Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,160)

Search Parameters:
Keywords = joint opening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4043 KiB  
Article
Research Progress and Typical Case of Open-Pit to Underground Mining in China
by Shuai Li, Wencong Su, Tubing Yin, Zhenyu Dan and Kang Peng
Appl. Sci. 2025, 15(15), 8530; https://doi.org/10.3390/app15158530 (registering DOI) - 31 Jul 2025
Viewed by 177
Abstract
As Chinese open-pit mines progressively transition to deeper operations, challenges such as rising stripping ratios, declining slope stability, and environmental degradation have become increasingly pronounced. The sustainability of traditional open-pit mining models faces substantial challenges. Underground mining, offering higher resource recovery rates and [...] Read more.
As Chinese open-pit mines progressively transition to deeper operations, challenges such as rising stripping ratios, declining slope stability, and environmental degradation have become increasingly pronounced. The sustainability of traditional open-pit mining models faces substantial challenges. Underground mining, offering higher resource recovery rates and minimal environmental disruption, is emerging as a pivotal technological pathway for the green transformation of mining. Consequently, the transition from open-pit to underground mining has emerged as a central research focus within mining engineering. This paper provides a comprehensive review of key technological advancements in this transition, emphasizing core issues such as mine development system selection, mining method choices, slope stability control, and crown pillar design. A typical case study of the Anhui Xinqiao Iron Mine is presented to analyze its engineering approaches and practical experiences in joint development, backfilling mining, and ecological restoration. The findings indicate that the mine has achieved multi-objective optimization of resource utilization, environmental coordination, and operational capacity while ensuring safety and recovery efficiency. This offers a replicable and scalable technological demonstration for the green transformation of similar mines around the world. Full article
(This article belongs to the Topic New Advances in Mining Technology)
Show Figures

Figure 1

21 pages, 741 KiB  
Article
Partnering Contracts and Conflict Levels in Norwegian Construction Projects
by Omar K. Sabri and Haakon Nygaard Kristiansen
Buildings 2025, 15(15), 2676; https://doi.org/10.3390/buildings15152676 - 29 Jul 2025
Viewed by 166
Abstract
The Norwegian construction sector has long struggled with conflict, particularly in large-scale and complex projects, where adversarial practices, rigid procurement systems, and insufficient early collaboration are common. This study explores how partnering contracts, which are collaborative delivery models designed to align stakeholder interests, [...] Read more.
The Norwegian construction sector has long struggled with conflict, particularly in large-scale and complex projects, where adversarial practices, rigid procurement systems, and insufficient early collaboration are common. This study explores how partnering contracts, which are collaborative delivery models designed to align stakeholder interests, affect conflict dynamics in real-world settings. Employing a mixed-methods approach, it combines semi-structured interviews with 21 experienced Norwegian construction professionals and a structured survey of 33 industry experts. The findings reveal that partnering can foster trust, improve communication, and reduce adversarial behavior through mechanisms such as early contractor involvement, joint goal setting, and open dialogue. However, participants also identified critical risks: superficial collaboration rituals, ambiguous roles, and unresolved structural inequalities that can exacerbate tensions. Importantly, the study emphasizes that partnering success depends less on the contract itself and more on cultural alignment, stakeholder competence, and long-term relational commitment. These insights contribute to a more nuanced understanding of how collaborative contracting influences conflict mitigation in the Norwegian construction sector. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

32 pages, 12348 KiB  
Article
Advances in Unsupervised Parameterization of the Seasonal–Diurnal Surface Wind Vector
by Nicholas J. Cook
Meteorology 2025, 4(3), 21; https://doi.org/10.3390/meteorology4030021 - 29 Jul 2025
Viewed by 111
Abstract
The Offset Elliptical Normal (OEN) mixture model represents the seasonal–diurnal surface wind vector for wind engineering design applications. This study upgrades the parameterization of OEN by accounting for changes in format of the global database of surface observations, improving performance by eliminating manual [...] Read more.
The Offset Elliptical Normal (OEN) mixture model represents the seasonal–diurnal surface wind vector for wind engineering design applications. This study upgrades the parameterization of OEN by accounting for changes in format of the global database of surface observations, improving performance by eliminating manual supervision and extending the scope of the model to include skewness. The previous coordinate transformation of binned speed and direction, used to evaluate the joint probability distributions of the wind vector, is replaced by direct kernel density estimation. The slow process of sequentially adding additional components is replaced by initializing all components together using fuzzy clustering. The supervised process of sequencing each mixture component through time is replaced by a fully automated unsupervised process using pattern matching. Previously reported departures from normal in the tails of the fuzzy-demodulated OEN orthogonal vectors are investigated by directly fitting the bivariate skew generalized t distribution, showing that the small observed skew is likely real but that the observed kurtosis is an artefact of the demodulation process, leading to a new Offset Skew Normal mixture model. The supplied open-source R scripts fully automate parametrization for locations in the NCEI Integrated Surface Hourly global database of wind observations. Full article
Show Figures

Figure 1

21 pages, 9715 KiB  
Article
Fault-Tolerant Control of Non-Phase-Shifted Dual Three-Phase PMSM Joint Motor for Open Phase Fault with Minimized Copper Loss and Reduced Torque Ripple
by Xian Luo, Guangyu Pu, Wenhao Han, Huaqi Li and Hanlin Zhan
Energies 2025, 18(15), 4020; https://doi.org/10.3390/en18154020 - 28 Jul 2025
Viewed by 221
Abstract
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control [...] Read more.
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control method with improved fault-tolerant performance. In this paper, a novel fault-tolerant control (FTC) method for NPSDTP-PMSM is proposed, which concurrently simultaneously reduces copper loss and suppresses torque ripple under single and dual open phase fault. Firstly, the mathematical model of NPSDTP-PMSM is established, where the ZSC self-suppressing mechanism is revealed. Based on which, investigations on open phase fault and the copper loss characteristics for NPSDTP-PMSM are conducted. Subsequently, a novel fault-tolerant control method is proposed for NPSDTP-PMSM, where the torque ripple is reduced by mutual cancellation of harmonic torques from two winding sets and minimized copper loss is achieved based on the convex characteristic of copper loss. Experimental validation on an integrated robotic joint motor platform confirms the effectiveness of the proposed method. Full article
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Shear Mechanism of Precast Segmental Concrete Beam Prestressed with Unbonded Tendons
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su and Zi-Wei Song
Buildings 2025, 15(15), 2668; https://doi.org/10.3390/buildings15152668 - 28 Jul 2025
Viewed by 199
Abstract
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup [...] Read more.
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup strain, and tendon stress are recorded. The factors of shear span ratio, the position of segmental joints, and hybrid tendon ratio are focused on, and their effects on the shear behaviors are compared. Based on the measured responses, the shear contribution proportions of concrete segments, prestressed tendons, and stirrups are decomposed and quantified. With the observed failure modes, the truss–arch model is employed to clarify the shear mechanism of PSCBs, and simplified equations are further developed for predicting the shear strength. Using the collected test results of 30 specimens, the validity of the proposed equations is verified with a mean ratio of calculated-to-test values of 0.96 and a standard deviation of 0.11. Furthermore, the influence mechanism of shear span ratio, segmental joints, prestressing force, and hybrid tendon ratio on the shear strength is clarified. The increasing shear span ratio decreases the inclined angle of the arch ribs, thereby reducing the shear resistance contribution of the arch action. The open joints reduce the number of stirrups passing through the diagonal cracks, lowering the shear contribution of the truss action. The prestressing force can reduce the inclination of diagonal cracks, improving the contribution of truss action. The external unbonded tendon will decrease the height of the arch rib due to the second-order effects, causing lower shear strength than PSCBs with internal tendons. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

8 pages, 232 KiB  
Article
Clinical Analysis of TMJ Replacement Using a Customized Prosthesis
by Sergio Olate, Víctor Ravelo, Gonzalo Muñoz, Carlos Gaete, Rodrigo Goya and Rômulo Valente
J. Clin. Med. 2025, 14(15), 5314; https://doi.org/10.3390/jcm14155314 - 28 Jul 2025
Viewed by 184
Abstract
Background/Objectives: This study aims to uncover the variables related to the success of the intervention. Methods: A retrospective study was conducted on patients who underwent joint replacement surgery utilizing a customized alloplastic system between 2018 and 2023, comprising subjects with complete records for [...] Read more.
Background/Objectives: This study aims to uncover the variables related to the success of the intervention. Methods: A retrospective study was conducted on patients who underwent joint replacement surgery utilizing a customized alloplastic system between 2018 and 2023, comprising subjects with complete records for both the planning and follow-up phases. The Student’s t-test was applied with a significance threshold of p < 0.05. Results: Forty-eight subjects were admitted for initial analysis, and 31 subjects were evaluated with a minimum follow-up of 1 year and a maximum of 7 years, with a mean age of 36.37 ± 15.53. The TMJ diagnosis was mainly with degenerative TMJ disease, followed by ankylosis and craniofacial syndromes, and an average of 2.1 ± 1.2 previous surgeries were noted. Degenerative joint disease correlated with increased pain (p < 0.0001) and a higher prevalence of prior joint surgery (p < 0.0001). Thirty-one subjects were followed up with 47 prostheses installed; 74.4% underwent complementary surgery with other facial osteotomies. Significant improvements (p < 0.0001) were observed when comparing pain levels pre- and postoperatively, with a decrease from 5.5 (±2.3) to 2.2 (±0.4). Concerning the interincisal opening, there was a significant increase (p < 0001) from 25.85 (±10.2) mm to 35.93 (±4.2) mm in mouth opening. TMJ replacement treatment is efficient and effective, demonstrating stability in follow-up assessments for up to 7 years. Conclusions: The indications for replacement are diverse and may benefit patients who have not yet progressed to end-stage TMJ disease. Full article
(This article belongs to the Special Issue Innovations in Plastic and Reconstructive Research)
15 pages, 3131 KiB  
Article
Real-Time Experiments for Decentralized Adaptive Synchronized Motion Control of a Closed-Kinematic Chain Mechanism Robot Manipulator
by Charles C. Nguyen, Tri T. Nguyen, Tu T. C. Duong, Tuan M. Nguyen, Ha T. T. Ngo and Lu Sun
Machines 2025, 13(8), 652; https://doi.org/10.3390/machines13080652 - 25 Jul 2025
Viewed by 226
Abstract
This paper presents the results of real-time experiments conducted to evaluate the performance of a developed adaptive control scheme applied to control the motion of a real closed-kinematic chain mechanism (CKCM) robot manipulator with two degrees of freedom (DOFs). The developed control scheme, [...] Read more.
This paper presents the results of real-time experiments conducted to evaluate the performance of a developed adaptive control scheme applied to control the motion of a real closed-kinematic chain mechanism (CKCM) robot manipulator with two degrees of freedom (DOFs). The developed control scheme, referred to as the decentralized adaptive synchronized control scheme (DASCS), was the result of the combination of model reference adaptive control (MRAC) based on the Lyapunov direct method and the synchronization technique. CKCM manipulators were considered in the experimental study due to their advantages over their open-kinematic chain mechanism (OKCM) manipulator counterparts, such as higher stiffness, better stability, and greater payload. The conducted computer simulation study showed that the DASCS was able to asymptotically converge tracking errors to zero, with all the active joints moving synchronously in a prescribed way. One of the important properties of the DASCS is the independence of robot manipulator dynamics, making it computationally efficient and therefore suitable for real-time applications. The present paper reports findings from experiments in which the DASCS was applied to control the above manipulator and carry out various paths. The DASCS’s performance was compared with that of a traditional adaptive control scheme, namely the SMRACS, when both schemes were applied to track the same paths. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

18 pages, 5558 KiB  
Article
Microclimate Variability in a Highly Dynamic Karstic System
by Diego Gil, Mario Sánchez-Gómez and Joaquín Tovar-Pescador
Geosciences 2025, 15(8), 280; https://doi.org/10.3390/geosciences15080280 - 24 Jul 2025
Viewed by 144
Abstract
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope [...] Read more.
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope of a mountainous area with a Mediterranean climate and strong chimney effect, resulting in an intense airflow throughout the year. The airflows modify the entrance temperatures, creating a distinctive pattern in each opening that changes with the seasons. The objective of this work is to characterise the outflows and find simple temperature-based parameters that provide information about the karst interior. The entrances were monitored for five years (2017–2022) with temperature–humidity dataloggers at different depths. Other data collected include discrete wind measurements and outside weather data. The most significant parameters identified were the characteristic temperature (Ty), recorded at the end of the outflow season, and the rate of cooling/warming, which ranges between 0.1 and 0.9 °C/month. These parameters allowed the entrances to be grouped based on the efficiency of heat exchange between the outside air and the cave walls, which depends on the rock-boundary geometry. This research demonstrates that simple temperature studies with data recorded at selected positions will allow us to understand geometric aspects of inaccessible karst systems. Dynamic high-airflow cave systems could become a natural source of evidence for climate change and its effects on the underground world. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

18 pages, 821 KiB  
Article
Joint Iterative Decoding Design of Cooperative Downlink SCMA Systems
by Hao Cheng, Min Zhang and Ruoyu Su
Entropy 2025, 27(7), 762; https://doi.org/10.3390/e27070762 - 18 Jul 2025
Viewed by 219
Abstract
Sparse code multiple access (SCMA) has been a competitive multiple access candidate for future communication networks due to its superiority in spectrum efficiency and providing massive connectivity. However, cell edge users may suffer from great performance degradations due to signal attenuation. Therefore, a [...] Read more.
Sparse code multiple access (SCMA) has been a competitive multiple access candidate for future communication networks due to its superiority in spectrum efficiency and providing massive connectivity. However, cell edge users may suffer from great performance degradations due to signal attenuation. Therefore, a cooperative downlink SCMA system is proposed to improve transmission reliability. To the best of our knowledge, multiuser detection is still an open issue for this cooperative downlink SCMA system. To this end, we propose a joint iterative decoding design of the cooperative downlink SCMA system by using the joint factor graph stemming from direct and relay transmission. The closed form bit-error rate (BER) performance of the cooperative downlink SCMA system is also derived. Simulation results verify that the proposed cooperative downlink SCMA system performs better than the non-cooperative one. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives, 2nd Edition)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Viewed by 260
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 2860 KiB  
Review
Recent Evidence for Orthobiologics Combined with Hydrogels for Joint Tissue Regeneration: Focus on Osteoarthritis
by Carola Cavallo, Giovanna Desando, Martina D’Alessandro, Brunella Grigolo and Livia Roseti
Gels 2025, 11(7), 551; https://doi.org/10.3390/gels11070551 - 17 Jul 2025
Viewed by 336
Abstract
Osteoarthritis is a significant global problem, causing pain and limitations, and contributing to socioeconomic expenses. The etiopathogenesis of this disease encloses genetic, biological, and mechanical aspects. Regenerative medicine, utilizing tissue engineering, has opened the way to new therapeutic approaches employing various orthobiologics. Combined [...] Read more.
Osteoarthritis is a significant global problem, causing pain and limitations, and contributing to socioeconomic expenses. The etiopathogenesis of this disease encloses genetic, biological, and mechanical aspects. Regenerative medicine, utilizing tissue engineering, has opened the way to new therapeutic approaches employing various orthobiologics. Combined with hydrogels, these compounds may represent a notable option for treating degenerative and inflammatory lesions in OA. The review reports on the main orthobiologics used in preclinical and clinical studies, as well as their association with various types of natural and synthetic hydrogels. Research may increasingly focus on tailored therapies adjusted to suit the joint involved and the severity of the pathology encountered in each patient. Full article
Show Figures

Figure 1

19 pages, 3064 KiB  
Article
HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage
by Richard Andreas Lindtner, Lukas Kampik, Werner Schmölz, Mateus Enzenberg, David Putzer, Rohit Arora, Bettina Zelger, Claudia Wöss, Gerald Degenhart, Christian Kremser, Michaela Lackner, Anton Kasper Pallua, Michael Schirmer and Johannes Dominikus Pallua
Biomedicines 2025, 13(7), 1742; https://doi.org/10.3390/biomedicines13071742 - 16 Jul 2025
Viewed by 259
Abstract
Background/Objectives: Recent breakthroughs in three-dimensional (3D) printing and high-resolution imaging have opened up new possibilities in personalized medicine, surgical planning, and forensic reconstruction. This study breaks new ground by evaluating the integration of high-resolution peripheral quantitative computed tomography (HR-pQCT) with multimodal imaging and [...] Read more.
Background/Objectives: Recent breakthroughs in three-dimensional (3D) printing and high-resolution imaging have opened up new possibilities in personalized medicine, surgical planning, and forensic reconstruction. This study breaks new ground by evaluating the integration of high-resolution peripheral quantitative computed tomography (HR-pQCT) with multimodal imaging and additive manufacturing to assess a chronic, infected gunshot injury in the knee joint of a red deer. This unique approach serves as a translational model for complex skeletal trauma. Methods: Multimodal imaging—including clinical CT, MRI, and HR-pQCT—was used to characterise the extent of osseous and soft tissue damage. Histopathological and molecular analyses were performed to confirm the infectious agent. HR-pQCT datasets were segmented and processed for 3D printing using PolyJet, stereolithography (SLA), and fused deposition modelling (FDM). Printed models were quantitatively benchmarked through 3D surface deviation analysis. Results: Imaging revealed comminuted fractures, cortical and trabecular degradation, and soft tissue involvement, consistent with chronic osteomyelitis. Sphingomonas sp., a bacterium that forms biofilms, was identified as the pathogen. Among the printing methods, PolyJet and SLA demonstrated the highest anatomical accuracy, whereas FDM exhibited greater geometric deviation. Conclusions: HR-pQCT-guided 3D printing provides a powerful tool for the anatomical visualisation and quantitative assessment of complex bone pathology. This approach not only enhances diagnostic precision but also supports applications in surgical rehearsal and forensic analysis. It illustrates the potential of digital imaging and additive manufacturing to advance orthopaedic and trauma care, inspiring future research and applications in the field. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

17 pages, 2769 KiB  
Article
Service-Based Architecture for 6G RAN: A Cloud Native Platform That Provides Everything as a Service
by Guangyi Liu, Na Li, Chunjing Yuan, Siqi Chen and Xuan Liu
Sensors 2025, 25(14), 4428; https://doi.org/10.3390/s25144428 - 16 Jul 2025
Viewed by 315
Abstract
The 5G network’s commercialization has revealed challenges in providing customized and personalized deployment and services for diverse vertical industrial use cases, leading to high cost, low resource efficiency and management efficiency, and long time to market. Although the 5G core network (CN) has [...] Read more.
The 5G network’s commercialization has revealed challenges in providing customized and personalized deployment and services for diverse vertical industrial use cases, leading to high cost, low resource efficiency and management efficiency, and long time to market. Although the 5G core network (CN) has adopted a service-based architecture (SBA) to enhance agility and elasticity, the radio access network (RAN) keeps the traditional integrated and rigid architecture and suffers the difficulties of customizing and personalizing the functions and capabilities. Open RAN attempted to introduce cloudification, openness, and intelligence to RAN but faced limitations due to 5G RAN specifications. To address this, this paper analyzes the experience and insights from 5G SBA and conducts a systematic study on the service-based RAN, including service definition, interface protocol stacks, impact analysis on the air interface, radio capability exposure, and joint optimization with CN. Performance verification shows significant improvements of service-based user plane design in resource utilization and scalability. Full article
(This article belongs to the Special Issue Future Horizons in Networking: Exploring the Potential of 6G)
Show Figures

Figure 1

18 pages, 5060 KiB  
Article
Research on Fatigue Strength Evaluation Method of Welded Joints in Steel Box Girders with Open Longitudinal Ribs
by Bo Shen, Ming Liu, Yan Wang and Hanqing Zhuge
Crystals 2025, 15(7), 646; https://doi.org/10.3390/cryst15070646 - 15 Jul 2025
Viewed by 240
Abstract
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale [...] Read more.
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale fatigue loading test for the steel box girder local component were carried out. The accuracy of the finite-element model was verified by comparing it with the test results, and the rationality of the fatigue strength evaluation methods for welded joints was deeply explored. The results indicate that the maximum nominal stress occurs at the weld toe between the transverse diaphragm and the top plate at the edge of the loading area, which is the fatigue-vulnerable location for the steel box girder local components. The initial static-load stresses at each measuring point were in good agreement with the finite-element calculation results. However, the static-load stress at the measuring point in the fatigue-vulnerable position shows a certain decrease with the increase in the number of cyclic loads, while the stress at other measuring points remains basically unchanged. According to the finite-element model, the fatigue strengths obtained by the nominal stress method and the hot-spot stress method are 72.1 MPa and 93.8 MPa, respectively. It is reasonable to use the nominal stress S-N curve with a fatigue life of 2 million cycles at 70 MPa and the hot-spot stress S-N curve with a fatigue life of 2 million cycles at 90 MPa (FAT90) to evaluate the fatigue of the welded joints in steel box girders with open longitudinal ribs. According to the equivalent structural stress method, the fatigue strength corresponding to 2 million cycles is 94.1 MPa, which is slightly lower than the result corresponding to the main S-N curve but within the range of the standard deviation curve. The research results of this article can provide important guidance for the anti-fatigue design of welded joints in steel box girders with open longitudinal ribs. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

31 pages, 529 KiB  
Review
Advances and Challenges in Respiratory Sound Analysis: A Technique Review Based on the ICBHI2017 Database
by Shaode Yu, Jieyang Yu, Lijun Chen, Bing Zhu, Xiaokun Liang, Yaoqin Xie and Qiurui Sun
Electronics 2025, 14(14), 2794; https://doi.org/10.3390/electronics14142794 - 11 Jul 2025
Viewed by 447
Abstract
Respiratory diseases present significant global health challenges. Recent advances in respiratory sound analysis (RSA) have shown great potential for automated disease diagnosis and patient management. The International Conference on Biomedical and Health Informatics 2017 (ICBHI2017) database stands as one of the most authoritative [...] Read more.
Respiratory diseases present significant global health challenges. Recent advances in respiratory sound analysis (RSA) have shown great potential for automated disease diagnosis and patient management. The International Conference on Biomedical and Health Informatics 2017 (ICBHI2017) database stands as one of the most authoritative open-access RSA datasets. This review systematically examines 135 technical publications utilizing the database, and a comprehensive and timely summary of RSA methodologies is offered for researchers and practitioners in this field. Specifically, this review covers signal processing techniques including data resampling, augmentation, normalization, and filtering; feature extraction approaches spanning time-domain, frequency-domain, joint time–frequency analysis, and deep feature representation from pre-trained models; and classification methods for adventitious sound (AS) categorization and pathological state (PS) recognition. Current achievements for AS and PS classification are summarized across studies using official and custom data splits. Despite promising technique advancements, several challenges remain unresolved. These include a severe class imbalance in the dataset, limited exploration of advanced data augmentation techniques and foundation models, a lack of model interpretability, and insufficient generalization studies across clinical settings. Future directions involve multi-modal data fusion, the development of standardized processing workflows, interpretable artificial intelligence, and integration with broader clinical data sources to enhance diagnostic performance and clinical applicability. Full article
Show Figures

Figure 1

Back to TopTop