest drug and phage concentration, resulting in <10% growth based on photometric reading at 550 nm. Interactions were assessed based on the fractional inhibitory concentration index (FICi) of three independent replicates and clinical relevance based on the reversal of phenotypic resistance. The statistical significance of each drug alone and in combination with phages was assessed using GraphPad Prism 8.0. Results: Synergistic and additive interactions were found for 60–80% of isolates for all drugs. FICis were statistically significantly lower than 0.5 for colistin (p = 0.005), ciprofloxacin (p = 0.02), meropenem (p = 0.003), and amikacin (p = 0.002). Interactions were found at clinically achievable concentrations for colistin, meropenem, and amikacin, and a reversal of phenotypic resistance was observed for most strains (63–64%) for amikacin and meropenem. Antagonism was found for few isolates with all antibiotics tested. Phage vB_PaerM_AttikonH10 and vB_PaerP_AttikonH4 belonging to Phikzvirus and Phikmvvirus genus, respectively, showed either synergistic (FICi ≤ 0.35) or additive effects with most antibiotics tested. Conclusions: Synergy was observed for most drugs and phages with amikacin, showing strong synergy and reversal of phenotypic resistance against most isolates. Taking into account the wide utility of jumbo phages obtained, the findings of vB_PaerM_AttikonH10 in combination with different classes of antibiotics can enhance the activity of currently ineffective antibiotics against MBL-producing P. aeruginosa isolates. Full article
Show Figures

Figure 1

20 pages, 3728 KiB  
Article
Isolation and Characterization of a Novel Jumbo Phage HPP-Temi Infecting Pseudomonas aeruginosa Pa9 and Increasing Host Sensitivity to Ciprofloxacin
by Olufunke Olufunmilola Olorundare, Nikita Zrelovs, Dennis Kabantiyok, Karina Svanberga, Juris Jansons, Andris Kazaks, Godwin Ojonugwa Agada, Chibuzor Gerald Agu, Oluwatoyin Ruth Morenikeji, Ogundeji Alice Oluwapelumi, Thomas Dung and Shedrach Benjamin Pewan
Antibiotics 2024, 13(11), 1006; https://doi.org/10.3390/antibiotics13111006 - 25 Oct 2024
Cited by 2 | Viewed by 10350
Abstract
Pseudomonas aeruginosa is a bacteria responsible for many hospital-acquired infections. Phages are promising alternatives for treating P. aeruginosa infections, which are often intrinsically resistant. The combination of phage and antibiotics in clearing bacterial infection holds promise due to increasing reports of enhanced effectiveness [...] Read more.
Pseudomonas aeruginosa is a bacteria responsible for many hospital-acquired infections. Phages are promising alternatives for treating P. aeruginosa infections, which are often intrinsically resistant. The combination of phage and antibiotics in clearing bacterial infection holds promise due to increasing reports of enhanced effectiveness when both are used together. The aim of the study is to isolate and characterize a novel P. aeruginosa phage and determine its effectiveness in in vitro combination with antibiotics in controlling P. aeruginosa. In this study, a novel jumbo myophage HPP-Temi infecting P. aeruginosa Pa9 (PP334386) was isolated from household sewage. Electron micrographs of the phage were obtained to determine the morphological features of HPP-Temi virions. Complete genome analysis and a combination of Pseudomonas phage HPP-Temi with antibiotics were examined. The phage HPP-Temi was able to productively infect P. aeruginosa ATCC 9027 but was unable to infect a closely related genus. The phage was stable at 4–37 °C, 0.5% NaCl, and pH 8 for at least one hour. The HPP-Temi genome is a 302,719-bp-long dsDNA molecule with a GC content of 46.46%. The genome was predicted to have 436 ORFs and 7 tRNA genes. No virulence factor-related genes, antimicrobial resistance, or temperate lifestyle-associated genes were found in the phage HPP-Temi genome. Phage HPP-Temi is most closely related to the known or tentative representatives of the Pawinskivirus genus and can be proposed as a representative for the creation of a novel phage species in that genus. The phage and antibiotics (Ciprofloxacin) combination at varying phage titers (103, 106, 109) were used against P. aeruginosa Pa9 (PP334386) at 3.0 × 108 CFU/mL, which was carried out in triplicate. The result showed that combining antibiotics with phage significantly reduced the bacteria count at 103 and 106 titers, while no growth was observed at 109 PFU/mL. This suggests that the effect of phage HPP-Temi in combination with antibiotics is a potential and promising agent for the control of P. aeruginosa infections. Full article
Show Figures

Figure 1

19 pages, 3718 KiB  
Article
Isolation and Characterization of Two Novel Genera of Jumbo Bacteriophages Infecting Xanthomonas vesicatoria Isolated from Agricultural Regions in Mexico
by Claudia Villicaña, Lucía M. Rubí-Rangel, Luis Amarillas, Luis Alberto Lightbourn-Rojas, José Armando Carrillo-Fasio and Josefina León-Félix
Antibiotics 2024, 13(7), 651; https://doi.org/10.3390/antibiotics13070651 - 15 Jul 2024
Cited by 2 | Viewed by 2157
Abstract
Bacterial spot is a serious disease caused by several species of Xanthomonas affecting pepper and tomato production worldwide. Since the strategies employed for disease management have been inefficient and pose a threat for environmental and human health, the development of alternative methods is [...] Read more.
Bacterial spot is a serious disease caused by several species of Xanthomonas affecting pepper and tomato production worldwide. Since the strategies employed for disease management have been inefficient and pose a threat for environmental and human health, the development of alternative methods is gaining relevance. The aim of this study is to isolate and characterize lytic phages against Xanthomonas pathogens. Here, we isolate two jumbo phages, named XaC1 and XbC2, from water obtained from agricultural irrigation channels by the enrichment technique using X. vesicatoria as a host. We determined that both phages were specific for inducing the lysis of X. vesicatoria strains, but not of other xanthomonads. The XaC1 and XbC2 phages showed a myovirus morphology and were classified as jumbo phages due to their genomes being larger than 200 kb. Phylogenetic and comparative analysis suggests that XaC1 and XbC2 represent both different and novel genera of phages, where XaC1 possesses a low similarity to other phage genomes reported before. Finally, XaC1 and XbC2 exhibited thermal stability up to 45 °C and pH stability from 5 to 9. All these results indicate that the isolated phages are promising candidates for the development of formulations against bacterial spot, although further characterization is required. Full article
Show Figures

Figure 1

18 pages, 5841 KiB  
Article
Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage
by Alexandra P. Kozlova, Victoria S. Muntyan, Maria E. Vladimirova, Alla S. Saksaganskaia, Marsel R. Kabilov, Maria K. Gorbunova, Andrey N. Gorshkov, Mikhail P. Grudinin, Boris V. Simarov and Marina L. Roumiantseva
Int. J. Mol. Sci. 2024, 25(13), 7388; https://doi.org/10.3390/ijms25137388 - 5 Jul 2024
Cited by 1 | Viewed by 2703
Abstract
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. [...] Read more.
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage–microbe interactions with nitrogen-fixing symbiotic microorganisms. Full article
(This article belongs to the Special Issue Bacteriophage: Molecular Ecology and Pharmacology)
Show Figures

Figure 1

13 pages, 3752 KiB  
Article
New Genera and Species of Caulobacter and Brevundimonas Bacteriophages Provide Insights into Phage Genome Evolution
by Bert Ely, Michael Hils, Aaron Clarke, Maegan Albert, Nadia Holness, Jacob Lenski and Tannaz Mohammadi
Viruses 2024, 16(4), 641; https://doi.org/10.3390/v16040641 - 20 Apr 2024
Cited by 2 | Viewed by 1867
Abstract
Previous studies have identified diverse bacteriophages that infect Caulobacter vibrioides strain CB15 ranging from small RNA phages to four genera of jumbo phages. In this study, we focus on 20 bacteriophages whose genomes range from 40 to 60 kb in length. Genome comparisons [...] Read more.
Previous studies have identified diverse bacteriophages that infect Caulobacter vibrioides strain CB15 ranging from small RNA phages to four genera of jumbo phages. In this study, we focus on 20 bacteriophages whose genomes range from 40 to 60 kb in length. Genome comparisons indicated that these diverse phages represent six Caulobacter phage genera and one additional genus that includes both Caulobacter and Brevundimonas phages. Within species, comparisons revealed that both single base changes and inserted or deleted genetic material cause the genomes of closely related phages to diverge. Among genera, the basic gene order and the orientation of key genes were retained with most of the observed variation occurring at ends of the genomes. We hypothesize that the nucleotide sequences of the ends of these phage genomes are less important than the need to maintain the size of the genome and the stability of the corresponding mRNAs. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

12 pages, 3393 KiB  
Article
Isolation, Characterization and Genomic Analysis of a Novel Jumbo Phage, AerS_266, That Infects Aeromonas salmonicida
by Vera Morozova, Igor Babkin, Yuliya Kozlova, Artem Tikunov, Tatiana Ushakova, Alevtina Bardasheva, Valeria Fedorets, Elena Zhirakovskaya and Nina Tikunova
Microorganisms 2023, 11(11), 2649; https://doi.org/10.3390/microorganisms11112649 - 28 Oct 2023
Cited by 3 | Viewed by 1957
Abstract
Aeromonas salmonicida is the causative agent of septicemia in fish, and it is associated with significant economic losses in the aquaculture industry. While piscine Aeromonas infections are mainly treated with antibiotics, the emergence of resistance in bacterial populations requires the development of alternative [...] Read more.
Aeromonas salmonicida is the causative agent of septicemia in fish, and it is associated with significant economic losses in the aquaculture industry. While piscine Aeromonas infections are mainly treated with antibiotics, the emergence of resistance in bacterial populations requires the development of alternative methods of treatment. The use of phages can be one of them. A novel A. salmonicida jumbo phage, AerS_266, was isolated and characterized. This phage infects only mesophilic A. salmonicida strains and demonstrates a slow lytic life cycle. Its genome contains 243,674 bp and 253 putative genes: 84 encode proteins with predicted functions, and 3 correspond to tRNAs. Genes encoding two multisubunit RNA polymerases, chimallin and PhuZ, were identified, and AerS_266 was thus defined as a phiKZ-like phage. While similar phages with genomes >200 kb specific to Aeromonas hydrophila and Aeromonas veronii have been previously described, AerS_266 is the first phiKZ-like phage found to infect A. salmonicida. Full article
(This article belongs to the Special Issue Bacteriophage Genomics 2.0)
Show Figures

Figure 1

10 pages, 1371 KiB  
Article
The Dynamics of Synthesis and Localization of Jumbo Phage RNA Polymerases inside Infected Cells
by Daria Antonova, Viktoriia V. Belousova, Erik Zhivkoplias, Mariia Sobinina, Tatyana Artamonova, Innokentii E. Vishnyakov, Inna Kurdyumova, Anatoly Arseniev, Natalia Morozova, Konstantin Severinov, Mikhail Khodorkovskii and Maria V. Yakunina
Viruses 2023, 15(10), 2096; https://doi.org/10.3390/v15102096 - 16 Oct 2023
Cited by 9 | Viewed by 2688
Abstract
A nucleus-like structure composed of phage-encoded proteins and containing replicating viral DNA is formed in Pseudomonas aeruginosa cells infected by jumbo bacteriophage phiKZ. The PhiKZ genes are transcribed independently from host RNA polymerase (RNAP) by two RNAPs encoded by the phage. The virion [...] Read more.
A nucleus-like structure composed of phage-encoded proteins and containing replicating viral DNA is formed in Pseudomonas aeruginosa cells infected by jumbo bacteriophage phiKZ. The PhiKZ genes are transcribed independently from host RNA polymerase (RNAP) by two RNAPs encoded by the phage. The virion RNAP (vRNAP) transcribes early viral genes and must be injected into the cell with phage DNA. The non-virion RNAP (nvRNAP) is composed of early gene products and transcribes late viral genes. In this work, the dynamics of phage RNAPs localization during phage phiKZ infection were studied. We provide direct evidence of PhiKZ vRNAP injection in infected cells and show that it is excluded from the phage nucleus. The nvRNAP is synthesized shortly after the onset of infection and localizes in the nucleus. We propose that spatial separation of two phage RNAPs allows coordinated expression of phage genes belonging to different temporal classes. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

18 pages, 9305 KiB  
Article
Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis
by Pavel Alexyuk, Andrey Bogoyavlenskiy, Madina Alexyuk, Kuralay Akanova, Yergali Moldakhanov and Vladimir Berezin
Microorganisms 2023, 11(6), 1524; https://doi.org/10.3390/microorganisms11061524 - 8 Jun 2023
Cited by 6 | Viewed by 3147
Abstract
Colibacillosis in chickens can cause the death of young stock, decrease weight gain and lead to significant economic losses. Currently, antibiotic therapy is the main method of treatment of infected animals, but unchecked use of antibiotics has led to widespread antibiotic resistance among [...] Read more.
Colibacillosis in chickens can cause the death of young stock, decrease weight gain and lead to significant economic losses. Currently, antibiotic therapy is the main method of treatment of infected animals, but unchecked use of antibiotics has led to widespread antibiotic resistance among microorganisms. Therefore, it is necessary to develop alternative methods of treating bacterial infections that are fully consistent with the One Health concept and introduce them into practice. Phage therapy meets the specified requirements perfectly. This study describes the isolation and characterization of the lytic jumbo phage vB_EcoM_Lh1B and evaluates its potential use in controlling antibiotic-resistant E. coli infection in poultry. The complete phage genome is 240,200 bp long. Open reading frame (ORF) prediction shows that the phage genome does not contain genes encoding antibiotic resistance and lysogeny factors. Based on phylogenetic and electron microscopic analysis, vB_EcoM_Lh1B belongs to the group of myoviruses of the Seoulvirus genus of the Caudoviricetes class. The bacteriophage has good resistance to a wide range of pH and temperatures and has the ability to suppress 19 out of 30 studied pathogenic E. coli strains. The biological and lytic properties of the isolated vB_EcoM_Lh1B phage make it a promising target of further study as a therapeutic agent against E. coli infections in poultry. Full article
(This article belongs to the Special Issue Biotechnological Applications of Bacteriophages and Enteric Viruses)
Show Figures

Figure 1

19 pages, 15301 KiB  
Article
Characterization and Comparative Genomic Analysis of Three Virulent E. coli Bacteriophages with the Potential to Reduce Antibiotic-Resistant Bacteria in the Environment
by Paulina Śliwka, Beata Weber-Dąbrowska, Maciej Żaczek, Marta Kuźmińska-Bajor, Izabela Dusza and Aneta Skaradzińska
Int. J. Mol. Sci. 2023, 24(6), 5696; https://doi.org/10.3390/ijms24065696 - 16 Mar 2023
Cited by 10 | Viewed by 3698
Abstract
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a [...] Read more.
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum β-lactamases (ESBLs)- and AmpC β-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (−20–40 °C) and pH (5–9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application. Full article
(This article belongs to the Special Issue Bacteriophage Biology: From Genomics to Therapy)
Show Figures

Figure 1

15 pages, 2350 KiB  
Article
Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis
by Bingyan Zhang, Jiayi Xu, Xiaoqi He, Yigang Tong and Huiying Ren
Microorganisms 2022, 10(8), 1590; https://doi.org/10.3390/microorganisms10081590 - 7 Aug 2022
Cited by 2 | Viewed by 3443
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that poses a serious health concern to humans and cattle worldwide. Although it has been proven that lytic phages may successfully kill S. aureus, the interaction between the host [...] Read more.
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that poses a serious health concern to humans and cattle worldwide. Although it has been proven that lytic phages may successfully kill S. aureus, the interaction between the host and the phage has yet to be thoroughly investigated, which will likely limit the clinical application of phage. Here, RNA sequencing (RNA-seq) was used to examine the transcriptomics of jumbo phage SA1 and Staphylococcus JTB1-3 during a high multiplicity of infection (MOI) and RT-qPCR was used to confirm the results. The RNA-seq analysis revealed that phage SA1 took over the transcriptional resources of the host cells and that the genes were categorized as early, middle, and late, based on the expression levels during infection. A minor portion of the resources of the host was employed to enable phage replication after infection because only 35.73% (997/2790) of the host genes were identified as differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the phage infection mainly affected the nucleotide metabolism, protein metabolism, and energy-related metabolism of the host. Moreover, the expression of the host genes involved in anti-phage systems, virulence, and drug resistance significantly changed during infection. This research gives a fresh understanding of the relationship between jumbo phages and their Gram-positive bacteria hosts and provides a reference for studying phage treatment and antibiotics. Full article
(This article belongs to the Topic Microbiology Metabolomics)
Show Figures

Figure 1

12 pages, 11721 KiB  
Article
Isolation and Characterization of a Novel Jumbo Phage from Leaf Litter Compost and Its Suppressive Effect on Rice Seedling Rot Diseases
by Ryota Sasaki, Shuhei Miyashita, Sugihiro Ando, Kumiko Ito, Toshiyuki Fukuhara and Hideki Takahashi
Viruses 2021, 13(4), 591; https://doi.org/10.3390/v13040591 - 31 Mar 2021
Cited by 14 | Viewed by 4567
Abstract
Jumbo phages have DNA genomes larger than 200 kbp in large virions composed of an icosahedral head, tail, and other adsorption structures, and they are known to be abundant biological substances in nature. In this study, phages in leaf litter compost were screened [...] Read more.
Jumbo phages have DNA genomes larger than 200 kbp in large virions composed of an icosahedral head, tail, and other adsorption structures, and they are known to be abundant biological substances in nature. In this study, phages in leaf litter compost were screened for their potential to suppress rice seedling rot disease caused by the bacterium Burkholderia glumae, and a novel phage was identified in a filtrate-enriched suspension of leaf litter compost. The phage particles consisted of a rigid tailed icosahedral head and contained a DNA genome of 227,105 bp. The phage could lyse five strains of B. glumae and six strains of Burkholderia plantarii. The phage was named jumbo Burkholderia phage FLC6. Proteomic tree analysis revealed that phage FLC6 belongs to the same clade as two jumbo Ralstonia phages, namely RSF1 and RSL2, which are members of the genus Chiangmaivirus (family: Myoviridae; order: Caudovirales). Interestingly, FLC6 could also lyse two strains of Ralstonia pseudosolanacearum, the causal agent of bacterial wilt, suggesting that FLC6 has a broad host range that may make it especially advantageous as a bio-control agent for several bacterial diseases in economically important crops. The novel jumbo phage FLC6 may enable leaf litter compost to suppress several bacterial diseases and may itself be useful for controlling plant diseases in crop cultivation. Full article
(This article belongs to the Special Issue Bacteriophage-Based Biocontrol in Agriculture)
Show Figures

Figure 1

42 pages, 39665 KiB  
Article
Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts
by Lakshminarayan M. Iyer, Vivek Anantharaman, Arunkumar Krishnan, A. Maxwell Burroughs and L. Aravind
Viruses 2021, 13(1), 63; https://doi.org/10.3390/v13010063 - 5 Jan 2021
Cited by 68 | Viewed by 10735
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic [...] Read more.
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life. Full article
(This article belongs to the Special Issue Giant or Jumbo Phages)
Show Figures

Graphical abstract

12 pages, 4149 KiB  
Article
Isolation and Characterization of Salmonella Jumbo-Phage pSal-SNUABM-04
by Jun Kwon, Sang Guen Kim, Hyoun Joong Kim, Sib Sankar Giri, Sang Wha Kim, Sung Bin Lee and Se Chang Park
Viruses 2021, 13(1), 27; https://doi.org/10.3390/v13010027 - 25 Dec 2020
Cited by 27 | Viewed by 5089
Abstract
The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella [...] Read more.
The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages. Full article
(This article belongs to the Special Issue Giant or Jumbo Phages)
Show Figures

Figure 1

38 pages, 7555 KiB  
Article
Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi
by Gerald N. Misol, Constantina Kokkari and Pantelis Katharios
Pathogens 2020, 9(12), 1051; https://doi.org/10.3390/pathogens9121051 - 15 Dec 2020
Cited by 28 | Viewed by 5833
Abstract
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this [...] Read more.
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. Experimental phage therapy trial using brine shrimp, Artemia salina infected with V. harveyi demonstrated that vB_VhaM_pir03 was able to significantly reduce mortality 24 h post infection when administered at MOI 0.1 which suggests that it can be an excellent candidate for phage therapy. Full article
Show Figures

Figure 1

18 pages, 48906 KiB  
Article
Characterization of Novel Erwinia amylovora Jumbo Bacteriophages from Eneladusvirus Genus
by Sang Guen Kim, Sung Bin Lee, Sib Sankar Giri, Hyoun Joong Kim, Sang Wha Kim, Jun Kwon, Jungkum Park, Eunjung Roh and Se Chang Park
Viruses 2020, 12(12), 1373; https://doi.org/10.3390/v12121373 - 30 Nov 2020
Cited by 23 | Viewed by 4728
Abstract
Jumbo phages, which have a genome size of more than 200 kb, have recently been reported for the first time. However, limited information is available regarding their characteristics because few jumbo phages have been isolated. Therefore, in this study, we aimed to isolate [...] Read more.
Jumbo phages, which have a genome size of more than 200 kb, have recently been reported for the first time. However, limited information is available regarding their characteristics because few jumbo phages have been isolated. Therefore, in this study, we aimed to isolate and characterize other jumbo phages. We performed comparative genomic analysis of three Erwinia phages (pEa_SNUABM_12, pEa_SNUABM_47, and pEa_SNUABM_50), each of which had a genome size of approximately 360 kb (32.5% GC content). These phages were predicted to harbor 546, 540, and 540 open reading frames with 32, 34, and 35 tRNAs, respectively. Almost all of the genes in these phages could not be functionally annotated but showed high sequence similarity with genes encoded in Serratia phage BF, a member of Eneladusvirus. The detailed comparative and phylogenetic analyses presented in this study contribute to our understanding of the diversity and evolution of Erwinia phage and the genus Eneladusvirus. Full article
(This article belongs to the Special Issue Giant or Jumbo Phages)
Show Figures

Figure 1

Back to TopTop