First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Case-Study of Geomagnetic Storm on 7–8 September 2017
3.2. Case-Study of Geomagnetic Storm on 25–26 August 2018
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doherty, P.H.; Delay, S.H.; Valladares, C.E.; Klobuchar, J.A. Ionospheric scintillation effects on GPS in the equatorial and auroral regions. Navigation 2003, 50, 235–245. [Google Scholar] [CrossRef]
- Basu, S.; Groves, K.M.; Basu, S.; Sultan, P.J. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J. Atmos. Solar-Terrestrial Phys. 2002, 64, 1745–1754. [Google Scholar] [CrossRef]
- Dubey, S.; Wahi, R.; Gwal, A. Ionospheric effects on GPS positioning. Adv. Space Res. 2006, 38, 2478–2484. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M.; De Paula, E.R. GPS and ionospheric scintillations. Space Weather. 2007, 5, S09003. [Google Scholar] [CrossRef]
- Kelly, M.A.; Comberiate, J.M.; Miller, E.S.; Paxton, L.J. Progress toward forecasting of space weather effects on UHF SATCOM after Operation Anaconda. Space Weather. 2014, 12, 601–611. [Google Scholar] [CrossRef]
- Morton, Y.J.; Yang, Z.; Breitsch, B.; Bourne, H.; Rino, C. Ionospheric Effects, Monitoring, and Mitigation Techniques. In Position, Navigation, and Timing Technologies in the 21st Century; Morton, Y.T.J., Diggelen, F., Spilker, J.J., Parkinson, B.W., Lo, S., Gao, G., Eds.; Wiley-IEEE Press: Hoboken, NJ, USA, 2020; pp. 879–937. [Google Scholar] [CrossRef]
- Kudeki, E.; Basu, S.; Valladares, C.E.; Weber, E.J.; Zengingonul, H.P.; Bhattacharyya, S.; Sheehan, R.; Meriwether, J.W.; Biondi, M.A.; Kuenzler, H.; et al. Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. J. Geophys. Res. Space Phys. 1996, 101, 26795–26809. [Google Scholar] [CrossRef]
- Groves, K.M.; Basu, S.; Weber, E.J.; Smitham, M.; Kuenzler, H.; Valladares, C.E.; Sheehan, R.; MacKenzie, E.; Secan, J.A.; Ning, P.; et al. Equatorial scintillation and systems support. Radio Sci. 1997, 32, 2047–2064. [Google Scholar] [CrossRef]
- Basu, S. Equatorial scintillations—A review. J. Atmos. Solar-Terrestrial Phys. 1981, 43, 473–489. [Google Scholar] [CrossRef]
- Huang, C.S.; De La Beaujardiére, O.; Roddy, P.A.; Hunton, D.E.; Liu, J.Y.; Chen, S.P. Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012). J. Geophys. Res. Space Phys. 2014, 119, 1186–1199. [Google Scholar] [CrossRef]
- Ossakow, S.L. Spread F theories: A review. J. Atmos. Terr. Phys. 1981, 43, 437–552. [Google Scholar] [CrossRef]
- Woodman, R.; La Hoz, C. Radar observations of F region equatorial irregularities. J. Geophys. Res. 1976, 81, 5447–5466. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Livingston, R.C.; McClure, J.P.; Hanson, W.B. Equatorial plasma bubbles: Vertically elongated wedges from the bottomside F layer. J. Geophys. Res. 1982, 87, 9171–9180. [Google Scholar] [CrossRef]
- Kelley, M. The Earth’s Ionosphere; Academic Press: San Diego, CA, USA, 1989; 487p. [Google Scholar]
- Tsunoda, R.T. High-latitude F region irregularities: A review and synthesis. Rev. Geophys. 1988, 26, 719–760. [Google Scholar] [CrossRef]
- Phelps, A.D.R.; Sagalyn, R.C. Plasma density irregularities in the high- latitude top side ionosphere. J. Geophys. Res. 1976, 81, 515–523. [Google Scholar] [CrossRef]
- Keskinen, M.J.; Ossakow, S.L. Theories of high-latitude ionospheric irregularities: A review. Radio Sci. 1983, 18, 1077–1091. [Google Scholar] [CrossRef]
- Fejer, B.G.; Kelley, M.C. Ionospheric irregularities. Rev. Geophys. 1980, 18, 401–454. [Google Scholar] [CrossRef]
- Huang, C.Y.; Burke, W.J.; Machuzak, J.S.; Gentile, L.C.; Sultan, P.J. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology. J. Geophys. Res. Space Phys. 2002, 107, SIA 7-1–SIA 7-10. [Google Scholar] [CrossRef]
- Burke, W.J.; Gentile, L.C.; Huang, C.Y.; Valladares, C.E.; Su, S.Y. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res. Space Phys. 2004, 109, A12301. [Google Scholar] [CrossRef]
- Huang, C.S.; de La Beaujardiere, O.; Roddy, P.A.; Hunton, D.E.; Pfaff, R.F.; Valladares, C.E.; Ballenthin, J.O. Evolution of equatorial ionospheric plasma bubbles and formation of broad plasma depletions measured by the C/NOFS satellite during deep solar minimum. J. Geophys. Res. 2011, 116, A03309. [Google Scholar] [CrossRef]
- Yizengaw, E.; Groves, K.M. Longitudinal and Seasonal Variability of Equatorial Ionospheric Irregularities and Electrodynamics. Space Weather. 2018, 16, 946–968. [Google Scholar] [CrossRef]
- Su, S.Y.; Liu, C.H.; Ho, H.H.; Chao, C.K. Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions. J. Geophys. Res. Space Phys. 2006, 111, A06305. [Google Scholar] [CrossRef]
- Xiong, C.; Park, J.; Lühr, H.; Stolle, C.; Ma, S.Y. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann. Geophys. 2010, 28, 1647–1658. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Astafyeva, E.; Cherniak, I. GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth Planets Space 2016, 68, 1. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Braun, J.J.; Wu, Q. Global Maps of Equatorial Plasma Bubbles Depletions Based on FORMOSAT-7/COSMIC-2 Ion Velocity Meter Plasma Density Observations. Space Weather. 2023, 21, e2023SW003438. [Google Scholar] [CrossRef]
- Aarons, J.; Mendillo, M.; Yantosca, R. GPS phase fluctuations in the equatorial region during sunspot minimum. Radio Sci. 1997, 32, 1535–1550. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Basu, S.; Groves, K.M.; Quinn, J.M.; Doherty, P. A comparison of TEC fluctuation and scintillations at Ascension Island. J. Atmos. Sol. Terr. Phys. 1999, 61, 1219–1226. [Google Scholar] [CrossRef]
- Beach, T.L.; Kintner, P.M. Simultaneous Global Position System observations of equatorial scintillations and total electron content fluctuations. J. Geophys. Res. 1999, 104, 22553–22565. [Google Scholar] [CrossRef]
- Jakowski, N.; Béniguel, Y.; De Franceschi, G.; Pajares, M.H.; Jacobsen, K.S.; Stanislawska, I.; Tomasik, L.; Warnant, R.; Wautelet, G. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J. Space Weather. Space Clim. 2012, 2, A22. [Google Scholar] [CrossRef]
- Krankowski, A.; Shagimuratov, I.; Baran, L.; Efishov, I.; Tepenitzyna, N. The occurrence of polar cap patches in TEC fluctuations detected using GPS measurements in southern hemisphere. Adv. Space Res. 2006, 38, 2601–2609. [Google Scholar] [CrossRef]
- Shagimuratov, I.I.; Krankowski, A.; Ephishov, I.; Cherniak, Y.; Wielgosz, P.; Zakharenkova, I. High latitude TEC fluctuations and irregularity oval during geomagnetic storms. Earth Planets Space 2012, 64, 521–529. [Google Scholar] [CrossRef]
- Jacobsen, K.S. The impact of different sampling rates and calculation time intervals on ROTI values. J. Space Weather. Space Clim. 2014, 4, A33. [Google Scholar] [CrossRef]
- Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J.M.; Viljanen, A.; Connors, M.; Danskin, D.W.; Jayachandran, P.T.; Jacobsen, K.S.; Andalsvik, Y.L.; Thomas, E.G.; et al. GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015. J. Geophys. Res. Space Phys. 2016, 121, 10,448–10,465. [Google Scholar] [CrossRef]
- Jacobsen, K.S.; Andalsvik, Y.L. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway. J. Space Weather. Space Clim. 2016, 6, A9. [Google Scholar] [CrossRef]
- Shagimuratov, I.; Filatov, M.; Efishov, I.; Zakharenkova, I.E.; Tepenitsyna, N.Y. Fluctuations in the Total Electron Content and Errors in GPS Positioning Caused by Polar Auroras during the Auroral Disturbance of September 27, 2019. Bull. Russ. Acad. Sci. Phys. 2021, 85, 318–323. [Google Scholar] [CrossRef]
- Alfonsi, L.; Spogli, L.; Tong, J.; De Franceschi, G.; Romano, V.; Bourdillon, A.; Le, H.; Mitchell, C. GPS scintillation and TEC gradients at equatorial latitudes in April 2006. Adv. Space Res. 2011, 47, 1750–1757. [Google Scholar] [CrossRef]
- Alfonsi, L.; Spogli, L.; Pezzopane, M.; Romano, V.; Zuccheretti, E.; De Franceschi, G.; Cabrera, M.A.; Ezquer, R.G. Comparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentina. J. Geophys. Res. Space Phys. 2013, 118, 4483–4502. [Google Scholar] [CrossRef]
- Sripathi, S.; Kakad, B.; Bhattacharyya, A. Study of equinoctial asymmetry in the Equatorial Spread F (ESF) irregularities over Indian region using multi-instrument observations in the descending phase of solar cycle 23. J. Geophys. Res. 2011, 116, A11302. [Google Scholar] [CrossRef]
- de Jesus, R.; Sahai, Y.; Fagundes, P.R.; de Abreu, A.; Brunini, C.; Gende, M.; Bittencourt, J.; Abalde, J.; Pillat, V. Response of equatorial, low- and mid-latitude F-region in the American sector during the intense geomagnetic storm on 24–25 October 2011. Adv. Space Res. 2013, 52, 147–157. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Z. Low-latitude ionospheric density irregularities and associated scintillations investigated by combining COSMIC RO and ground-based Global Positioning System observations over a solar active period. J. Geophys. Res. Space Phys. 2018, 123, 3998–4014. [Google Scholar] [CrossRef]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci. 2014, 49, 653–662. [Google Scholar] [CrossRef]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut. 2018, 22, 69. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I.; Krankowski, A. IGS ROTI Maps: Current Status and Its Extension towards Equatorial Region and Southern Hemisphere. Sensors 2022, 22, 3748. [Google Scholar] [CrossRef] [PubMed]
- Hajj, G.A.; Romans, L.J. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci. 1998, 33, 175–190. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Sokolovskiy, S.V.; Rocken, C.; Hunt, D.C. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci. 1999, 34, 949–966. [Google Scholar] [CrossRef]
- Jakowski, N.; Wehrenpfennig, A.; Heise, S.; Reigber, C.; Lühr, H.; Grunwaldt, L.; Meehan, T.K. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys. Res. Lett. 2002, 29, 1457. [Google Scholar] [CrossRef]
- Heise, S.; Jakowski, N.; Cooke, D. Ionosphere/Plasmasphere Imaging Based on GPS Navigation Measurements from CHAMP and SAC-C. In Earth Observation with CHAMP; Reigber, C., Lühr, H., Schwintzer, P., Wickert, J., Eds.; Springer: Berlin, Heidelberg, 2005. [Google Scholar] [CrossRef]
- Shume, E.B.; Komjathy, A.; Langley, R.B.; Verkhoglyadova, O.; Butala, M.D.; Mannucci, A.J. Intermediate-scale plasma irregularities in the polar ionosphere inferred from GPS radio occultation. Geophys. Res. Lett. 2015, 42, 688–696. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Yue, X.; Schreiner, W.S. Comparison between GPS radio occultation electron densities and in situ satellite observations. Radio Sci. 2015, 50, 518–525. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Katamzi, Z.T.; Yizengaw, E. A simultaneous study of ionospheric parameters derived from FORMOSAT-3/COSMIC, GRACE, and CHAMP missions over middle, low, and equatorial latitudes: Comparison with ionosonde data. J. Geophys. Res. Space Phys. 2014, 119, 7732–7744. [Google Scholar] [CrossRef]
- Jakowski, N.; Wilken, V.; Mayer, C. Space weather monitoring by GPS measurements on board CHAMP. Space Weather. 2007, 5, S08006. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Pedatella, N.; Anthes, R.A.; Mannucci, A.J.; Straus, P.R.; Liu, J. Space weather observations by GNSS radio occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather. 2014, 12, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.P.; Schreiner, W.S.; Braun, J.J.; Xia-Serafino, W.; Huang, C.Y. COSMIC-2 Mission Summary at Three Years in Orbit. Atmosphere 2022, 13, 1409. [Google Scholar] [CrossRef]
- Watson, C.; Pedatella, N.M. Climatology and Characteristics of Medium-Scale F Region Ionospheric Plasma Irregularities Observed by COSMIC Radio Occultation Receivers. J. Geophys. Res. Space Phys. 2018, 123, 8610–8630. [Google Scholar] [CrossRef]
- Chou, M.Y.; Wu, Q.; Pedatella, N.M.; Cherniak, I.; Schreiner, W.S.; Braun, J. Climatology of the Equatorial Plasma Bubbles Captured by FORMOSAT-3/COSMIC. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027680. [Google Scholar] [CrossRef]
- Arras, C.; Wickert, J.; Beyerle, G.; Heise, S.; Schmidt, T.; Jacobi, C. A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett. 2008, 35, L14809. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Schreiner, W.; Rocken, C.; Hunt, D. Detection of high-altitude ionospheric irregularities with GPS/MET. Geophys. Res. Lett. 2002, 29, L14809. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I.; Sokolovsky, S. Multi-Instrumental Observation of Storm-Induced Ionospheric Plasma Bubbles at Equatorial and Middle Latitudes. J. Geophys. Res. Space Phys. 2019, 124, 1491–1508. [Google Scholar] [CrossRef]
- Gleason, S.; Cherniak, I.; Zakharenkova, I.; Hunt, D.; Sokolovskiy, S.; Freesland, D.; Krimchansky, A.; McCorkel, J.; Coulter, L.; Ramsey, G.; et al. The First Atmospheric Radio Occultation Profiles from a GPS Receiver in Geostationary Orbit. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1005605. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Gleason, S.; Hunt, D.; Freesland, D.; Krimchansky, A.; McCorkel, J.; Ramsey, G.; Chapel, J. Statistical validation of ionospheric electron density profiles retrievals from GOES geosynchronous satellites. J. Space Weather. Space Clim. 2023, 13, 23. [Google Scholar] [CrossRef]
- Ao, C. Atmospheric sensing using GNSS occultations. In GNSS Applications and Methods; Gleason, S., Gebre-Egziabher, D., Eds.; Artech House: Norwood, MA, USA, 2009; pp. 381–395. [Google Scholar]
- Cherniak, I.; Zakharenkova, I. Development of the Storm-Induced Ionospheric Irregularities at Equatorial and Middle Latitudes During the 25–26 August 2018 Geomagnetic Storm. Space Weather. 2022, 20, e2021SW002891. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Krankowski, A. Ground-Based GNSS and Satellite Observations of Auroral Ionospheric Irregularities during Geomagnetic Disturbances in August 2018. Sensors 2021, 21, 7749. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I. When Plasma Streams Tie up Equatorial Plasma Irregularities with Auroral Ones. Space Weather. 2020, 18, e2019SW002375. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. High-latitude ionospheric irregularities: Differences between ground- and space-based GPS measurements during the 2015 St. Patrick’s Day storm Swarm Science Results after two years in Space. Earth Planets Space 2016, 68, 136. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Krankowski, A. Features of Storm-Induced Ionospheric Irregularities from Ground-Based and Spaceborne GPS Observations During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2019, 124, 10728–10748. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Solar-Terrestrial Phys. 2008, 70, 1231–1242. [Google Scholar] [CrossRef]
- Newell, P.T.; Sotirelis, T.; Wing, S. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. J. Geophys. Res. Space Phys. 2009, 114, A09207. [Google Scholar] [CrossRef]
- Ko, C.P.; Yeh, H.C. COSMIC/FORMOSAT-3 observations of equatorial F region irregularities in the SAA longitude sector. J. Geophys. Res. Space Phys. 2010, 115, A11309. [Google Scholar] [CrossRef]
- Dymond, K.F. Global observations of L band scintillation at solar minimum made by COSMIC. Radio Sci. 2012, 47, RS0L18. [Google Scholar] [CrossRef]
- Carrano, C.S.; Groves, K.M.; Caton, R.G.; Rino, C.L.; Straus, P.R. Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths. Radio Sci. 2011, 46, RS0D07. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Zakharenkova, I.; Hunt, D.; Braun, J.; Weiss, J.; Schreiner, W.; Cherniak, I.; Wu, Q.; Vanhove, T. Geolocation of the ionospheric irregularities in the equatorial F layer by back propagation of COSMIC-2 radio occultation signals. Radio Sci. 2024; submitted, under review. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherniak, I.; Zakharenkova, I.; Gleason, S.; Hunt, D. First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms. Atmosphere 2024, 15, 1065. https://doi.org/10.3390/atmos15091065
Cherniak I, Zakharenkova I, Gleason S, Hunt D. First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms. Atmosphere. 2024; 15(9):1065. https://doi.org/10.3390/atmos15091065
Chicago/Turabian StyleCherniak, Iurii, Irina Zakharenkova, Scott Gleason, and Douglas Hunt. 2024. "First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms" Atmosphere 15, no. 9: 1065. https://doi.org/10.3390/atmos15091065
APA StyleCherniak, I., Zakharenkova, I., Gleason, S., & Hunt, D. (2024). First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms. Atmosphere, 15(9), 1065. https://doi.org/10.3390/atmos15091065