Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = ischemic microenvironment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4011 KB  
Article
Extracellular Vesicle Secretion from 3D Culture of Human Adipose-Derived Mesenchymal Stem Cells in Scalable Bioreactors
by Shaoyang Ma, Justice Ene, Colton McGarraugh, Shaoxuan Ma, Colin Esmonde, Yuan Liu and Yan Li
Bioengineering 2025, 12(9), 933; https://doi.org/10.3390/bioengineering12090933 - 29 Aug 2025
Viewed by 1087
Abstract
Human mesenchymal stem cells (hMSCs) and their secreted extracellular vesicles (EVs) are promising therapeutics to treat degenerative or inflammatory diseases such as ischemic stroke and Alzheimer’s disease (AD). hMSC-EVs have the coveted ability to contain therapeutically relevant biomaterials; however, EV biogenesis is sensitive [...] Read more.
Human mesenchymal stem cells (hMSCs) and their secreted extracellular vesicles (EVs) are promising therapeutics to treat degenerative or inflammatory diseases such as ischemic stroke and Alzheimer’s disease (AD). hMSC-EVs have the coveted ability to contain therapeutically relevant biomaterials; however, EV biogenesis is sensitive to the culture microenvironment in vitro. Recently, the demand for hMSC-EVs has increased dramatically, highlighting the need for scalable bioreactors for large-scale biomanufacturing. In this study, adipose-derived hMSCs were seeded in 2D plates, an ultralow-attachment (ULA) plates as static aggregates, a novel vertical wheel bioreactor (VWBR) as aggregates, and a spinner flask bioreactor (SFB). EV secretion was quantified and compared using ExtraPEG-based ultracentrifugation and nanoparticle tracking analysis. Compared to the 2D group, significantly higher total EV production and cell productivity in the bioreactors were observed, as well as the upregulation of EV biogenesis genes. Furthermore, there was increased EV production in the VWBR compared to the SFB and the static ULA control. Functional assessments demonstrated that EVs, when delivered via culture medium or hydrogel-based systems, significantly attenuated oxidative stress elevation, suppressed proinflammatory cytokine secretion (e.g., TNF-α) and gene expression, and inhibited nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation and neurodegenerative markers across in vitro assays. These findings suggest EV-mediated mitigation of oxidative and inflammatory pathways, potentially through modulation of the NF-κB signaling cascade. This study shows the influence of bioreactor types and their microenvironments on EV secretion in hMSCs and their applications in hMSC-EV production and bioengineering. Full article
Show Figures

Figure 1

25 pages, 672 KB  
Review
Stem Cell Therapy Approaches for Ischemia: Assessing Current Innovations and Future Directions
by Changguo Ma, An Yu, Tingyan He, Yulin Qian and Min Hu
Int. J. Mol. Sci. 2025, 26(13), 6320; https://doi.org/10.3390/ijms26136320 - 30 Jun 2025
Cited by 3 | Viewed by 1106
Abstract
Characterized by insufficient blood supply leading to tissue hypoxia and damage, ischemia is the underlying cause of major conditions such as ischemic stroke, myocardial infarction, and peripheral artery disease. Stem cell therapy, as a regenerative strategy, demonstrates significant potential in restoring tissue blood [...] Read more.
Characterized by insufficient blood supply leading to tissue hypoxia and damage, ischemia is the underlying cause of major conditions such as ischemic stroke, myocardial infarction, and peripheral artery disease. Stem cell therapy, as a regenerative strategy, demonstrates significant potential in restoring tissue blood flow and organ function in ischemic environments. This review systematically explores the latest advances in stem cell therapy for ischemic diseases, focusing on different cell types and their mechanisms of action, including direct differentiation, paracrine signaling, immunomodulation, and microenvironment regulation. Furthermore, it highlights innovations in gene editing and bioengineering technologies that enhance cell delivery, targeting, and therapeutic efficacy. Simultaneously, this article discusses the challenges faced, advances in cell tracking and delivery, and future research directions, aiming to provide insights for the development of more effective and personalized treatment strategies Full article
(This article belongs to the Special Issue Advances in the Prevention and Treatment of Ischemic Diseases)
Show Figures

Figure 1

22 pages, 8985 KB  
Article
Huanglian Jiedu Decoction Treats Ischemic Stroke by Regulating Pyroptosis: Insights from Multi-Omics and Drug–Target Relationship Analysis
by Yixiao Gu, Zijin Sun, Tao Li and Xia Ding
Pharmaceuticals 2025, 18(6), 775; https://doi.org/10.3390/ph18060775 - 23 May 2025
Cited by 1 | Viewed by 1334
Abstract
Background: Ischemic stroke (IS) is a severe condition with limited therapeutic options. Pyroptosis, a type of programmed cell death linked to inflammation, is closely associated with IS-related damage. Studies suggest inflammation aligns with the traditional Chinese medicine (TCM) concept of “fire-heat syndrome”. Huanglian [...] Read more.
Background: Ischemic stroke (IS) is a severe condition with limited therapeutic options. Pyroptosis, a type of programmed cell death linked to inflammation, is closely associated with IS-related damage. Studies suggest inflammation aligns with the traditional Chinese medicine (TCM) concept of “fire-heat syndrome”. Huanglian Jiedu Decoction (HLJD), a TCM formula known for clearing heat and purging fire, has shown therapeutic effects on IS, potentially by regulating pyroptosis. Study design: Eight-week-old male mice were divided into six groups: sham operation, model, positive drug, and low-, medium-, and high-dose HLJD groups. After a week of adaptive feeding, mice received respective treatments for five days, followed by modeling on the sixth day, with samples collected 23 h post-perfusion. Analyses included multi-omics, physiology, histopathology, virtual drug screening, target affinity assessment, and molecular biology techniques to measure relevant indicators. Results: HLJD effectively mitigated IS-related damage, maintaining neurological function, reducing ischemic levels, protecting cellular morphology, inhibiting neuronal apoptosis, and preserving blood–brain barrier integrity. Bioinformatics of high-throughput omics data revealed significant activation of pyroptosis and related inflammatory pathways in IS. ScRNA-seq identified neutrophils, macrophages, and microglia as key pyroptotic cell types, suggesting potential therapeutic targets. Network pharmacology and molecular docking identified NLRP3 as a critical target, with 6819 ligand–receptor docking results. SPR molecular fishing, LC-MS, molecular dynamics, and affinity measurements identified small molecules with high affinity for NLRP3. Molecular biology techniques confirmed that HLJD regulates pyroptosis via the classical inflammasome signaling pathway and modulates the inflammatory microenvironment. Conclusions: Following IS, pyroptosis in myeloid cells triggers an inflammatory cascade, leading to neural damage. HLJD may inhibit NLRP3 activity, reducing pyroptosis and associated inflammation, and ultimately mitigating damage. Full article
Show Figures

Figure 1

26 pages, 2960 KB  
Review
Exosomes in Central Nervous System Diseases: A Comprehensive Review of Emerging Research and Clinical Frontiers
by Jingrun Li, Jiahao Song, Lina Jia, Mengqi Wang, Xunming Ji, Ran Meng and Da Zhou
Biomolecules 2024, 14(12), 1519; https://doi.org/10.3390/biom14121519 - 27 Nov 2024
Cited by 7 | Viewed by 3595
Abstract
Exosomes, nano-sized lipid bilayer vesicles, have garnered significant attention as mediators of cell communication, particularly within the central nervous system (CNS). Their unique properties, including high stability, low immunogenicity, and the ability to traverse the blood-brain barrier (BBB), position them as promising tools [...] Read more.
Exosomes, nano-sized lipid bilayer vesicles, have garnered significant attention as mediators of cell communication, particularly within the central nervous system (CNS). Their unique properties, including high stability, low immunogenicity, and the ability to traverse the blood-brain barrier (BBB), position them as promising tools for understanding and addressing CNS diseases. This comprehensive review delves into the biogenesis, properties, composition, functions, and isolation of exosomes, with a particular focus on their roles in cerebrovascular diseases, neurodegenerative disorders, and CNS tumors. Exosomes are involved in key pathophysiological processes in the CNS, including angiogenesis, inflammation, apoptosis, and cellular microenvironment modification. They demonstrate promise in mitigating ischemic injury, regulating inflammatory responses, and providing neuroprotection across various CNS conditions. Furthermore, exosomes carry distinct biomolecules, offering a novel method for the early diagnosis and monitoring of CNS diseases. Despite their potential, challenges such as complex extraction processes, the heterogeneity of exosomal contents, and targeted delivery limitations hinder their clinical application. Nevertheless, exosomes hold significant promise for advancing our understanding of CNS diseases and developing novel therapeutic strategies. This manuscript significantly contributes to the field by highlighting exosomes’ potential in advancing our understanding of CNS diseases, underscoring their unique value in developing novel therapeutic strategies and mediating cellular communication. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Ischemic Stroke)
Show Figures

Figure 1

18 pages, 1427 KB  
Review
Machine Perfusion as a Strategy to Decrease Ischemia-Reperfusion Injury and Lower Cancer Recurrence Following Liver Transplantation
by Karla Bracho Garcia, Ahmed Hussein, Sangeeta Satish, Chase J. Wehrle, Omer Karakaya, Rebecca Panconesi, Keyue Sun, Chunbao Jiao, Eduardo Fernandes, Antonio Pinna, Koji Hashimoto, Charles Miller, Federico Aucejo and Andrea Schlegel
Cancers 2024, 16(23), 3959; https://doi.org/10.3390/cancers16233959 - 26 Nov 2024
Cited by 4 | Viewed by 2129
Abstract
Liver transplantation (LT) is a key treatment for primary and secondary liver cancers, reducing tumor burden with concurrent improvement of liver function. While significant improvement in survival is noted with LT, cancer recurrence rates remain high. Mitochondrial dysfunction caused by ischemia-reperfusion injury (IRI) [...] Read more.
Liver transplantation (LT) is a key treatment for primary and secondary liver cancers, reducing tumor burden with concurrent improvement of liver function. While significant improvement in survival is noted with LT, cancer recurrence rates remain high. Mitochondrial dysfunction caused by ischemia-reperfusion injury (IRI) is known to drive tumor recurrence by creating a favorable microenvironment rich in pro-inflammatory and angiogenic factors. Therefore, strategies that decrease reperfusion injury and mitochondrial dysfunction may also decrease cancer recurrence following LT. Machine perfusion techniques are increasingly used in routine clinical practice of LT with improved post-transplant outcomes and increased use of marginal grafts. Normothermic (NMP) and hypothermic oxygenated machine perfusion (HOPE) provide oxygen to ischemic tissues, and impact IRI and potential cancer recurrence through different mechanisms. This article discussed the link between IRI-associated inflammation and tumor recurrence after LT. The current literature was screened for the role of machine perfusion as a strategy to mitigate the risk of cancer recurrence. Upfront NMP (“ischemia free organ transplantation”) and end-ischemic HOPE were shown to reduce hepatocellular carcinoma recurrence in retrospective studies. Three prospective randomized controlled trials are ongoing in Europe to provide robust evidence on the impact of HOPE on cancer recurrence in LT. Full article
Show Figures

Figure 1

31 pages, 2372 KB  
Review
Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds
by Danny Aljamal, Priya S. Iyengar and Tammy T. Nguyen
Pharmaceutics 2024, 16(6), 750; https://doi.org/10.3390/pharmaceutics16060750 - 2 Jun 2024
Cited by 6 | Viewed by 3914
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound [...] Read more.
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design. Full article
Show Figures

Figure 1

17 pages, 931 KB  
Review
Cardiac and Nephrological Complications Related to the Use of Antiangiogenic and Anti-Programmed Cell Death Protein 1 Receptor/Programmed Cell Death Protein 1 Ligand Therapy
by Paulina Stachyra-Strawa, Lidia Szatkowska-Sieczek, Paweł Cisek, Paweł Gołębiowski and Ludmiła Grzybowska-Szatkowska
Genes 2024, 15(2), 177; https://doi.org/10.3390/genes15020177 - 28 Jan 2024
Cited by 4 | Viewed by 3117
Abstract
The ability to undergo neoangiogenesis is a common feature with all cancers. Signaling related to vascular endothelial growth factors (VEGF) and their receptors (VEGFR) plays a key role in the process of tumor neoangiogenesis. A close relationship has been demonstrated between excessive VEGF [...] Read more.
The ability to undergo neoangiogenesis is a common feature with all cancers. Signaling related to vascular endothelial growth factors (VEGF) and their receptors (VEGFR) plays a key role in the process of tumor neoangiogenesis. A close relationship has been demonstrated between excessive VEGF levels and the induction of immunosuppression in the tumor microenvironment. The use of drugs blocking the VEGF function, apart from the anticancer effect, also result in adverse effects, in particular related to the circulatory system and kidneys. Cardiac toxicity associated with the use of such therapy manifests itself mainly in the form of hypertension, thromboembolic episodes and ischemic heart disease. In the case of renal complications, the most common symptoms include renal arterial hypertension, proteinuria and microangiopathy. Although these complications are reversible in 60–80% of cases after cessation of VSP (VEGF pathway inhibitor) therapy, in some cases they can lead to irreversible changes in renal function, whereas cardiac complications may be fatal. Also, the use of PD-1/PD-L1 inhibitors may result in kidney and heart damage. In the case of cardiac complications, the most common symptoms include myocarditis, pericarditis, arrhythmia, acute coronary syndrome and vasculitis, while kidney damage most often manifests as acute kidney injury (AKI), nephrotic syndrome, pyuria or hematuria. The decision whether to resume treatment after the occurrence of cardiovascular and renal complications remains a problem. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 4453 KB  
Article
Systemic Characterization of the Gut Microbiota Profile after Single Mild Ischemic Stroke and Recurrent Stroke in Mice
by Decao Yang, Panxi Sun, Yong Chen, Haojie Jin, Baohui Xu, Qingbian Ma, Lixiang Xue and Yan Wang
Biomedicines 2024, 12(1), 195; https://doi.org/10.3390/biomedicines12010195 - 16 Jan 2024
Cited by 3 | Viewed by 2279
Abstract
It has been estimated that one in four stroke patients may have recurrent stroke within five years after they experienced the first stroke. Furthermore, clinical studies have shown that recurrent stroke negatively affects patient outcomes; the risk of disability and the death rate [...] Read more.
It has been estimated that one in four stroke patients may have recurrent stroke within five years after they experienced the first stroke. Furthermore, clinical studies have shown that recurrent stroke negatively affects patient outcomes; the risk of disability and the death rate increase with each recurrent stroke. Therefore, it is urgent to find effective methods to prevent recurrent stroke. The gut microbiota has been proven to play an essential role after ischemic stroke, while sudden ischemia disrupts microbial dysbiosis, and the metabolites secreted by the microbiota also reshape the gut microenvironment. In the present study, we established a recurrent ischemic mouse model. Using this experimental model, we compared the survival rate and ischemic infarction between single MCAO and recurrent MCAO, showing that, when two surgeries were performed, the mouse survival rate dramatically decreased, while the infarction size increased. Fecal samples were collected on day 1, day 3 and day 7 after the first MCAO and day 9 (2 days after the second MCAO) for 16S sequencing, which provided a relatively comprehensive picture of the microbiota changes. By further analyzing the potential metabolic pathways, our data also highlighted several important pathways that were significantly altered after the first and recurrent stroke. In the present study, using an experimental mouse model, we showed that acute ischemic stroke, especially recurrent ischemia, significantly decreased the diversity of the gut microbiota. Full article
(This article belongs to the Special Issue Advanced Research in Stroke)
Show Figures

Figure 1

12 pages, 4973 KB  
Article
Tumor Necrosis Factor-Alpha Induces Proangiogenic Profiling of Cardiosphere-Derived Cell Secretome and Increases Its Ability to Stimulate Angiogenic Properties of Endothelial Cells
by Konstantin Dergilev, Ekaterina Zubkova, Alika Guseva, Zoya Tsokolaeva, Yulia Goltseva, Irina Beloglazova, Elizaveta Ratner, Alexander Andreev, Stanislav Partigulov, Mikhail Lepilin, Mikhail Menshikov and Yelena Parfyonova
Int. J. Mol. Sci. 2023, 24(23), 16575; https://doi.org/10.3390/ijms242316575 - 21 Nov 2023
Cited by 2 | Viewed by 2451
Abstract
Ischemic heart disease and its complications, such as myocardial infarction and heart failure, are the leading causes of death in modern society. The adult heart innately lacks the capacity to regenerate the damaged myocardium after ischemic injury. Multiple lines of evidence indicated that [...] Read more.
Ischemic heart disease and its complications, such as myocardial infarction and heart failure, are the leading causes of death in modern society. The adult heart innately lacks the capacity to regenerate the damaged myocardium after ischemic injury. Multiple lines of evidence indicated that stem-cell-based transplantation is one of the most promising treatments for damaged myocardial tissue. Different kinds of stem cells have their advantages for treating ischemic heart disease. One facet of their mechanism is the paracrine effect of the transplanted cells. Particularly promising are stem cells derived from cardiac tissue per se, referred to as cardiosphere-derived cells (CDCs), whose therapeutic effect is mediated by the paracrine mechanism through secretion of multiple bioactive molecules providing immunomodulatory, angiogenic, anti-fibrotic, and anti-inflammatory effects. Although secretome-based therapies are increasingly being used to treat various cardiac pathologies, many obstacles remain because of population heterogeneity, insufficient understanding of potential modulating compounds, and the principles of secretome regulation, which greatly limit the feasibility of this technology. In addition, components of the inflammatory microenvironment in ischemic myocardium may influence the secretome content of transplanted CDCs, thus altering the efficacy of cell therapy. In this work, we studied how Tumor necrosis factor alpha (TNFa), as a key component of the pro-inflammatory microenvironment in damaged myocardium from ischemic injury and heart failure, may affect the secretome content of CDCs and their angiogenic properties. We have shown for the first time that TNFa may act as a promising compound modulating the CDC secretome, which induces its profiling to enhance proangiogenic effects on endothelial cells. These results allow us to elucidate the underlying mechanisms of the impact of the inflammatory microenvironment on transplanted CDCs and may contribute to the optimization of CDC efficiency and the development of the technology for producing the CDC secretome with enhanced proangiogenic properties for cell-free therapy. Full article
Show Figures

Figure 1

18 pages, 12872 KB  
Brief Report
Molecular Networks of Platinum Drugs and Their Interaction with microRNAs in Cancer
by Shihori Tanabe, Eger Boonstra, Taehun Hong, Sabina Quader, Ryuichi Ono, Horacio Cabral, Kazuhiko Aoyagi, Hiroshi Yokozaki, Edward J. Perkins and Hiroki Sasaki
Genes 2023, 14(11), 2073; https://doi.org/10.3390/genes14112073 - 13 Nov 2023
Cited by 1 | Viewed by 2829
Abstract
The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of [...] Read more.
The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of cancers. Since diffuse-type stomach adenocarcinoma, which has epithelial–mesenchymal transition (EMT)-like characteristics, is more malignant than intestinal-type stomach adenocarcinoma, the gene expression and molecular networks in diffuse- and intestinal-type stomach adenocarcinomas were analyzed. Analysis of carboplatin revealed the causal network in diffuse large B-cell lymphoma. The upstream regulators of the molecular networks of cisplatin-treated lung adenocarcinoma included the anti-cancer drug trichostatin A (TSA), a histone deacetylase inhibitor. The upstream regulator analysis of cisplatin revealed an increase in FAS, BTG2, SESN1, and CDKN1A, and the involvement of the tumor microenvironment pathway. The molecular networks were predicted to interact with several microRNAs, which may contribute to the identification of new drug targets for drug-resistant cancer. Analysis of oxaliplatin, a platinum drug, revealed that the SPINK1 pancreatic cancer pathway is inactivated in ischemic cardiomyopathy. The study showed the importance of the molecular networks of anti-cancer drugs and tumor microenvironment in the treatment of cancer resistant to anti-cancer drugs. Full article
(This article belongs to the Special Issue Small Non-coding RNAs in Normal Physiology, Development and Diseases)
Show Figures

Figure 1

14 pages, 1994 KB  
Article
A Human Brain Model Mimicking Umbilical Cord Mesenchymal Stem Cells for the Treatment of Hypoxic-Ischemic Brain Injury
by Xidan Li, Haijing Liu, Chao Han, Jianglin Luo, Xin Guan, Liang Wang, Ying Li, Jiayi Wang, Hua Piao, Wei Zou and Jing Liu
Int. J. Mol. Sci. 2023, 24(18), 14208; https://doi.org/10.3390/ijms241814208 - 18 Sep 2023
Cited by 4 | Viewed by 2057
Abstract
We used an in vitro model of the human brain immune microenvironment to simulate hypoxic-ischemic brain injury (HIBI) and treatment with human umbilical cord mesenchymal stem cells (hUMSCs) to address the transformation barriers of gene differences between animals and humans in preclinical research. [...] Read more.
We used an in vitro model of the human brain immune microenvironment to simulate hypoxic-ischemic brain injury (HIBI) and treatment with human umbilical cord mesenchymal stem cells (hUMSCs) to address the transformation barriers of gene differences between animals and humans in preclinical research. A co-culture system, termed hNAME, consisted of human hippocampal neurons (N), astrocytes (A), microglia (M), and brain microvascular endothelial cells (E). Flow cytometry measured the apoptosis rates of neurons and endothelial cells. hNAME-neurons and endothelial cells experienced more severe damage than monolayer cells, particularly after 48 h and 24 h of reoxygenation (OGD48/R24). Western blotting identified neuroinflammatory response markers, including HIF-1α, C1q, C3, TNF-α, and iNOS. Inflammatory factors originated from the glial chamber rather than the neurons and vascular endothelial chambers. A gradual increase in the release of inflammatory factors was observed as the OGD and reoxygenation times increased, peaking at OGD48/R24. The hNAME value was confirmed in human umbilical cord mesenchymal stem cells (hUMSCs). Treatment with hUMSCs resulted in a notable decrease in the severity of neuronal and endothelial cell damage in hNAME. The hNAME is an ideal in vitro model for simulating the immune microenvironment of the human brain because of the interactions between neurons, vessels, astrocytes, and microglia. Full article
Show Figures

Figure 1

40 pages, 11309 KB  
Review
Progress in Research on Stem Cells in Neonatal Refractory Diseases
by Fangjun Huang, Yang He, Meng Zhang, Keren Luo, Jiawen Li, Jiali Li, Xinyu Zhang, Xiaoyan Dong and Jun Tang
J. Pers. Med. 2023, 13(8), 1281; https://doi.org/10.3390/jpm13081281 - 21 Aug 2023
Cited by 3 | Viewed by 2710
Abstract
With the development and progress of medical technology, the survival rate of premature and low-birth-weight infants has increased, as has the incidence of a variety of neonatal diseases, such as hypoxic–ischemic encephalopathy, intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. These [...] Read more.
With the development and progress of medical technology, the survival rate of premature and low-birth-weight infants has increased, as has the incidence of a variety of neonatal diseases, such as hypoxic–ischemic encephalopathy, intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. These diseases cause severe health conditions with poor prognoses, and existing control methods are ineffective for such diseases. Stem cells are a special type of cells with self-renewal and differentiation potential, and their mechanisms mainly include anti-inflammatory and anti-apoptotic properties, reducing oxidative stress, and boosting regeneration. Their paracrine effects can affect the microenvironment in which they survive, thereby affecting the biological characteristics of other cells. Due to their unique abilities, stem cells have been used in treating various diseases. Therefore, stem cell therapy may open up the possibility of treating such neonatal diseases. This review summarizes the research progress on stem cells and exosomes derived from stem cells in neonatal refractory diseases to provide new insights for most researchers and clinicians regarding future treatments. In addition, the current challenges and perspectives in stem cell therapy are discussed. Full article
(This article belongs to the Section Regenerative Medicine and Therapeutics)
Show Figures

Figure 1

16 pages, 1024 KB  
Review
Cerebrospinal Fluid Biomarkers for Diagnosis and the Prognostication of Acute Ischemic Stroke: A Systematic Review
by Anant Naik, Olufunmilola Adeleye, Stefan W. Koester, Ethan A. Winkler, Joelle N. Hartke, Katherine Karahalios, Sandra Mihaljevic, Anupama Rani, Sudhanshu Raikwar, Jarrod D. Rulney, Shashvat M. Desai, Lea Scherschinski, Andrew F. Ducruet, Felipe C. Albuquerque, Michael T. Lawton, Joshua S. Catapano, Ashutosh P. Jadhav and Ruchira M. Jha
Int. J. Mol. Sci. 2023, 24(13), 10902; https://doi.org/10.3390/ijms241310902 - 30 Jun 2023
Cited by 13 | Viewed by 4584
Abstract
Despite the high incidence and burden of stroke, biological biomarkers are not used routinely in clinical practice to diagnose, determine progression, or prognosticate outcomes of acute ischemic stroke (AIS). Because of its direct interface with neural tissue, cerebrospinal fluid (CSF) is a potentially [...] Read more.
Despite the high incidence and burden of stroke, biological biomarkers are not used routinely in clinical practice to diagnose, determine progression, or prognosticate outcomes of acute ischemic stroke (AIS). Because of its direct interface with neural tissue, cerebrospinal fluid (CSF) is a potentially valuable source for biomarker development. This systematic review was conducted using three databases. All trials investigating clinical and preclinical models for CSF biomarkers for AIS diagnosis, prognostication, and severity grading were included, yielding 22 human trials and five animal studies for analysis. In total, 21 biomarkers and other multiomic proteomic markers were identified. S100B, inflammatory markers (including tumor necrosis factor-alpha and interleukin 6), and free fatty acids were the most frequently studied biomarkers. The review showed that CSF is an effective medium for biomarker acquisition for AIS. Although CSF is not routinely clinically obtained, a potential benefit of CSF studies is identifying valuable biomarkers from the pathophysiologic microenvironment that ultimately inform optimization of targeted low-abundance assays from peripheral biofluid samples (e.g., plasma). Several important catabolic and anabolic markers can serve as effective measures of diagnosis, etiology identification, prognostication, and severity grading. Trials with large cohorts studying the efficacy of biomarkers in altering clinical management are still needed. Full article
(This article belongs to the Special Issue Pharmacological Strategies for Neuroinflammation in Brain Injury)
Show Figures

Figure 1

15 pages, 1226 KB  
Review
Advances in 3D Organoid Models for Stem Cell-Based Cardiac Regeneration
by Marcy Martin, Eric K. N. Gähwiler, Melanie Generali, Simon P. Hoerstrup and Maximilian Y. Emmert
Int. J. Mol. Sci. 2023, 24(6), 5188; https://doi.org/10.3390/ijms24065188 - 8 Mar 2023
Cited by 9 | Viewed by 7096
Abstract
The adult human heart cannot regain complete cardiac function following tissue injury, making cardiac regeneration a current clinical unmet need. There are a number of clinical procedures aimed at reducing ischemic damage following injury; however, it has not yet been possible to stimulate [...] Read more.
The adult human heart cannot regain complete cardiac function following tissue injury, making cardiac regeneration a current clinical unmet need. There are a number of clinical procedures aimed at reducing ischemic damage following injury; however, it has not yet been possible to stimulate adult cardiomyocytes to recover and proliferate. The emergence of pluripotent stem cell technologies and 3D culture systems has revolutionized the field. Specifically, 3D culture systems have enhanced precision medicine through obtaining a more accurate human microenvironmental condition to model disease and/or drug interactions in vitro. In this study, we cover current advances and limitations in stem cell-based cardiac regenerative medicine. Specifically, we discuss the clinical implementation and limitations of stem cell-based technologies and ongoing clinical trials. We then address the advent of 3D culture systems to produce cardiac organoids that may better represent the human heart microenvironment for disease modeling and genetic screening. Finally, we delve into the insights gained from cardiac organoids in relation to cardiac regeneration and further discuss the implications for clinical translation. Full article
(This article belongs to the Special Issue Stem Cells and Cardiovascular Diseases)
Show Figures

Figure 1

13 pages, 1638 KB  
Article
Depletion of Arg1-Positive Microglia/Macrophages Exacerbates Cerebral Ischemic Damage by Facilitating the Inflammatory Response
by Ting Li, Jin Zhao and Hao Gao
Int. J. Mol. Sci. 2022, 23(21), 13055; https://doi.org/10.3390/ijms232113055 - 27 Oct 2022
Cited by 25 | Viewed by 4679
Abstract
Stroke is a serious worldwide disease that causes death and disability, more than 80% of which is ischemic stroke. The expression of arginase 1 (Arg1), a key player in regulating nitrogen homeostasis, is altered in the peripheral circulation after stroke. Growing evidence indicates [...] Read more.
Stroke is a serious worldwide disease that causes death and disability, more than 80% of which is ischemic stroke. The expression of arginase 1 (Arg1), a key player in regulating nitrogen homeostasis, is altered in the peripheral circulation after stroke. Growing evidence indicates that ischemic stroke also induces upregulated Arg1 expression in the central nervous system, especially in activated microglia and macrophages. This implies that Arg1 may affect stroke progression by modulating the cerebral immune response. To investigate the effect of Arg1+ microglia/macrophages on ischemic stroke, we selectively eliminated cerebral Arg1+ microglia/macrophages by mannosylated clodronate liposomes (MCLs) and investigated their effects on behavior, neurological deficits, and inflammatory responses in mice after ischemic stroke. More than half of Arg1+ cells, mainly Arg1+ microglia/macrophages, were depleted after MCLs administration, resulting in a significant deterioration of motility in mice. After the elimination of Arg1+ microglia/macrophages, the infarct volume expanded and neuronal degenerative lesions intensified. Meanwhile, the absence of Arg1+ microglia/macrophages significantly increased the production of pro-inflammatory cytokines and suppressed the expression of anti-inflammatory factors, thus profoundly altering the immune microenvironment at the lesion site. Taken together, our data demonstrate that depletion of Arg1+ microglia/macrophages exacerbates neuronal damage by facilitating the inflammatory response, leading to more severe ischemic injury. These results suggest that Arg1+ microglia/macrophages, as a subpopulation regulating inflammation, is beneficial in controlling the development of ischemia and promoting recovery from injury. Regulation of Arg1 expression on microglia/macrophages at the right time may be a potential target for the treatment of ischemic brain injury. Full article
(This article belongs to the Special Issue Neuroinflammatory Processes in Neurodegenerative Diseases 2.0)
Show Figures

Graphical abstract

Back to TopTop