Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = invasive crop pest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3010 KiB  
Article
Species-Specific Real-Time PCR Assay for Rapid Identification of Zeugodacus cucurbitae Coquillet (Diptera: Tephritidae) from Other Closely Related Fruit Fly Species
by Rebijith Kayattukandy Balan, Sherly George, Gur Pines, Dongmei Li, Disna Gunawardana and Sathish Puthigae
Insects 2025, 16(8), 818; https://doi.org/10.3390/insects16080818 - 7 Aug 2025
Abstract
Fruit flies that belong to the genus Zeugodacus (Diptera: Tephritidae) pose significant threats as invasive pests of agricultural crops in Asia and sub-Saharan Africa. The intensification of transboundary trade in fresh horticultural produce has increased the risk of introducing invasive species such as [...] Read more.
Fruit flies that belong to the genus Zeugodacus (Diptera: Tephritidae) pose significant threats as invasive pests of agricultural crops in Asia and sub-Saharan Africa. The intensification of transboundary trade in fresh horticultural produce has increased the risk of introducing invasive species such as fruit flies, more so through the inadvertent transport of their immature developmental stages. Such immature stages of fruit flies belonging to the Tephritidae family are frequently intercepted at the international borders worldwide and are unable to be identified to the species level using morphological characteristics. Molecular identification using mitochondrial Cytochrome Oxidase I (COI) gene has proven to be quite useful, as they are not constrained by developmental stages, sex, or colour morphs of the pest species in question. Also, real-time PCR-based species-specific assays offer quicker turnaround time since they do not require any post-PCR procedures. This study evaluated the utility of a real-time PCR assay based on the COI gene region to identify Zeugodacus cucurbitae from other Tephritid species. The developed real-time PCR assay provides a swift and precise way of discriminating between these highly invasive pest species during an interception event for rapid decision making. High specificity, having no cross-reactions with closely related Tephritids, and sensitivity of the developed assay will be extremely useful in discriminating Z. cucurbitae from other closely related fruit fly species. Z. cucurbitae-specific real-time PCR developed in this study is appropriate for organizations that carry out routine diagnostics to facilitate fresh produce imports and exports. Our assay is fully optimized for rapid deployment at international borders, offering reliable detection of the target species regardless of developmental stage, sex, or geographic origins. Full article
Show Figures

Figure 1

20 pages, 1889 KiB  
Article
Suppression of Spotted Wing Drosophila, Drosophila suzukii (Matsumura), in Raspberry Using the Sterile Insect Technique
by Sebastian Hemer, Zeus Mateos-Fierro, Benjamin Brough, Greg Deakin, Robert Moar, Jessica P. Carvalho, Sophie Randall, Adrian Harris, Jimmy Klick, Michael P. Seagraves, Glen Slade, Michelle T. Fountain and Rafael A. Homem
Insects 2025, 16(8), 791; https://doi.org/10.3390/insects16080791 - 31 Jul 2025
Viewed by 326
Abstract
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated [...] Read more.
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated sterile males (male mating competitiveness, courtship, and flight performance) in the laboratory, and (2) assessing population suppression and fruit damage reduction in commercial raspberry fields. Treatment with SIT was compared to the grower’s standard chemical insecticide program throughout the season. The principal metrics of efficacy were trap counts of wild adult female D. suzukii in crops and larvae per fruit during harvesting. These metrics together with monitoring of border areas allowed targeting of high-pressure areas with higher releases of sterile males, to maximise efficacy for a given release number. The sterile male D. suzukii were as competitive as their fertile non-irradiated counterparts in laboratory mating competitiveness and flight performance studies while fertility egg-to-pupae recovery was reduced by 99%. In commercial raspberry crops, season-long releases of sterile males significantly suppressed the wild D. suzukii population, compared to the grower standard control strategy; with up to 89% reduction in wild female D. suzukii and 80% decrease in numbers of larvae per harvested fruit. Additionally, relative fruit waste (i.e., percentage of harvested fruits rejected for sale) at harvest was reduced for early, mid and late harvest crops, by up to 58% compared to the grower standard control. SIT has the potential to provide an effective and sustainable strategy for managing D. suzukii in raspberries, increasing marketable yield by reducing adult populations, fruit damage and waste fruit. SIT could therefore serve as a valuable tool for integrated pest management practices in berry production systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 1398 KiB  
Article
Flight Phenology of Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) in Its Native Range: A Baseline for Managing an Emerging Invasive Pest
by Claudia Alzate, Eduardo Soares Calixto and Silvana V. Paula-Moraes
Insects 2025, 16(8), 779; https://doi.org/10.3390/insects16080779 - 29 Jul 2025
Viewed by 301
Abstract
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology [...] Read more.
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology and seasonal dynamics in the Florida Panhandle, using pheromone trapping data to evaluate population trends and environmental drivers. Moths were collected year-round, showing consistent patterns across six consecutive years, including two distinct annual flight peaks: an early crop season flight around March, and a more prominent flight peak during September–October. Moth abundance followed a negative quadratic relationship with temperature, with peak activity occurring between 15 °C and 26 °C. No significant relationship was found with precipitation or wind. These results underscore the strong influence of abiotic factors, particularly temperature, on seasonal abundance patterns of this species. Our findings offer key insights by identifying predictable periods of high pest pressure and the environmental conditions that drive population increases. Understanding the flight phenology and behavior of this species provides an ultimate contribution to the development of effective IPM and insect resistance management (IRM) programs, promoting the development of forecasting tools for more effective, timely pest management interventions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Graphical abstract

20 pages, 1220 KiB  
Article
Color and Attractant Preferences of the Black Fig Fly, Silba adipata: Implications for Monitoring and Mass Trapping of This Invasive Pest
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(7), 732; https://doi.org/10.3390/insects16070732 - 17 Jul 2025
Viewed by 497
Abstract
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata [...] Read more.
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata adults to visual (color) and olfactory (attractant) cues under laboratory and field conditions in fig orchards. No significant color preferences were observed in laboratory choice tests using nine colors or in field trials using traps of four different colors. In the laboratory, traps containing 2% ammonium sulfate solution, torula yeast + borax, or Captor + borax, captured similar numbers of flies, whereas CeraTrap® was less attractive. Traps containing 2% ammonium sulfate were more effective than 2% ammonium acetate, though attraction was comparable when ammonium acetate was diluted to 0.2% or 0.02%. In the field, torula yeast + borax and 2% ammonium sulfate mixed with fig latex outperformed the 2% ammonium sulfate solution alone, although seasonal variation influenced trap performance. A high proportion of field-captured females were sexually immature. Torula yeast + borax attracted high numbers of non-target insects and other lonchaeid species, which reduced its specificity. In contrast, traps containing fig latex mixtures showed higher selectivity, although some S. adipata adults could not be sexed due to specimen degradation. These findings highlight the value of torula yeast pellets and 2% ammonium sulfate plus fig latex for monitoring this pest, but merit validation in field studies performed over the entire crop cycle across both wet and dry seasons. Future studies should evaluate other proteins, ammonium salt combinations and fig latex volatiles in order to develop effective and selective monitoring or mass trapping tools targeted at this invasive pest. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

27 pages, 3134 KiB  
Article
A Hybrid Deep Learning Approach for Cotton Plant Disease Detection Using BERT-ResNet-PSO
by Chetanpal Singh, Santoso Wibowo and Srimannarayana Grandhi
Appl. Sci. 2025, 15(13), 7075; https://doi.org/10.3390/app15137075 - 23 Jun 2025
Viewed by 478
Abstract
Cotton is one of the most valuable non-food agricultural products in the world. However, cotton production is often hampered by the invasion of disease. In most cases, these plant diseases are a result of insect or pest infestations, which can have a significant [...] Read more.
Cotton is one of the most valuable non-food agricultural products in the world. However, cotton production is often hampered by the invasion of disease. In most cases, these plant diseases are a result of insect or pest infestations, which can have a significant impact on production if not addressed promptly. It is, therefore, crucial to accurately identify leaf diseases in cotton plants to prevent any negative effects on yield. This paper presents a hybrid deep learning approach based on Bidirectional Encoder Representations from Transformers with Residual network and particle swarm optimization (BERT-ResNet-PSO) for detecting cotton plant diseases. This approach starts with image pre-processing, which they pass to a BERT-like encoder after linearly embedding the image patches. It results in segregating disease regions. Then, the output of the encoded feature is passed to ResNet-based architecture for feature extraction and further optimized by PSO to increase the classification accuracy. The approach is tested on a cotton dataset from the Plant Village dataset, where the experimental results show the effectiveness of this hybrid deep learning approach, achieving an accuracy of 98.5%, precision of 98.2% and recall of 98.7% compared to the existing deep learning approaches such as ResNet50, VGG19, InceptionV3, and ResNet152V2. This study shows that the hybrid deep learning approach is capable of dealing with the cotton plant disease detection problem effectively. This study suggests that the proposed approach is beneficial to help avoid crop losses on a large scale and support effective farming management practices. Full article
Show Figures

Figure 1

15 pages, 3824 KiB  
Article
Aboveground and Belowground Male Population of the Invasive Citrus Mealybug Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae)
by Rosa Vercher, Adrián Sánchez-Domingo and Isabel Escriche
Insects 2025, 16(7), 651; https://doi.org/10.3390/insects16070651 - 22 Jun 2025
Viewed by 1103
Abstract
The invasive Delottococcus aberiae is one of the most harmful mealybugs on citrus in Spain, since it causes deformations and the premature falling of fruits in citrus orchards. To improve control strategies, this study evaluates its population above- and belowground, their distribution in [...] Read more.
The invasive Delottococcus aberiae is one of the most harmful mealybugs on citrus in Spain, since it causes deformations and the premature falling of fruits in citrus orchards. To improve control strategies, this study evaluates its population above- and belowground, their distribution in the soil in addition to identifying natural enemies. The distribution in the soil of emerged males varies significantly with the distance to the tree trunks with an annual average number of 0.95 males/trap/day at 0.5 m, and ranging between 0.25 and 0.32 at 1 m, 1.5 m and 2 m. There is a consistent emergence of males throughout the year, both above- and belowground, with four distinct peaks, the first two occurring in February and April. This observation is essential to manage fruit damages that follows between March and June. Among the natural enemies detected belowground the following are highlighted: Bdellidae mites (52%), Hymenoptera parasitoids (16%) and spiders (11%). When implementing IPM strategies, emphasis should be placed on adequate soil management (crops, mulching, or the release of natural enemies) and to the appearance of first generation. We propose a belowground population sampling method as a simple and practical tool to quantify this pest’s the winter and spring populations, which remain undetectable using current methodologies. Full article
(This article belongs to the Collection Hemiptera: Ecology, Physiology, and Economic Importance)
Show Figures

Figure 1

12 pages, 1284 KiB  
Article
Invasion Dynamics and Migration Patterns of Fall Armyworm (Spodoptera frugiperda) in Shaanxi, China
by Zhanfeng Yan, Xiaojun Feng, Xing Wang, Xiangqun Yuan, Yongjun Zhang, Daibin Yang, Kanglai He, Feizhou Xie, Zhenying Wang and Yiping Li
Insects 2025, 16(6), 620; https://doi.org/10.3390/insects16060620 - 11 Jun 2025
Viewed by 969
Abstract
The fall armyworm (Spodoptera frugiperda) is a highly invasive agricultural pest that has caused significant damage to maize and other crops since its initial detection in China in 2019. Understanding its invasion dynamics, migration patterns, genetic diversity, and overwintering capacity is [...] Read more.
The fall armyworm (Spodoptera frugiperda) is a highly invasive agricultural pest that has caused significant damage to maize and other crops since its initial detection in China in 2019. Understanding its invasion dynamics, migration patterns, genetic diversity, and overwintering capacity is crucial for developing effective pest management strategies. This study investigates these aspects in Shaanxi Province, a critical transitional zone between northern and southern climates in China, from 2019 to 2023. We conducted field surveys in six cities across Shaanxi to monitor the initial infestation of FAW. Migration trajectories were simulated using the HYSPLIT model, integrating pest occurrence data and meteorological information. Genetic analyses were performed on 113 FAW individuals from 12 geographical populations using mitochondrial COI and nuclear Tpi genes. Additionally, an overwintering experiment was conducted to assess the survival of FAW pupae under local winter conditions. The first detection dates of FAW in Shaanxi showed significant interannual variation, with a trend of delayed infestation each year. Three primary migration routes into Shaanxi were identified, originating from Sichuan, Hubei-Chongqing, and Henan. Genetic analysis revealed a predominance of the rice-strain FAW in Shaanxi, with some corn-strain variants in northern regions. The overwintering experiment indicated that FAW pupae could not survive the winter in Shaanxi, suggesting that the region does not support year-round breeding of this pest. This study provides comprehensive insights into the spatiotemporal dynamics and migration patterns of FAW in Shaanxi. The findings highlight the importance of integrated pest management approaches, including monitoring migration routes and genetic diversity, to develop targeted control measures. The inability of FAW to overwinter in Shaanxi suggests that regional climate conditions play a significant role in limiting its year-round presence, which is valuable information for designing early warning systems and sustainable pest management strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 3866 KiB  
Article
Feeding Preferences, Growth Patterns and Reproductive Characteristics of Fall Armyworm (Spodoptera frugiperda) Indicate the Potential of Ficus Tree as New Host Plant
by Changqi Chen, Yan Wang, Yana Zhou, Zhu Liu, Zongbo Li and Yuan Zhang
Agriculture 2025, 15(11), 1187; https://doi.org/10.3390/agriculture15111187 - 30 May 2025
Viewed by 563
Abstract
The fall armyworm, Spodoptera frugiperda, is a serious invasive pest of the family Noctuidae (Lepidoptera) that poses a significant threat to global crop production, with poaceae crops being particularly affected. Previous studies have indicated that, as a voracious insect, the fall armyworm [...] Read more.
The fall armyworm, Spodoptera frugiperda, is a serious invasive pest of the family Noctuidae (Lepidoptera) that poses a significant threat to global crop production, with poaceae crops being particularly affected. Previous studies have indicated that, as a voracious insect, the fall armyworm possesses the potential for food source diversification. However, to date, limited research has been conducted on whether plants other than maize (Zea mays L.) and rice (Oryza sativa L.) can serve as potential food resources for the pest. In Yunnan Province, China, the distribution ranges of the fall armyworm and Ficus plants show a significant degree of overlap. Ficus species, including the widely distributed Ficus microcarpa L. f., commonly grow within or near cornfields. Our previous field studies have documented instances of fall armyworms in cornfields exhibiting feeding behavior on F. microcarpa. In this study, maize and F. microcarpa were selected as food resources for fall armyworms to compare larval feeding preferences, development time, survival rate, and reproductive capacity. The results demonstrated that when both maize and F. microcarpa were available simultaneously, fall armyworm larvae consumed both plant species. Further analysis revealed that larvae feeding on F. microcarpa exhibited a significantly longer developmental period from the third stage to pupation (14.08 ± 0.44 d) compared to those feeding on maize (9.21 ± 0.14 d). Moreover, the pupae size, pupae weight, and egg count were reduced by approximately 10%, 30%, and 30%, respectively, in larvae that fed on F. microcarpa. Despite these physiological challenges, our research findings indicated that, despite F. microcarpa not being the primary food source for fall armyworms under natural conditions, fall armyworms feeding on F. microcarpa were still capable of completing the life cycle from the third instar to the second generation when relying solely on F. microcarpa. Therefore, it is crucial to strengthen the observation and monitoring of fall armyworm populations feeding on F. microcarpa and implement targeted control strategies according to specific circumstances, thereby preventing F. microcarpa from acting as a potential host. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

14 pages, 1352 KiB  
Review
The Baluchistan Melon Fly, Myiopardalis pardalina Bigot: Biology, Ecology, and Management Strategies
by Junyan Liu, Yidie Xu, Mengbo Guo, Kaiyun Fu, Xinhua Ding, Sijia Yu, Xinyi Gu, Wenchao Guo and Jianyu Deng
Insects 2025, 16(5), 514; https://doi.org/10.3390/insects16050514 - 11 May 2025
Viewed by 1473
Abstract
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing [...] Read more.
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing on its severe economic repercussions for key crops—including melon, watermelon, and cucumber—across Africa, Asia, and Europe. M. pardalina has a four-stage life cycle (egg, larva, pupa, and adult) and distinct morphological adaptations. The species’ geographic range continues to expand, driven by global trade networks and its adaptability to shifting climatic conditions. Infestations by this pest severely reduce fruit yields, undermining food security and destabilising rural economies reliant on cucurbit cultivation. We evaluate diverse control strategies, including monitoring and quarantine methods, cultural practices, physical controls, chemical management, biological agents, and emerging genetic tools. This review emphasises the urgency of adopting integrated pest management (IPM) to strategically balance efficacy, ecological sustainability, and operational scalability. By consolidating fragmented knowledge and identifying critical research gaps, this work provides a framework for mitigating M. pardalina’s impacts, offering actionable insights to safeguard agricultural productivity and enhance resilience in vulnerable regions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

17 pages, 4171 KiB  
Article
Sexual Development of Silba adipata (Diptera: Lonchaeidae): Effects of Diet, Ultraviolet Light and Fig Latex
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(5), 495; https://doi.org/10.3390/insects16050495 - 5 May 2025
Cited by 1 | Viewed by 696
Abstract
The black fig fly, Silba adipata McAlpine (Diptera: Lonchaeidae), is a monophagous invasive pest of fig crops. Its recent detection in Mexico has highlighted the urgent need for control strategies. However, efforts to study and manage this pest are constrained by a limited [...] Read more.
The black fig fly, Silba adipata McAlpine (Diptera: Lonchaeidae), is a monophagous invasive pest of fig crops. Its recent detection in Mexico has highlighted the urgent need for control strategies. However, efforts to study and manage this pest are constrained by a limited understanding of its basic biology and an inability to rear this insect in the laboratory. Some species of flies are reproductively immature at adult emergence and require specific nutrients for the development of reproductive structures. Given this, we examined the development of ovaries and testes in response to different adult diets, ovary maturation in relation to access to figs and ultraviolet (UV) light exposure and behavioral responses to fig latex. Dietary protein (hydrolyzed yeast) was essential for egg maturation. The highest prevalence of sexual maturity in females was observed at age 21 days and was not influenced by UV light or access to figs. Male testes size decreased over time irrespective of the adult diet. The consumption of latex increased when protein was not available, although the sexes differed in their response to latex over time. These findings help overcome a critical barrier to the laboratory colonization of S. adipata by demonstrating that protein-supplemented diets are essential for sexual maturation. However, the lack of information on the specific role of fig latex in the diet and the absence of sexual behavior during the experiments highlight key knowledge gaps. Future research should focus on identifying those stimuli that promote copulation and oviposition to understand the complete life cycle of this pest under controlled conditions. Full article
(This article belongs to the Special Issue Fly Biology, Ecology, Behavior and Management—2nd Edition)
Show Figures

Figure 1

10 pages, 668 KiB  
Article
Impact of Sulfoxaflor on Brown Marmorated Stink Bug: Developmental and Reproductive Effects
by Ren Li, Zehua Wang, Fan Yang, Tao Su, Guanghang Qiao and Shanning Wang
Insects 2025, 16(5), 465; https://doi.org/10.3390/insects16050465 - 28 Apr 2025
Viewed by 456
Abstract
The brown marmorated stink bug, Halyomorpha halys, has become a severe threat to agriculture worldwide with continuous invasion and spread. Sulfoxaflor is the pioneering sulfoximine insecticide and has been widely employed for managing sap-feeding insect pests across diverse crops. However, the sublethal [...] Read more.
The brown marmorated stink bug, Halyomorpha halys, has become a severe threat to agriculture worldwide with continuous invasion and spread. Sulfoxaflor is the pioneering sulfoximine insecticide and has been widely employed for managing sap-feeding insect pests across diverse crops. However, the sublethal effects of sulfoxaflor on the growth and reproduction of H. halys remain unexplored. This study employed age-stage life tables and physiological parameters to evaluate the sublethal effects of sulfoxaflor on H. halys. The bioassay results indicated that the LC20 and LC50 values of sulfoxaflor against second-instar nymphs of H. halys were 7.75 and 20.97 mg/L, respectively. Treatment with the LC20 concentration of sulfoxaflor reduced the lifespan of female adults by 11.74 days. Importantly, the oviposition period of females was shortened by 9.47 days, and the fecundity was decreased by 1.4-fold. Additionally, the activities of cytochrome P450 (P450s) and glutathione S-transferase (GSTs) enzymes in H. halys were enhanced 1.40 and 1.54 times after treatment with sublethal concentrations of sulfoxaflor. These findings demonstrate that sublethal concentrations of sulfoxaflor significantly inhibit the population development of H. halys. Moreover, the detoxification enzymes P450s and GSTs may be associated with the potential resistance to sulfoxaflor in H. halys. This information provides valuable insights into the application of sulfoxaflor in the management of this pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 3119 KiB  
Article
Sterile but Sexy: Assessing the Mating Competitiveness of Irradiated Bagrada hilaris Males for the Development of a Sterile Insect Technique
by Chiara Elvira Mainardi, Chiara Peccerillo, Sergio Musmeci, Alessandra Paolini, René F. H. Sforza, Alessia Cemmi, Ilaria Di Sarcina, Gianfranco Anfora, Daniele Porretta, Francesca Marini and Massimo Cristofaro
Insects 2025, 16(4), 391; https://doi.org/10.3390/insects16040391 - 7 Apr 2025
Cited by 1 | Viewed by 1530
Abstract
Bagrada hilaris (known as painted bug) is a pest native to India, Southeast Asia, and middle and central Africa and was reported as invasive in the southwestern USA, Hawaii, Mexico, South America, and two Mediterranean islands. The feeding activity results in extensive damage [...] Read more.
Bagrada hilaris (known as painted bug) is a pest native to India, Southeast Asia, and middle and central Africa and was reported as invasive in the southwestern USA, Hawaii, Mexico, South America, and two Mediterranean islands. The feeding activity results in extensive damage to economically important Brassicaceae crops. Among sustainable alternatives to synthetic pesticides, the Sterile Insect Technique (SIT) is considered a promising strategy because it relies on the release of competitive sterile males that can reduce the pest reproduction. In this study, the efficacy of different doses of gamma irradiation (60, 80, and 100 Gy) was evaluated to identify the treatment that would ensure high sterility without compromising the competitiveness of the treated males. Observational tests showed that the doses of 60 Gy and 80 Gy showed no difference in mating times compared to non-irradiated males, in contrast to 100 Gy. Thus, 80 Gy was identified as the most promising dose. For further investigation, tests were conducted under choice and no-choice conditions at 80 Gy for three days. The results showed that irradiated males had a comprehensive higher mating rate than non-irradiated males, and under choice conditions, they were often preferred by females, confirming that SIT has potential as an environment-friendly method for controlling B. hilaris. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 2456 KiB  
Article
Mapping the Potential Presence of the Spotted Wing Drosophila Under Current and Future Scenario: An Update of the Distribution Modeling and Ecological Perspectives
by Lenon Morales Abeijon, Jesús Hernando Gómez Llano, Lizandra Jaqueline Robe, Sergio Marcelo Ovruski and Flávio Roberto Mello Garcia
Agronomy 2025, 15(4), 838; https://doi.org/10.3390/agronomy15040838 - 28 Mar 2025
Viewed by 620
Abstract
The article addresses the current and future potential distribution of Drosophila suzukii (Diptera: Drosophilidae), commonly known as spotted wing Drosophila (SWD). This invasive pest affects various fruit crops worldwide. Native to Southeast Asia, the species has rapidly expanded due to its high adaptability [...] Read more.
The article addresses the current and future potential distribution of Drosophila suzukii (Diptera: Drosophilidae), commonly known as spotted wing Drosophila (SWD). This invasive pest affects various fruit crops worldwide. Native to Southeast Asia, the species has rapidly expanded due to its high adaptability to climates and ability to infest ripe fruits. SWD occurrence data were collected from multiple databases, pseudo-absences were selected from the background area, and climatic variables were downloaded from WorldClim. The Random Forest algorithm was employed to model the current distribution and project future scenarios, categorizing environmental suitability into high, moderate, and low levels. The analysis of bioclimatic variables indicated that factors such as isothermality, maximum temperature of the warmest month, and precipitation of the driest month are the most significant for pest distribution. The results revealed high climatic suitability for the species in North America, Europe, and Asia, with projections indicating expansion under climate change scenarios in the Northern Hemisphere, including new areas in Europe and North America. Regions with higher suitability are expected to require management and monitoring strategies, particularly in vulnerable agricultural areas. Furthermore, the study underscores the importance of climatic data in predicting pest distribution and formulating effective control and mitigation policies. Full article
Show Figures

Figure 1

14 pages, 2042 KiB  
Article
Climate-Driven Invasion Risks of Japanese Beetle (Popillia japonica Newman) in Europe Predicted Through Species Distribution Modelling
by Giuseppe Pulighe, Flavio Lupia and Valentina Manente
Agriculture 2025, 15(7), 684; https://doi.org/10.3390/agriculture15070684 - 24 Mar 2025
Cited by 2 | Viewed by 1198
Abstract
Invasive species pose a growing threat to global biodiversity, agricultural productivity, and ecosystem health, as climate change worsens their spread. This study focused on modelling the current and projected distribution of the Japanese beetle (Popillia japonica Newman), an invasive pest with potentially [...] Read more.
Invasive species pose a growing threat to global biodiversity, agricultural productivity, and ecosystem health, as climate change worsens their spread. This study focused on modelling the current and projected distribution of the Japanese beetle (Popillia japonica Newman), an invasive pest with potentially devastating impacts on crops and natural vegetation across Europe. Using the MaxEnt species distribution model, we integrated beetle occurrence data with bioclimatic variables, analyzing current and future climate scenarios based on Shared Socio-economic Pathways (SSP1-2.6, SSP2-4.5, SSP5-8.5) for near-term (2021–2040) and mid-term (2041–2060) periods. By reclassifying the model results, we identified European regions with negligible, low, medium, and high exposure to this invasive pest under climate change pathways. The results identified regions in central Europe covering an area of 83,807 km2 that are currently at medium to high risk of Japanese beetle infestation. Future projections suggest northward expansion with suitable areas potentially increasing to 120,436 km2 in the worst-case scenario, particularly in northern Italy, southern Germany, the Western Balkans, and parts of France. These spatially explicit findings can inform targeted monitoring, early detection, and management strategies to mitigate the economic and ecological threats posed by the Japanese beetle. Integrating species distribution modelling with climate change scenarios is imperative for science-based policies to tackle the growing challenge of biological invasions. This research provides a framework for assessing invasion risks at the European scale and guiding adaptive responses in agricultural and natural systems. Full article
Show Figures

Graphical abstract

14 pages, 2063 KiB  
Article
Optimal Irradiation Strategy to Induce Male Sterility in Cotton Mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae)
by Wanying Dong, Yang Lei, Chaogang Liu, Farman Ullah, Jun Huang, Zhongshi Zhou and Yaobin Lu
Plants 2025, 14(6), 912; https://doi.org/10.3390/plants14060912 - 14 Mar 2025
Viewed by 588
Abstract
Phenacoccus solenopsis Tinsley is a highly invasive pest threatening global cotton production and numerous cultivated crops. The sterile insect technique (SIT), based on γ-ray irradiation, offers a sustainable and eco-friendly alternative to chemical controls for managing pests. This study aimed to determine the [...] Read more.
Phenacoccus solenopsis Tinsley is a highly invasive pest threatening global cotton production and numerous cultivated crops. The sterile insect technique (SIT), based on γ-ray irradiation, offers a sustainable and eco-friendly alternative to chemical controls for managing pests. This study aimed to determine the optimal developmental stage and radiation dose to induce sterility in P. solenopsis. Male pupae aged 5 days demonstrated the highest tolerance to irradiation among all tested age groups. These 5-day-old male pupae were irradiated with 20, 40, 60, and 100 Gy and mated with unirradiated females, and the effects on mating rate, oviposition stage, egg number, egg hatchability, male adult lifespan, and female sex ratio were assessed. Sterility was effectively induced by 60 Gy in males without compromising their mating competitiveness in the parental (F0) generation. Moreover, sterility traits were inherited by descendants, leading to a progressive decline in population size across the F1 and F2 generations. Therefore, a 60 Gy dose was identified as optimal for suppressing P. solenopsis in field settings. These findings establish a theoretical foundation for implementing SIT as a regional pest management strategy for P. solenopsis. Full article
(This article belongs to the Special Issue Integrated Pest Management—from Chemicals to Green Management)
Show Figures

Figure 1

Back to TopTop