Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = joint motion compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 15035 KB  
Article
Adaptive Non-Singular Fast Terminal Sliding Mode Trajectory Tracking Control for Robotic Manipulator with Novel Configuration Based on TD3 Deep Reinforcement Learning and Nonlinear Disturbance Observer
by Huaqiang You, Yanjun Liu, Zhenjie Shi, Zekai Wang, Lin Wang and Gang Xue
Sensors 2026, 26(1), 297; https://doi.org/10.3390/s26010297 - 2 Jan 2026
Viewed by 387
Abstract
This work proposes a non-singular fast terminal sliding mode control (NFTSMC) strategy based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and a nonlinear disturbance observer (NDO) to address the issues of modeling errors, motion disturbances, and transmission friction in robotic [...] Read more.
This work proposes a non-singular fast terminal sliding mode control (NFTSMC) strategy based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and a nonlinear disturbance observer (NDO) to address the issues of modeling errors, motion disturbances, and transmission friction in robotic manipulators. Firstly, a novel modular serial 5-DOF robotic manipulator configuration is designed, and its kinematic and dynamic models are established. Secondly, a nonlinear disturbance observer is employed to estimate the total disturbance of the system and apply feedforward compensation. Based on boundary layer technology, an improved NFTSMC method is proposed to accelerate the convergence of tracking errors, reduce chattering, and avoid singularity issues inherent in traditional terminal sliding mode control. The stability of the designed control system is proved using Lyapunov stability theory. Subsequently, a deep reinforcement learning (DRL) agent based on the TD3 algorithm is trained to adaptively adjust the control gains of the non-singular fast terminal sliding mode controller. The dynamic information of the robotic manipulator is used as the input to the TD3 agent, which searches for optimal controller parameters within a continuous action space. A composite reward function is designed to ensure the stable and efficient learning of the TD3 agent. Finally, the motion characteristics of three joints for the designed 5-DOF robotic manipulator are analyzed. The results show that compared to the non-singular fast terminal sliding mode control algorithm based on a nonlinear disturbance observer (NDONFT), the non-singular fast terminal sliding mode control algorithm integrating a nonlinear disturbance observer and the Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3NDONFT) reduces the mean absolute error of position tracking for the three joints by 7.14%, 19.94%, and 6.14%, respectively, and reduces the mean absolute error of velocity tracking by 1.78%, 9.10%, and 2.11%, respectively. These results verify the effectiveness of the proposed algorithm in enhancing the trajectory tracking accuracy of the robotic manipulator under unknown time-varying disturbances and demonstrate its strong robustness against sudden disturbances. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

21 pages, 14929 KB  
Article
Radar Interferometry Using gNB Base Stations: Estimation and Compensation of Mast Motion and Atmospheric Effects
by Alessandra Beni, Lapo Miccinesi, Andrea Cioncolini, Luca Bigazzi, Lorenzo Pagnini, Massimiliano Pieraccini, Sergi Duque and Bleron Klaiqi
Sensors 2026, 26(1), 151; https://doi.org/10.3390/s26010151 - 25 Dec 2025
Viewed by 412
Abstract
Radar interferometry can provide important information for Structural Health Monitoring (SHM) of bridges and other transportation structures. In this article, joint communication and sensing (JCAS) telecommunication infrastructure is tested as a ground-based radar, offering advantages in terms of long-term costs, deployment and maintenance. [...] Read more.
Radar interferometry can provide important information for Structural Health Monitoring (SHM) of bridges and other transportation structures. In this article, joint communication and sensing (JCAS) telecommunication infrastructure is tested as a ground-based radar, offering advantages in terms of long-term costs, deployment and maintenance. This work specifically addresses the estimation of the radar support movement (i.e., pylon or mast), which represents a major challenge in this kind of measurements. Movements of the radar system combine with the true target motion and, if not correctly compensated, can compromise the accuracy of the results. A technique for estimating radar movements based on the displacement tracking of multiple permanent scatterers (PSs) in the scenario is presented. True target displacements can then be retrieved by applying linear regression methods to fixed PSs located at different viewing angles, accounting for both radar movements and atmospheric displacement components. The technique was validated using real data acquired during an experimental campaign on a bridge test site. First, results obtained for a target subject to known displacements are shown. A second measurement session was aimed at testing the method for bridge dynamic monitoring. Finally, the same technique was applied antenna mast monitoring in terms of modal analysis and vibration characterization. Full article
Show Figures

Figure 1

20 pages, 1861 KB  
Article
Compensation Strategies in Post-Stroke Individuals: Insights from Upper Body Kinematics Analysis Based on Inertial Sensors
by Carrie-Louise Thouant, Elena Sofia Cocco, Giovanni Morone, Carlotta Maria Manzia, Francesco Infarinato, Paola Romano, Matteo Cioeta, Michela Goffredo, Marco Franceschini and Sanaz Pournajaf
Sensors 2025, 25(24), 7609; https://doi.org/10.3390/s25247609 - 15 Dec 2025
Viewed by 470
Abstract
Background: One of the main goals of rehabilitation after stroke is the restoration of motor function. Understanding movement patterns and compensatory strategies is essential to optimize therapy. This study analyzes upper limb kinematics during the Box and Block Test (BBT) to identify and [...] Read more.
Background: One of the main goals of rehabilitation after stroke is the restoration of motor function. Understanding movement patterns and compensatory strategies is essential to optimize therapy. This study analyzes upper limb kinematics during the Box and Block Test (BBT) to identify and quantify typical post-stroke compensation strategies. Methods: Thirty-one sub-acute stroke participants and thirty-one healthy controls were included. Kinematic data were collected using a 7-IMU system. Joint angles were analyzed with MATLAB R2023a, and 3D trajectories were reconstructed from calibrated quaternions and anthropometric data. Group differences were assessed with the Mann–Whitney test. Compensation strategies were quantified in percentage terms relative to healthy subjects. Results: Significant intergroup differences were observed in mean joint angles and ranges of motion. On the paretic side, participants overused the wrist and shoulder to compensate for reduced elbow and trunk activity. Similar overuse was also observed on the unaffected side. Quantification showed that 83.9% and 80.6% compensate, respectively, with wrist and trunk and 67.7% with the shoulder. Conclusions: Using IMUs during the BBT, this study identified specific compensation strategies that may hinder recovery. It also contributed to developing a quantification scale, supporting more personalized rehabilitation and improved quality of life. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Graphical abstract

20 pages, 7938 KB  
Article
Combination of Finite Element Spindle Model with Drive-Based Cutting Force Estimation for Assessing Spindle Bearing Load of Machine Tools
by Chris Schöberlein, Daniel Klíč, Michal Holub, Holger Schlegel and Martin Dix
Machines 2025, 13(12), 1138; https://doi.org/10.3390/machines13121138 - 12 Dec 2025
Viewed by 448
Abstract
Monitoring spindle bearing load is essential for ensuring machining accuracy, reliability, and predictive maintenance in machine tools. This paper presents an approach that combines drive-based cutting force estimation with a finite element method (FEM) spindle model. The drive-based method reconstructs process forces from [...] Read more.
Monitoring spindle bearing load is essential for ensuring machining accuracy, reliability, and predictive maintenance in machine tools. This paper presents an approach that combines drive-based cutting force estimation with a finite element method (FEM) spindle model. The drive-based method reconstructs process forces from the motor torque signal of the feed axes by modeling and compensating motion-related torque components, including static friction, acceleration, gravitation, standstill, and periodic disturbances. The inverse mechanical and control transfer behavior is also considered. Input signals include the actual motor torque, axis position, and position setpoint, recorded by the control system’s internal measurement function at the interpolator clock rate. Cutting forces are then calculated in MATLAB/Simulink and used as inputs for the FEM spindle model. Rolling elements are replaced by bushing joints with stiffness derived from datasheets and adjusted through experiments. Force estimation was validated on a DMC 850 V machining center using a standardized test workpiece, with results compared against a dynamometer. The spindle model was validated separately on a MCV 754 Quick machine under static loading. The combined approach produced consistent results and identified the front bearing as the most critically loaded. The method enables practical spindle bearing load estimation without external sensors, lowering system complexity and cost. Full article
(This article belongs to the Special Issue Machines and Applications—New Results from a Worldwide Perspective)
Show Figures

Figure 1

23 pages, 2160 KB  
Article
Human–Robot Interaction for a Manipulator Based on a Neural Adaptive RISE Controller Using Admittance Model
by Shengli Chen, Lin Jiang, Keqiang Bai, Yuming Chen, Xiaoang Xu, Guanwu Jiang and Yueyue Liu
Electronics 2025, 14(24), 4862; https://doi.org/10.3390/electronics14244862 - 10 Dec 2025
Viewed by 452
Abstract
Human–robot cooperative tasks require physical human–robot interaction (pHRI) systems that can adapt to individual human behaviors while ensuring robustness and stability. This paper presents a dual-loop control framework combining an admittance outer loop and a neural adaptive inner loop based on the Robust [...] Read more.
Human–robot cooperative tasks require physical human–robot interaction (pHRI) systems that can adapt to individual human behaviors while ensuring robustness and stability. This paper presents a dual-loop control framework combining an admittance outer loop and a neural adaptive inner loop based on the Robust Integral of the Sign of the Error (RISE) approach. The outer loop reshapes the manipulator trajectory according to interaction forces, ensuring compliant motion and user safety. The inner-loop Adaptive RISE–RBFNN controller compensates for unknown nonlinear dynamics and bounded disturbances through online neural learning and robust sign-based correction, guaranteeing semi-global asymptotic convergence. Quantitative results demonstrate that the proposed adaptive RISE controller with neural-network error compensation (ARINNSE) achieves superior performance in the Joint-1 tracking task, reducing the root-mean-square tracking error by approximately 51.7% and 42.3% compared to conventional sliding mode control and standard RISE methods, respectively, while attaining the smallest maximum absolute error and maintaining control energy consumption comparable to that of RISE. Under human–robot interaction scenarios, the controller preserves stable, bounded control inputs and rapid error convergence even under time-varying disturbances. These results confirm that the proposed admittance-based RISE–RBFNN framework provides enhanced robustness, adaptability, and compliance, making it a promising approach for safe and efficient human–robot collaboration. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

19 pages, 2938 KB  
Article
Adaptive Funnel Control of Hydraulic Excavator Based on Neural Network
by Yuhe Li and Xiaowen Qi
Machines 2025, 13(12), 1132; https://doi.org/10.3390/machines13121132 - 9 Dec 2025
Viewed by 374
Abstract
To address the challenge of controlling the hydraulic excavator’s precise motion, a nonlinear backstepping control algorithm is designed, combining a funnel function and a neural network (NN), which effectively compensates for the influence of unmodeled dynamics and external disturbances on the hydraulic excavator’s [...] Read more.
To address the challenge of controlling the hydraulic excavator’s precise motion, a nonlinear backstepping control algorithm is designed, combining a funnel function and a neural network (NN), which effectively compensates for the influence of unmodeled dynamics and external disturbances on the hydraulic excavator’s control system. Specifically, an improved funnel function is introduced to characterize both the steady-state and transient performance of the system simultaneously, thereby limiting the joint tracking error within predetermined performance constraints and enhancing the trajectory tracking accuracy. Two RBFNN estimators are employed to address the uncertain coupled mechanical dynamics and nonlinear hydraulic dynamics, respectively. The weight updating law is generated based on the gradient descent method, which can prevent high-gain feedback and enhance the system’s robustness. Finally, the stability of the closed-loop system is rigorously proven using the Lyapunov function analysis method. To verify the effectiveness of the proposed algorithm, simulations and experimental research are conducted under various external disturbances, using the excavator’s flat working condition as a case study. The results demonstrate that the controller maintains good control performance and robustness even in the presence of uncertainties and external disturbances within the system. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

16 pages, 1719 KB  
Article
Gait Generation and Motion Implementation of Humanoid Robots Based on Hierarchical Whole-Body Control
by Helin Wang and Wenxuan Huang
Electronics 2025, 14(23), 4714; https://doi.org/10.3390/electronics14234714 - 29 Nov 2025
Viewed by 889
Abstract
Attempting to make machines mimic human walking, grasping, balancing, and other behaviors is a deep exploration of cognitive science and biological principles. Due to the existing prediction lag problem, an error compensation mechanism that integrates historical motion data is proposed. By constructing a [...] Read more.
Attempting to make machines mimic human walking, grasping, balancing, and other behaviors is a deep exploration of cognitive science and biological principles. Due to the existing prediction lag problem, an error compensation mechanism that integrates historical motion data is proposed. By constructing a humanoid autonomous walking control system, this paper aims to use a three-dimensional linear inverted pendulum model to plan the general framework of motion. Firstly, the landing point coordinates of the single foot support period are preset through gait cycle parameters. In addition, it is substituted into dynamic equation to solve the centroid (COM) trajectory curve that conforms to physical constraints. A hierarchical whole-body control architecture is designed, with a task priority based on quadratic programming solver used at the bottom to decompose high-level motion instructions into joint space control variables and fuse sensor data. Furthermore, the numerical iterative algorithm is used to solve the sequence of driving angles for each joint, forming the control input parameters for driving the robot’s motion. This algorithm solves the limitations of traditional inverted pendulum models on vertical motion constraints by optimizing the centroid motion trajectory online. At the same time, it introduces a contact phase sequence prediction mechanism to ensure a smooth transition of the foot trajectory during the switching process. Simulation results demonstrate that the proposed framework improves disturbance rejection capability by over 30% compared to traditional ZMP tracking and achieves a real-time control loop frequency of 1 kHz, confirming its enhanced robustness and computational efficiency. Full article
(This article belongs to the Special Issue Advances in Intelligent Computing and Systems Design)
Show Figures

Figure 1

20 pages, 2893 KB  
Article
Development of a Wearable Arm Exoskeleton for Teleoperation Featuring with Model-Data Fusion to Gravity Compensation
by Lingda Meng and Wusheng Chou
Appl. Sci. 2025, 15(23), 12546; https://doi.org/10.3390/app152312546 - 26 Nov 2025
Viewed by 567
Abstract
The upper-limb exoskeleton is ergonomically designed to align with human arm motion and can be configured for deployment as a master tool manipulator (MTM) in teleoperation systems. However, existing teleoperated exoskeletons are limited by excessive weight and inadequate force feedback. This study proposes [...] Read more.
The upper-limb exoskeleton is ergonomically designed to align with human arm motion and can be configured for deployment as a master tool manipulator (MTM) in teleoperation systems. However, existing teleoperated exoskeletons are limited by excessive weight and inadequate force feedback. This study proposes a novel lightweight exoskeleton with optimized shoulder and wrist joint structure, enabling full arm mobility and sufficient force feedback. In practical applications, gravitational forces can lead to muscle fatigue and degrade teleoperation performance, making compensation essential for ergonomic and safety. However, unknown system disturbance caused by unmodeled dynamics (such as internal compliance and cables) pose challenges for compensation precision. A theoretical dynamics model and a Bayesian neural network (BNN) trained on separate datasets to predict joint torques and their corresponding uncertainties were independently developed. Then a Bayesian fusion method was employed to combine model-based and data-driven estimates, using predicted standard deviations to assign fusion weights and produce a refined torque output. Compared to relying solely on the CAD model, the proposed fusion framework combines the physical consistency of model-based approaches with the adaptability of data-driven methods. Experiments ultimately demonstrate that the proposed algorithm effectively reduces modeling errors and enhances the accuracy and robustness of gravity compensation. Full article
Show Figures

Figure 1

13 pages, 854 KB  
Article
Biomechanical Compensation Patterns Across Different Phases of Side-Cutting Following Anterior Cruciate Ligament Reconstruction
by Mingxuan Gao, Xialin Ge, Yiming Tao, Longting Suo, Shuang Ren and Yingfang Ao
Bioengineering 2025, 12(12), 1280; https://doi.org/10.3390/bioengineering12121280 - 21 Nov 2025
Viewed by 777
Abstract
(1) Background: Anterior cruciate ligament reconstruction (ACLR) alters lower-limb biomechanics. While gait and running are well-studied, the multi-phase side-cutting remains poorly understood, particularly regarding phase-specific adaptations after ACLR. (2) Methods: Thirty-four patients (19 male, 15 female) at nine months post-ACLR participated. Biomechanical data [...] Read more.
(1) Background: Anterior cruciate ligament reconstruction (ACLR) alters lower-limb biomechanics. While gait and running are well-studied, the multi-phase side-cutting remains poorly understood, particularly regarding phase-specific adaptations after ACLR. (2) Methods: Thirty-four patients (19 male, 15 female) at nine months post-ACLR participated. Biomechanical data during side-cutting were collected using synchronized motion capture and force platforms. Knee joint kinematics and kinetics were analyzed over three phases: initial contact-deceleration, stance pivot, and push-off. (3) Results: During the initial contact-deceleration, the reconstructed limb exhibited greater knee external rotation at the first posterior ground reaction force (pGRF) peak (8.5° vs. 6.3°, p = 0.021), and reduced knee flexion (43.2° vs. 47.3°, p < 0.001) with a lower extension moment at the second pGRF peak (0.10 vs. 0.14 BW·BH; p < 0.001). The stance pivot phase was marked by significantly lower knee flexion (p = 0.001), extension moment (p < 0.001), and medial/vertical GRFs on the reconstructed side (0.49 vs. 0.52 BW, p = 0.029; 1.98 vs. 2.10 BW, p = 0.012). During the push-off, the involved limb demonstrated a significantly lower extension moment (0.008 vs. 0.014 BW·BH, p = 0.037) and anterior GRF (0.20 vs. 0.23 BW, p = 0.010). (4) Conclusions: This study proposes a three-phase compensation model for side-cutting: “rotational instability” at initial contact, “protective unloading” during the stance pivot phase, and “force-generation deficit” at push-off. This three-phase framework provides a new paradigm for evaluating dynamic knee function after ACLR and guiding phase-specific rehabilitation. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Graphical abstract

21 pages, 4230 KB  
Article
Dynamic Analysis and Control Compensation of the Large Optical Mirror Processing Parallel Robot Considering Motion Pair Friction
by Hao Liu, Zujin Jin and Zixin Yin
Lubricants 2025, 13(11), 504; https://doi.org/10.3390/lubricants13110504 - 18 Nov 2025
Viewed by 545
Abstract
The dynamic performance of parallel robots directly determines the machining accuracy in large optical mirror processing (LOMP). However, limitations in traditional dynamic modeling methods hinder their application in real-time control, constraining further improvements in robotic precision. This paper aims to establish a high-precision [...] Read more.
The dynamic performance of parallel robots directly determines the machining accuracy in large optical mirror processing (LOMP). However, limitations in traditional dynamic modeling methods hinder their application in real-time control, constraining further improvements in robotic precision. This paper aims to establish a high-precision and practical dynamic model that considers joint friction for parallel robots used in LOMP, and to design an efficient real-time friction compensation control strategy to effectively enhance trajectory tracking and repetitive positioning accuracy. The novelty of this work lies in proposing a dynamic modeling approach that integrates the static mechanics-based “Disassembly Method” with a “Coulomb + Viscous” friction model. First, static analysis of the mechanism is conducted using the “Disassembly Method” to accurately compute the joint constraint reactions in any pose, providing critical input for friction calculation. Subsequently, a complete dynamic model incorporating friction in joints such as Hooke joints, composite spherical hinges, and ball screws is developed based on the Newton–Euler formulation. This method overcomes the shortcomings of traditional approaches in solving joint reactions and managing model complexity. Numerical simulations demonstrate that, compared to conventional friction-neglected models, the proposed model reveals a maximum increase of approximately 350 N in driving chain joint reaction forces and significant peaks in driving forces at motion reversal instants (e.g., 0.28 s, 0.45 s), quantitatively proving that neglecting friction severely underestimates the actual system loads. Experimental validation shows that the feedforward PD friction compensator designed based on this model reduces the rotational tracking errors of the moving platform around the X- and Y-axis from 0.295° and 0.286° to 0.134° and 0.128°, respectively, achieving an error reduction of about 55% and effectively improving motion control accuracy. This study provides a reliable dynamic modeling foundation and an effective real-time control compensation solution to address force output errors and trajectory deviations caused by joint friction in high-precision LOMP. Full article
(This article belongs to the Special Issue Machine Design and Tribology)
Show Figures

Figure 1

18 pages, 2929 KB  
Article
Investigation of Attenuation Correction Methods for Dual-Gated Single Photon Emission Computed Tomography (DG-SPECT)
by Noor M. Rasel, Christina Xing, Shiwei Zhou, Yongyi Yang, Michael A. King and Mingwu Jin
Bioengineering 2025, 12(11), 1195; https://doi.org/10.3390/bioengineering12111195 - 1 Nov 2025
Viewed by 591
Abstract
Background: Cardiac-respiratory dual gating in SPECT (DG-SPECT) is an emergent technique for alleviating motion blurring artifacts in myocardial perfusion imaging (MPI) due to both cardiac and respiratory motions. Moreover, the attenuation artifact may arise from the spatial mismatch between the sequential SPECT and [...] Read more.
Background: Cardiac-respiratory dual gating in SPECT (DG-SPECT) is an emergent technique for alleviating motion blurring artifacts in myocardial perfusion imaging (MPI) due to both cardiac and respiratory motions. Moreover, the attenuation artifact may arise from the spatial mismatch between the sequential SPECT and CT attenuation scans due to the dual gating of SPECT data and non-gating CT images. Objectives: This study adapts a four-dimensional (4D) cardiac SPECT reconstruction with post-reconstruction respiratory motion correction (4D-RMC) for dual-gated SPECT. In theory, a respiratory motion-matched attenuation correction (MAC) method is expected to yield more accurate reconstruction results than the conventional motion-averaged attenuation correction (AAC) method. However, its potential benefit is not clear in the presence of practical imaging artifacts in DG-SPECT. In this study, we aim to quantitatively investigate these two attenuation methods for SPECT MPI: 4D-RMC (MAC) and 4D-RMC (AAC). Methods: DG-SPECT imaging (eight cardiac gates and eight respiratory gates) of the NCAT phantom was simulated using SIMIND Monte Carlo simulation, with a lesion (20% reduction in uptake) introduced at four different locations of the left ventricular wall: anterior, lateral, septal, and inferior. For each respiratory gate, a joint cardiac motion-compensated 4D reconstruction was used. Then, the respiratory motion was estimated for post-reconstruction respiratory motion-compensated smoothing for all respiratory gates. The attenuation map averaged over eight respiratory gates was used for each respiratory gate in 4D-RMC (AAC) and the matched attenuation map was used for each respiratory gate in 4D-RMC (MAC). The relative root mean squared error (RMSE), structural similarity index measurement (SSIM), and a Channelized Hotelling Observer (CHO) study were employed to quantitatively evaluate different reconstruction and attenuation correction strategies. Results: Our results show that the 4D-RMC (MAC) method improves the average relative RMSE by as high as 5.42% and the average SSIM value by as high as 1.28% compared to the 4D-RMC (AAC) method. Compared to traditional 4D reconstruction without RMC (“4D (MAC)”), these metrics were improved by as high as 11.23% and 27.96%, respectively. The 4D-RMC methods outperformed 4D (without RMC) on the CHO study with the largest improvement for the anterior lesion. However, the image intensity profiles, the CHO assessment, and reconstruction images are very similar between 4D-RMC (MAC) and 4D-RMC (AAC). Conclusions: Our results indicate that the improvement of 4D-RMC (MAC) over 4D-RMC (AAC) is marginal in terms of lesion detectability and visual quality, which may be attributed to the simple NCAT phantom simulation, but otherwise suggest that AAC may be sufficient for clinical use. However, further evaluation of the MAC technique using more physiologically realistic digital phantoms that incorporate diverse patient anatomies and irregular respiratory motion is warranted to determine its potential clinical advantages for specific patient populations undergoing dual-gated SPECT myocardial perfusion imaging. Full article
Show Figures

Figure 1

24 pages, 4301 KB  
Article
Control Deficits and Compensatory Mechanisms in Individuals with Chronic Ankle Instability During Dual-Task Stair-to-Ground Transition
by Yilin Zhong, Xuanzhen Cen, Xiaopan Hu, Datao Xu, Lei Tu, Monèm Jemni, Gusztáv Fekete, Dong Sun and Yang Song
Bioengineering 2025, 12(10), 1120; https://doi.org/10.3390/bioengineering12101120 - 19 Oct 2025
Cited by 1 | Viewed by 1413
Abstract
(1) Background: Chronic ankle instability (CAI), a common outcome of ankle sprains, involves recurrent sprains, balance deficits, and gait impairments linked to both peripheral and central neuromuscular dysfunction. Dual-task (DT) demands further aggravate postural control, especially during stair descent, a major source of [...] Read more.
(1) Background: Chronic ankle instability (CAI), a common outcome of ankle sprains, involves recurrent sprains, balance deficits, and gait impairments linked to both peripheral and central neuromuscular dysfunction. Dual-task (DT) demands further aggravate postural control, especially during stair descent, a major source of fall-related injuries. Yet the biomechanical mechanisms of stair-to-ground transition in CAI under dual-task conditions remain poorly understood. (2) Methods: Sixty individuals with CAI and age- and sex-matched controls performed stair-to-ground transitions under single- and dual-task conditions. Spatiotemporal gait parameters, center of pressure (COP) metrics, ankle inversion angle, and relative joint work contributions (Ankle%, Knee%, Hip%) were obtained using 3D motion capture, a force plate, and musculoskeletal modeling. Correlation and regression analyses assessed the relationships between ankle contributions, postural stability, and proximal joint compensations. (3) Results: Compared with the controls, the CAI group demonstrated marked control deficits during the single task (ST), characterized by reduced gait speed, increased step width, elevated mediolateral COP root mean square (COP-ml RMS), and abnormal ankle inversion and joint kinematics; these impairments were exacerbated under DT conditions. Individuals with CAI exhibited a significantly reduced ankle plantarflexion moment and energy contribution (Ankle%), accompanied by compensatory increases in knee and hip contributions. Regression analyses indicated that Ankle% significantly predicted COP-ml RMS and gait speed (GS), highlighting the pivotal role of ankle function in maintaining dynamic stability. Furthermore, CAI participants adopted a “posture-first” strategy under DT, with concurrent deterioration in gait and cognitive performance, reflecting strong reliance on attentional resources. (4) Conclusions: CAI involves global control deficits, including distal insufficiency, proximal compensation, and an inefficient energy distribution, which intensify under dual-task conditions. As the ankle is central to lower-limb kinetics, its dysfunction induces widespread instability. Rehabilitation should therefore target coordinated lower-limb training and progressive dual-task integration to improve motor control and dynamic stability. Full article
Show Figures

Figure 1

10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Viewed by 1186
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

29 pages, 16170 KB  
Article
Digital Twin System for Mill Relining Manipulator Path Planning Simulation
by Mingyuan Wang, Yujun Xue, Jishun Li, Shuai Li and Yunhua Bai
Machines 2025, 13(9), 823; https://doi.org/10.3390/machines13090823 - 6 Sep 2025
Cited by 2 | Viewed by 919
Abstract
A mill relining manipulator is key maintenance equipment for liners exchanged and operated by workers inside a grinding mill. To improve the operation efficiency and safety, real-time path planning and end deformation compensation should be performed prior to actual execution. This paper proposes [...] Read more.
A mill relining manipulator is key maintenance equipment for liners exchanged and operated by workers inside a grinding mill. To improve the operation efficiency and safety, real-time path planning and end deformation compensation should be performed prior to actual execution. This paper proposes a five-dimensional digital twin framework to realize virtual–real interaction between a physical manipulator and virtual model. First, a real-time digital twin scene is established based on OpenGL. The involved technologies include scene rendering, a camera system, the light design, model importation, joint control, and data transmission. Next, different solving methods are introduced into the service space for relining tasks, including a kinematics model, collision detection, path planning, and end deformation compensation. Finally, a user application is developed to realize real-time condition monitoring and simulation analysis visualization. Through comparison experiments, the superiority of the proposed path planning algorithm is demonstrated. In the case of a long-distance relining task, the planning time and path length of the proposed algorithm are 1.7 s and 15,299 mm, respectively. For motion smoothness, the joint change curve exhibits no abrupt variation. In addition, the experimental results between original and modified end trajectories further verified the effectiveness and feasibility of the proposed end effector compensation method. This study can also be extended to other heavy-duty manipulators to realize intelligent automation. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 2785 KB  
Article
Dynamic Posture Programming for Robotic Milling Based on Cutting Force Directional Stiffness Performance
by Yuhang Gao, Tianyang Qiu, Ci Song, Senjie Ma, Zhibing Liu, Zhiqiang Liang and Xibin Wang
Machines 2025, 13(9), 822; https://doi.org/10.3390/machines13090822 - 6 Sep 2025
Cited by 1 | Viewed by 985
Abstract
Robotic milling offers significant advantages for machining large aerospace components due to its low cost and high flexibility. However, compared to computerized numerical control (CNC) machine tools, robot systems exhibit lower stiffness, leading to force-induced deformation during milling process that significantly compromises path [...] Read more.
Robotic milling offers significant advantages for machining large aerospace components due to its low cost and high flexibility. However, compared to computerized numerical control (CNC) machine tools, robot systems exhibit lower stiffness, leading to force-induced deformation during milling process that significantly compromises path accuracy. This study proposed a dynamic robot posture programming method to enhance the stiffness for aluminum alloy milling task. Firstly, a milling force prediction model is established and validated under multiple postures and various milling parameters, confirming its stability and reliability. Secondly, a robot stiffness model is developed by combining system stiffness and milling forces within the milling coordinate system to formulate an optimization index representing stiffness performance in the actual load direction. Finally, considering the constraints of joint limit, singular position and joint motion smoothness and so on, the robot posture in the milling trajectory is dynamically programmed, and the joint angle sequence with the optimal average stiffness from any cutter location (CL) point to the end of the trajectory is obtained. Under the assumption that positioning errors were effectively compensated, the experimental results demonstrated that the proposed method can control both axial and radial machining errors within 0.1 mm at discrete points. For the specific milling trajectory, compared to the single-step optimization algorithm starting from the initial optimal posture, the proposed method reduced the axial error by 12.23% and the radial error by 8.61%. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

Back to TopTop