Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = ionospheric sounding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9897 KiB  
Article
Combination of High-Rate Ionosonde Measurements with COSMIC-2 Radio Occultation Observations for Reference Ionosphere Applications
by Iurii Cherniak, David Altadill, Irina Zakharenkova, Víctor de Paula, Víctor Navas-Portella, Douglas Hunt, Antoni Segarra and Ivan Galkin
Atmosphere 2025, 16(7), 804; https://doi.org/10.3390/atmos16070804 - 1 Jul 2025
Viewed by 315
Abstract
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric [...] Read more.
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric electron density. But ground-based ionosonde observations are limited by the F2 layer peak height and cannot probe the topside ionosphere. GNSS Radio Occultation (RO) onboard Low-Earth-Orbiting satellites can provide measurements of plasma distribution from the lower ionosphere up to satellite orbit altitudes (~500–600 km). The main goal of this study is to investigate opportunities to obtain full observation-based ionospheric electron density profiles (EDPs) by combining advantages of ground-based ionosondes and GNSS RO. We utilized the high-rate Ebre and El Arenosillo ionosonde observations and COSMIC-2 RO EDPs colocated over the ionosonde’s area of operation. Using two types of ionospheric remote sensing techniques, we demonstrated how to create the combined ionospheric EDPs based solely on real high-quality observations from both the bottomside and topside parts of the ionosphere. Such combined EDPs can serve as an analogy for incoherent scatter radar-derived “full profiles”, providing a reference for the altitudinal distribution of ionospheric plasma density. Using the combined reference EDPs, we analyzed the performance of the International Reference Ionosphere model to evaluate model–data discrepancies. Hence, these new profiles can play a significant role in validating empirical models of the ionosphere towards their further improvements. Full article
Show Figures

Figure 1

13 pages, 2080 KiB  
Communication
Mesosphere and Lower Thermosphere (MLT) Density Responses to the May 2024 Superstorm at Mid-to-High Latitudes in the Northern Hemisphere Based on Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Observations
by Ningtao Huang, Jingyuan Li, Jianyong Lu, Shuai Fu, Meng Sun, Guanchun Wei, Mingming Zhan, Ming Wang and Shiping Xiong
Remote Sens. 2025, 17(3), 511; https://doi.org/10.3390/rs17030511 - 31 Jan 2025
Viewed by 1076
Abstract
The thermospheric density response during geomagnetic storms has been extensively explored, but with limited studies on the density response in the Mesosphere and Lower Thermosphere (MLT) region. In this study, the density response in the MLT region at mid-to-high latitudes of the Northern [...] Read more.
The thermospheric density response during geomagnetic storms has been extensively explored, but with limited studies on the density response in the Mesosphere and Lower Thermosphere (MLT) region. In this study, the density response in the MLT region at mid-to-high latitudes of the Northern Hemisphere during the intense geomagnetic storm in May 2024 is investigated using density data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. The results indicate that during the geomagnetic storm, the density response exhibits both significant decreases and increases; specifically, approximately 25.2% of the observation points show a notable reduction within a single day, with the maximum decrease exceeding −59.9% at 105 km. In contrast, around 16.5% of the observation points experience a significant increase over the same period, with the maximum increase surpassing 82.4% at 105 km. The distribution of density changes varies with altitudes. The magnitude of density increases diminishes with decreasing altitude, whereas the density decreases exhibit altitude-dependent intensity variations. Density decreases are primarily concentrated in high-latitude regions, especially in the polar cap, while density increases are mainly observed between 50°N and 70°N. The intensity of density response is generally stronger in the dusk sector than in the dawn sector. These results suggest that atmospheric expansion and uplift driven by temperature variations are the primary factors underlying the observed density change. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 8899 KiB  
Article
Evaluation of Satellite-Derived Atmospheric Temperature and Humidity Profiles and Their Application as Precursors to Severe Convective Precipitation
by Zhaokai Song, Weihua Bai, Yuanjie Zhang, Yuqi Wang, Xiaoze Xu and Jialing Xin
Remote Sens. 2024, 16(24), 4638; https://doi.org/10.3390/rs16244638 - 11 Dec 2024
Cited by 1 | Viewed by 1428
Abstract
This study evaluated the reliability of satellite-derived atmospheric temperature and humidity profiles derived from occultations of Fengyun-3D (FY-3D), the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2), the Meteorological Operational Satellite program (METOP), and the microwave observations of NOAA Polar Orbital Environmental [...] Read more.
This study evaluated the reliability of satellite-derived atmospheric temperature and humidity profiles derived from occultations of Fengyun-3D (FY-3D), the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2), the Meteorological Operational Satellite program (METOP), and the microwave observations of NOAA Polar Orbital Environmental Satellites (POES) using various conventional sounding datasets from 2020 to 2021. Satellite-derived profiles were also used to explore the precursors of severe convective precipitations in terms of the atmospheric boundary layer (ABL) characteristics and convective parameters. It was found that the satellite-derived temperature profiles exhibited high accuracy, with RMSEs from 0.75 K to 2.68 K, generally increasing with the latitude and decreasing with the altitude. Among these satellite-derived profile sources, the COSMIC-2-derived temperature profiles showed the highest accuracy in the middle- and low-latitude regions, while the METOP series had the best performance in high-latitude regions. Comparatively, the satellite-derived relative humidity profiles had lower accuracy, with RMSEs from 13.72% to 24.73%, basically increasing with latitude. The METOP-derived humidity profiles were overall the most reliable among the different data sources. The ABL temperature and humidity structures from these satellite-derived profiles showed different characteristics between severe precipitation and non-precipitation regions and could reflect the evolution of ABL characteristics during a severe convective precipitation event. Furthermore, some convective parameters calculated from the satellite-derived profiles showed significant and rapid changes before the severe precipitation, indicating the feasibility of using satellite-derived temperature and humidity profiles as precursors to severe convective precipitation. Full article
Show Figures

Figure 1

37 pages, 19323 KiB  
Article
Impacts of Storm “Zyprian” on Middle and Upper Atmosphere Observed from Central European Stations
by Petra Koucká Knížová, Kateřina Potužníková, Kateřina Podolská, Tereza Šindelářová, Tamás Bozóki, Martin Setvák, Marcell Pásztor, Csilla Szárnya, Zbyšek Mošna, Daniel Kouba, Jaroslav Chum, Petr Zacharov, Attila Buzás, Hana Hanzlíková, Michal Kozubek, Dalia Burešová, István Bozsó, Kitti A. Berényi and Veronika Barta
Remote Sens. 2024, 16(22), 4338; https://doi.org/10.3390/rs16224338 - 20 Nov 2024
Cited by 2 | Viewed by 1093
Abstract
Mesoscale convective systems are effective sources of atmospheric disturbances that can reach ionospheric heights and significantly alter atmospheric and ionospheric conditions. Convective systems can affect the Earth’s atmosphere on a continental scale and up to F-layer heights. Extratropical cyclone “Zyprian” occurred at the [...] Read more.
Mesoscale convective systems are effective sources of atmospheric disturbances that can reach ionospheric heights and significantly alter atmospheric and ionospheric conditions. Convective systems can affect the Earth’s atmosphere on a continental scale and up to F-layer heights. Extratropical cyclone “Zyprian” occurred at the beginning of July, 2021 and dominated weather over the whole of Europe. An extensive cold front associated with “Zyprian” moved from the western part to the eastern part of Europe, followed by ground-level convergence and the formation of organized convective thunderstorm systems. Torrential rains in the Czech Republic have caused a great deal of damage and casualties. Storm-related signatures were developed in ground microbarograph measurements of infrasound and gravity waves. Within the stratosphere, a shift of the polar jet stream and increase in specific humidity related to the storm system were observed. At the ionospheric heights, irregular stratification and radio wave reflection plane undulation were observed. An increase in wave-like activity was detected based on ionograms and narrowband very-low-frequency (VLF) data. On directograms and SKYmaps (both products of digisonde measurements), strong and rapid changes in the horizontal plasma motion were recorded. However, no prevailing plasma motion direction was identified within the F-layer. Increased variability within the ionosphere is attributed mainly to the “Zyprian” cyclone as it developed during low geomagnetic activity and stable solar forcing. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

13 pages, 4298 KiB  
Article
Towards Real-Time Integrated Water Vapor Estimates with Triple-Frequency Galileo Observations and CNES Products
by Mohamed Abdelazeem
Atmosphere 2024, 15(11), 1320; https://doi.org/10.3390/atmos15111320 - 2 Nov 2024
Cited by 1 | Viewed by 988
Abstract
Integrated water vapor (IWV) is a crucial parameter for tropospheric sounding and weather prediction applications. IWV is essentially calculated using observations from global navigation satellite systems (GNSS). Presently, the Galileo satellite system is further developed, including more visible satellites that transmit multi-frequency signals. [...] Read more.
Integrated water vapor (IWV) is a crucial parameter for tropospheric sounding and weather prediction applications. IWV is essentially calculated using observations from global navigation satellite systems (GNSS). Presently, the Galileo satellite system is further developed, including more visible satellites that transmit multi-frequency signals. This study aims to evaluate the accuracy of real-time IWV estimated from a triple-frequency Galileo-only precise point positioning (PPP) processing model utilizing E1, E5a, E5b, and E5 observations, which is not addressed by the previous studies. For this purpose, Galileo datasets from 10 global reference stations spanning various 4-week periods in the winter, spring, summer, and fall seasons are acquired. To process the acquired datasets, dual- and triple-frequency ionosphere-free PPP solutions are used, including E1E5a PPP, E1E5aE5b PPP, and E1E5E5b PPP solutions. The publicly available real-time products from the Centre National d’Etudes Spatiales (CNES) are utilized. The real-time IWV values are computed and then validated with the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis products (ERA5) counterparts. The findings demonstrate that the root mean square error (RMSE) of the estimated IWV is less than 3.15 kg/m2 with respect to the ECMWF ERA5 counterparts. Furthermore, the E1E5aE5b PPP and E1E5E5b PPP models enhance the IWV’s accuracy by about 11% and 16%, respectively, compared with the E1E5a PPP model. Full article
(This article belongs to the Special Issue GNSS Meteorology: Algorithm, Modelling, Assessment and Application)
Show Figures

Figure 1

20 pages, 5632 KiB  
Article
A Frequency Selecting Method for High-Frequency Communication Based on Ionospheric Oblique Backscatter Sounding
by Chuqi Cai, Guobin Yang, Tongxin Liu and Chunhua Jiang
Remote Sens. 2024, 16(21), 4095; https://doi.org/10.3390/rs16214095 - 2 Nov 2024
Cited by 2 | Viewed by 1563
Abstract
Ionospheric oblique backscatter sounding is an effective means of monitoring the ionosphere which can be used as a frequency selection system to serve HF communication and ensure its quality and stability. But how to obtain effective information from the oblique backscatter ionogram is [...] Read more.
Ionospheric oblique backscatter sounding is an effective means of monitoring the ionosphere which can be used as a frequency selection system to serve HF communication and ensure its quality and stability. But how to obtain effective information from the oblique backscatter ionogram is still a hot issue. Due to this situation, a frequency selecting method for HF communication based on ionospheric oblique backscatter sounding is proposed in this study. After obtaining the ionograms, pattern recognition is used to separate the vertical echoes and the oblique backscatter echoes. Next, the leading edge of the oblique backscatter echoes are extracted, and then a two-dimensional electron density profile can be reconstructed. Then, with the help of ray tracing, the usable frequency range can be estimated. Finally, according to the signal-to-noise ratio reflected by the ionograms, several optimal communication frequencies can be selected. In order to verify this method, oblique ionograms are obtained through oblique sounding experiments to evaluate its accuracy. The result indicates that the usable frequency range and the selected frequencies are in accordance with the echo of the oblique ionogram, so the practicability and accuracy of the method are validated. Eventually, the maximum usable frequencies (MUFs) obtained from oblique backscatter sounding are compared with the MUFs from the oblique sounding ionogram; its Mean Absolute Percentage Error (MAPE) is 7.8% and its root mean squared error (RMSE) is 1.34 MHz. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

18 pages, 6083 KiB  
Article
First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms
by Iurii Cherniak, Irina Zakharenkova, Scott Gleason and Douglas Hunt
Atmosphere 2024, 15(9), 1065; https://doi.org/10.3390/atmos15091065 - 3 Sep 2024
Viewed by 1731
Abstract
In this study, we present the first results of detecting ionospheric irregularities using non-typical GPS observations recorded onboard the Geostationary Operational Environmental Satellites (GOES) mission operating at ~35,800 km altitude. Sitting above the GPS constellation, GOES can track GPS signals only from GPS [...] Read more.
In this study, we present the first results of detecting ionospheric irregularities using non-typical GPS observations recorded onboard the Geostationary Operational Environmental Satellites (GOES) mission operating at ~35,800 km altitude. Sitting above the GPS constellation, GOES can track GPS signals only from GPS transmitters on the opposite side of the Earth in a rather unique geometry. Although GPS receivers onboard GOES are primarily designed for navigation and were not configured for ionospheric soundings, these GPS measurements along links that traverse the Earth’s ionosphere can be used to retrieve information about ionospheric electron density. Using the radio occultation (RO) technique applied to GPS measurements from the GOES–16, we analyzed variations in the ionospheric total electron content (TEC) on the links between the GPS transmitter and geostationary GOES GPS receiver. For case-studies of major geomagnetic storms that occurred in September 2017 and August 2018, we detected and analyzed the signatures of storm-induced ionospheric irregularities in novel and promising geostationary GOES GPS observations. We demonstrated that the presence of ionospheric irregularities near the GOES GPS RO sounding field of view during geomagnetic disturbances was confirmed by ground-based GNSS observations. The use of RO observations from geostationary orbit provides new opportunities for monitoring ionospheric irregularities and ionospheric density. Full article
(This article belongs to the Special Issue Ionospheric Irregularity)
Show Figures

Figure 1

27 pages, 1079 KiB  
Article
A PLL-Based Doppler Method Using an SDR-Receiver for Investigation of Seismogenic and Man-Made Disturbances in the Ionosphere
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Vladimir Saveliev, Serik Nurakynov, Vladimir Ryabov and Valery Zhukov
Geosciences 2024, 14(7), 192; https://doi.org/10.3390/geosciences14070192 - 16 Jul 2024
Cited by 2 | Viewed by 1411
Abstract
The article describes in detail the equipment and method for measuring the Doppler frequency shift (DFS) on an inclined radio path, based on the principle of the phase-locked loop using an SDR receiver for the investigation of seismogenic and man-made disturbances in the [...] Read more.
The article describes in detail the equipment and method for measuring the Doppler frequency shift (DFS) on an inclined radio path, based on the principle of the phase-locked loop using an SDR receiver for the investigation of seismogenic and man-made disturbances in the ionosphere. During the two M7.8 earthquakes in Nepal (25 April 2015) and Turkey (6 February 2023), a Doppler ionosonde detected co-seismic and pre-seismic effects in the ionosphere, the appearances of which are connected with the various propagation mechanisms of seismogenic disturbance from the lithosphere up to the ionosphere. One day before the earthquake in Nepal and 90 min prior to the main shock, an increase in the intensity of Doppler bursts was detected, which reflected the disturbance of the ionosphere. A channel of geophysical interaction in the system of lithosphere–atmosphere–ionosphere coupling was traced based on the comprehensive monitoring of the DFS of the ionospheric signal, as well as of the flux of gamma rays in subsoil layers of rocks and in the ground-level atmosphere. The concept of lithosphere–atmosphere–ionosphere coupling, where the key role is assigned to ionization of the atmospheric boundary layer, was confirmed by a retrospective analysis of the DFS records of an ionospheric signal made during underground nuclear explosions at the Semipalatinsk test site. A simple formula for reconstructing the velocity profile of the acoustic pulse from a Dopplerogram was obtained, which depends on only two parameters, one of which is the dimension of length and the other the dimension of time. The reconstructed profiles of the acoustic pulses from the two underground nuclear explosions, which reached the height of the reflection point of the sounding radio wave, are presented. Full article
Show Figures

Figure 1

17 pages, 2058 KiB  
Article
Complexity and Nonlinear Dependence of Ionospheric Electron Content and Doppler Frequency Shifts in Propagating HF Radio Signals within Equatorial Regions
by Aderonke Akerele, Babatunde Rabiu, Samuel Ogunjo, Daniel Okoh, Anton Kascheyev, Bruno Nava, Olawale Bolaji, Ibiyinka Fuwape, Elijah Oyeyemi, Busola Olugbon, Jacob Akinpelu and Olumide Ajani
Atmosphere 2024, 15(6), 654; https://doi.org/10.3390/atmos15060654 - 30 May 2024
Cited by 2 | Viewed by 1184
Abstract
The abundance of ions within the ionosphere makes it an important region for both long range and satellite communication systems. However, characterizing the complexity in the ionosphere within the equatorial region of Abuja, with geographic coordinates of 8.99° N and 7.39° E and [...] Read more.
The abundance of ions within the ionosphere makes it an important region for both long range and satellite communication systems. However, characterizing the complexity in the ionosphere within the equatorial region of Abuja, with geographic coordinates of 8.99° N and 7.39° E and a geomagnetic latitude of −1.60, and Lagos, with geographic coordinates of 3.27° E and 6.48° N and a dip latitude of −1.72°, is a challenging and daunting task due to the intrinsic and external forces involved. In this study, chaos theory was applied on data from both an HF Doppler sounding system and the Global Navigation Satellite System (GNSS) for the characterization of the ionosphere over these two tropical locations during 2020–2021 with respect to the quality of high-frequency radio signals between the two locations. Our results suggest that the ionosphere at the two locations is chaotic, with its largest Lyapunov exponent values being greater than 0 (0.011λ0.041) and its correlation dimension being in the range of 1.388D21.775. Furthermore, it was revealed that there exists a negative correlation between the state of the ionosphere and signal quality at the two locations. Using transfer entropy, it was confirmed that the ionosphere interfered more with signals during 2020, a year of lower solar activity (sunspot number, 8.8) compared to 2021 (sunspot number, 29.6). On a monthly scale, the influence of the ionosphere on signal quality was found to be complicated. The results obtained in this study will be useful in communication systems design, modelling, and prediction. Full article
Show Figures

Figure 1

14 pages, 1100 KiB  
Article
A New Analytical Simulation Code of Acoustic-Gravity Waves of Seismic Origin and Rapid Co-Seismic Thermospheric Disturbance Energetics
by Saul A. Sanchez and Esfhan A. Kherani
Atmosphere 2024, 15(5), 592; https://doi.org/10.3390/atmos15050592 - 13 May 2024
Cited by 3 | Viewed by 1528
Abstract
A recent study the detection of coseismic ionospheric disturbances or ionoquakes less than 400 s from the earthquake’s onset. The study also associates these rapid ionoquakes with the seismo-atmosphere–ionosphere (SAI) coupling mechanism energized by acoustic-gravity waves (AGWs) and the subsequent formation of coseismic [...] Read more.
A recent study the detection of coseismic ionospheric disturbances or ionoquakes less than 400 s from the earthquake’s onset. The study also associates these rapid ionoquakes with the seismo-atmosphere–ionosphere (SAI) coupling mechanism energized by acoustic-gravity waves (AGWs) and the subsequent formation of coseismic thermospheric disturbances (CSTDs). The present study outlines a new analytical simulation code for AGWs that resolves the governing equations in the time–altitude and wavenumber domain and confirms the rapid arrival of AGWs in the thermosphere (earlier than the estimated arrival time from the ray-tracing simulation). The rapid arrivals of AGWs are associated with long wavelengths that connect to thermospheric altitudes and propagate with thermospheric sound speeds, avoiding averaging effects from the lower atmosphere. The fast simulation traces the rapid arrival of AGWs in the thermosphere and produces rapid CSTDs within 250–300 s from the earthquake’s onset. The simulation time is much shorter than the formation time of near-field CSTDs, a scenario favorable for the forecasting of CSTDs before observations of ionoquakes. In essence, the fast simulation offers an alternative tool for tracking the evolution of CSTDs. Full article
(This article belongs to the Special Issue Waves and Variability in Terrestrial and Planetary Atmospheres)
Show Figures

Figure 1

16 pages, 3346 KiB  
Technical Note
Spatial and Temporal Variation Patterns of NO 5.3 µm Infrared Radiation during Two Consecutive Auroral Disturbances
by Fan Wu, Congming Dai, Shunping Chen, Cong Zhang, Wentao Lian and Heli Wei
Remote Sens. 2024, 16(8), 1420; https://doi.org/10.3390/rs16081420 - 17 Apr 2024
Viewed by 1058
Abstract
The variation in key parameters of the solar–terrestrial space during two consecutive auroral disturbances (the magnetic storm index, Dst index = −422 nT) that occurred during the 18–23 November 2003 period was analyzed in this paper, as well as the spatiotemporal characteristics of [...] Read more.
The variation in key parameters of the solar–terrestrial space during two consecutive auroral disturbances (the magnetic storm index, Dst index = −422 nT) that occurred during the 18–23 November 2003 period was analyzed in this paper, as well as the spatiotemporal characteristics of NO 5.3 μm radiation with an altitude around the location of 55°N 160°W. The altitude was divided into four regions (50–100 km, 100–150 km, 150–200 km, and 200–250 km), and it was found that the greatest amplification occurs at the altitude of 200–250 km. However, the radiance reached a maximum of 3.38 × 10−3 W/m2/sr at the altitude of 123 km during the aurora event, which was approximately 10 times higher than the usual value during “quiet periods”. Based on these findings, the spatiotemporal variations in NO 5.3 μm radiance within the range of latitude 51°S–83°N and longitude of 60°W–160°W were analyzed at 120 km, revealing an asymmetry between the northern and southern hemispheres during the recovery period. Additionally, the recovery was also influenced by the superposition of a second auroral event. The data used in this study were obtained from the OMNI database and the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) infrared radiometer onboard the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite. Finally, the correlation of NO 5.3 μm radiance at 120 km with temperature, solar wind speed, auroral electrojet index (AE index), and Dst index were analyzed. It was found that only the Dst index had a good correlation with the radiance value. Furthermore, the correlation between the Dst index and radiance at different altitudes was also analyzed, and the highest correlation was found at 170 km. Full article
(This article belongs to the Special Issue Earth Radiation Budget and Earth Energy Imbalance)
Show Figures

Graphical abstract

16 pages, 5729 KiB  
Article
ION-FAST as the NIRFI’s Ionospheric Diagnostic Platform
by Sergey P. Moiseev, Alexei V. Shindin, Kseniya K. Grekhneva, Viktoriya A. Pavlova and Nikita S. Timukin
Atmosphere 2024, 15(2), 188; https://doi.org/10.3390/atmos15020188 - 1 Feb 2024
Cited by 1 | Viewed by 1535
Abstract
In December 2021, we presented a prototype of a fast ionosonde for vertical sounding based on the usage of publicly available radio-electronic components. This approach led to a major reduction in the cost of the created device. We called our development ION-FAST, which [...] Read more.
In December 2021, we presented a prototype of a fast ionosonde for vertical sounding based on the usage of publicly available radio-electronic components. This approach led to a major reduction in the cost of the created device. We called our development ION-FAST, which characterizes the key feature of the ionosonde: the possibility of continuous operation at a speed of one ionogram per second, which is required to study the rapid processes of redistribution of the electron concentration during heating experiments. In May 2022, an ionosonde for vertical sounding of the ionosphere, developed at the Radiophysical Research Institute of Nizhni Novgorod (NIRFI), was put into continuous operation at the SURA facility. This report provides a description of the improvements made to the prototype over the last year and the path to be passed from idea to implementation. The results of the first months of the prototype’s operation (especially the results of the supporting optic experiment in August 2022), as well as prospects for further use and modernization, are provided. In addition, the realization of the oblique chirp-sounding receiver prototype as an extension of the proposed diagnostic platform’s functionality, including the first results, is presented. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

21 pages, 13555 KiB  
Review
Radar Observations of Liquid Water in the South Polar Region of Mars: Indications from Astrobiology Perspectives
by Junyi Zhou, Chunyu Ding, Siting Xiong, Yan Su, Jiawei Li, Mengna Chen and Shun Dai
Universe 2024, 10(1), 43; https://doi.org/10.3390/universe10010043 - 16 Jan 2024
Cited by 2 | Viewed by 2834
Abstract
In recent decades, extensive research has led to the understanding that Mars once hosted substantial liquid-water reserves. While the current Martian landscape boasts significant water-ice deposits at its North and South poles, the elusive presence of liquid-water bodies has remained undetected. A breakthrough [...] Read more.
In recent decades, extensive research has led to the understanding that Mars once hosted substantial liquid-water reserves. While the current Martian landscape boasts significant water-ice deposits at its North and South poles, the elusive presence of liquid-water bodies has remained undetected. A breakthrough occurred with the identification of radar-echo reflections at the base of the Martian South Pole, using MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) in 2018. These radar echoes strongly suggest the presence of a highly concentrated liquid-water body. However, a counter-narrative has emerged, contending that the subterranean conditions beneath the ice cap, encompassing factors like temperature and pressure, may be inhospitable to liquid water. Consequently, alternative hypotheses posit that the observed bright echoes could be attributed to conductive minerals or water-absorbing clay-like materials. The ongoing discourse regarding the presence of liquid water beneath the southern polar ice cap is a hot topic in the realm of Martian exploration. The primary focus of this paper is to provide a comprehensive overview of Martian radar detection, the recent controversies regarding liquid water’s existence in the Martian South Pole, and the implications regarding the potential existence of Martian life forms in the water on Mars. The revelation of liquid water on Mars fundamentally suggests an environment conducive to the viability of Martian life, consequently furnishing invaluable insights for future exploratory endeavors in the pursuit of Martian biospheres. In addition, this paper anticipates the forthcoming research dedicated to Martian liquid water and potential life forms, while also underscoring the profound significance of identifying liquid water on Mars in propelling the field of astrobiology forward. Full article
(This article belongs to the Special Issue Planetary Radar Astronomy)
Show Figures

Figure 1

21 pages, 6995 KiB  
Article
An Updating of the IONORT Tool to Perform a High-Frequency Ionospheric Ray Tracing
by Marco Pietrella, Michael Pezzopane, Alessandro Pignatelli, Alessio Pignalberi and Alessandro Settimi
Remote Sens. 2023, 15(21), 5111; https://doi.org/10.3390/rs15215111 - 25 Oct 2023
Cited by 5 | Viewed by 2136
Abstract
This paper describes the main updates characterizing the new version of IONORT (IONOsperic Ray Tracing), a software tool developed at Istituto Nazionale di Geofisica e Vulcanologia to determine both the path of a high frequency (HF) radio wave propagating in the ionospheric medium, [...] Read more.
This paper describes the main updates characterizing the new version of IONORT (IONOsperic Ray Tracing), a software tool developed at Istituto Nazionale di Geofisica e Vulcanologia to determine both the path of a high frequency (HF) radio wave propagating in the ionospheric medium, and the group time delay of the wave itself along the path. One of the main changes concerns the replacement of a regional three-dimensional electron density matrix, which was previously taken as input to represent the ionosphere, with a global one. Therefore, it is now possible to carry out different ray tracings from whatever point of the Earth’s surface, simply by selecting suitable loop cycles thanks to the new ray tracing graphical user interface (GUI). At the same time, thanks to a homing GUI, it is also possible to generate synthetic oblique ionograms for whatever radio link chosen by the user. Both ray tracing and homing GUIs will be described in detail providing at the same time some practical examples of their use for different regions. IONORT software finds practical application in the planning of HF radio links, exploiting the sky wave, through an accurate and thorough knowledge of the ionospheric medium. HF radio waves users, including broadcasting and civil aviation, would benefit from the use of the IONORT software (version 2023.10). Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing II)
Show Figures

Figure 1

39 pages, 4113 KiB  
Review
A Tropical Cyclone or Typhoon as an Element of the Earth–Atmosphere–Ionosphere–Magnetosphere System: Theory, Simulations, and Observations
by Leonid F. Chernogor
Remote Sens. 2023, 15(20), 4919; https://doi.org/10.3390/rs15204919 - 11 Oct 2023
Cited by 13 | Viewed by 4399
Abstract
The premise has been validated that a tropical cyclone (TC, typhoon, hurricane), one of the most powerful large-scale formations systematically arising in the atmosphere, is an element of the ocean–atmosphere–ionosphere–magnetosphere system. The TC plays a crucial role with regard to a global-scale mass [...] Read more.
The premise has been validated that a tropical cyclone (TC, typhoon, hurricane), one of the most powerful large-scale formations systematically arising in the atmosphere, is an element of the ocean–atmosphere–ionosphere–magnetosphere system. The TC plays a crucial role with regard to a global-scale mass and energy exchange in this system. The study of this system encompasses a broad spectrum of physical phenomena occurring and processes operating within the system components, as well as the mechanisms of their interactions. The problem under discussion pertains to interdisciplinary science. Its scope ranges from different Earth sciences to geospace sciences, which comprise the physics of the ocean, meteorology, the physics of the Earth’s atmospheric and space environment, etc. Observations of the ionospheric response to the impact of a number of unique typhoons made using multifrequency multiple path oblique incidence ionospheric sounding have confirmed the definitive role that the internal gravity waves and infrasound play in producing atmospheric–ionospheric disturbances. It has been demonstrated that these disturbances are capable of significantly affecting the characteristics of high-frequency radio waves. Full article
Show Figures

Figure 1

Back to TopTop