Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = intratracheal D007442

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10248 KB  
Article
Comparative Carcinogenicity of Double-Walled Carbon Nanotubes of Different Lengths Administered by Intratracheal Installation into Rat Lungs
by Omnia Hosny Mohamed Ahmed, Dina Mourad Saleh, William T. Alexander, Hiroshi Takase, Yuhji Taquahashi, Motoki Hojo, Ai Maeno, Katsumi Fukamachi, Min Gi, Akihiko Hirose, Shuji Tsuruoka, Satoru Takahashi, Hiroyuki Tsuda and Aya Naiki-Ito
Nanomaterials 2025, 15(18), 1402; https://doi.org/10.3390/nano15181402 - 11 Sep 2025
Cited by 1 | Viewed by 741
Abstract
We previously carried out an in vivo 2-year study to assess the potential toxicity/carcinogenicity of double-walled carbon nanotubes (DWCNTs) in a rat lung. We found that administration of DWCNTs by intratracheal–intrapulmonary spraying (TIPS) at a dose of 0.5 mg/rat induced the development of [...] Read more.
We previously carried out an in vivo 2-year study to assess the potential toxicity/carcinogenicity of double-walled carbon nanotubes (DWCNTs) in a rat lung. We found that administration of DWCNTs by intratracheal–intrapulmonary spraying (TIPS) at a dose of 0.5 mg/rat induced the development of lung tumors in 7 of 24 treated rats while 1 of 21 untreated rats and 1 of 25 vehicle treated rats developed lung tumors. In the current study, we administered DWCNTs of different lengths, 1.5 µm, 7 µm, and 15 µm, to rats by TIPS to investigate the possible effect of the length of this thin, flexible CNT on toxicity/carcinogenicity in rat lungs. Rats were administered DWCNTs with lengths of 1.5 µm (D1.5), 7 µm (D7), and 15 µm (D15) by TIPS once every other day over the course of two weeks for a total of eight administrations. The total dose administered was approximately 22 × 1012 fibers per rat, corresponding to 0.0504 mg for D1.5, 0.232 mg for D7, and 0.504 mg for D15. Another group of rats was administered 0.5 mg MWCNT-7, a known carcinogen. Animals were killed at weeks 6 and 104 (4 and 102 weeks after the final TIPS administration). The mean survival time of the rats in the untreated, vehicle, D1.5, D7, and D15 groups was 99 to 104 weeks. One rat in the D1.5 group and one rat in the D15 group died before week 75. The remaining rats in the untreated, vehicle, D1.5, D7, and D15 groups were included in the final assessment of lung toxicity/carcinogenicity. In contrast, 11 rats in the MWCNT-7 group died before week 75 due to the development of malignant mesothelioma. Due to the much shorter survival time of the rats treated with MWCNT-7, accurate assessment of lung proliferative lesions in this group was not possible. At week 6, an increase in alveolar macrophages and granulation tissue foci in the alveoli was observed in all DWCNT administered groups. The alveolar epithelial cell PCNA index was also significantly increased in the D7 and D15 groups. Increases in alveolar macrophages, granulation tissue foci, and the alveolar epithelial cell PCNA index were observed in all DWCNT-treated groups at the final sacrifice. The incidences of lung tumors were 0/13, 0/12, 4/12, 3/8, and 2/10 in the untreated, vehicle, D1.5, D7, and D15 groups, respectively. In agreement with our previous study, the DWCNTs tested in the present study were carcinogenic in the rat lung. In addition, we present evidence that DWCNT fiber length may possibly have an effect on DWCNT-induced carcinogenicity in rat lungs. Full article
Show Figures

Graphical abstract

14 pages, 6422 KB  
Article
Intratracheal Delivery of a Phospholamban Decoy Peptide Attenuates Cardiac Damage Following Myocardial Infarction
by Taewon Kook, Mi-Young Lee, Tae Hwan Kwak, Dongtak Jeong, Doo Sun Sim, Myung Ho Jeong, Youngkeun Ahn, Hyun Kook, Woo Jin Park and Seung Pil Jang
Int. J. Mol. Sci. 2025, 26(6), 2649; https://doi.org/10.3390/ijms26062649 - 14 Mar 2025
Viewed by 1458
Abstract
Heart failure (HF) remains a major cause of mortality worldwide. While novel approaches, including gene and cell therapies, show promise, efficient delivery methods for such biologics to the heart are critically needed. One emerging strategy is lung-to-heart delivery using nanoparticle (NP)-encapsulated biologics. This [...] Read more.
Heart failure (HF) remains a major cause of mortality worldwide. While novel approaches, including gene and cell therapies, show promise, efficient delivery methods for such biologics to the heart are critically needed. One emerging strategy is lung-to-heart delivery using nanoparticle (NP)-encapsulated biologics. This study examines the efficiency of delivering a therapeutic peptide conjugated to a cell-penetrating peptide (CPP) to the heart via the lung-to-heart route through intratracheal (IT) injection in mice. The CPP, a tandem repeat of NP2 (dNP2) derived from the human novel LZAP-binding protein (NLBP), facilitates intracellular delivery of the therapeutic payload. The therapeutic peptide, SE, is a decoy peptide designed to inhibit protein phosphatase 1 (PP1)-mediated dephosphorylation of phospholamban (PLN). Our results demonstrated that IT injection of dNP2-SE facilitated efficient delivery to the heart, with peak accumulation at 3 h post-injection. The administration of dNP2-SE significantly ameliorated morphological and functional deterioration of the heart under myocardial infarction. At the molecular level, dNP2-SE effectively prevented PLN dephosphorylation in the heart. Immunoprecipitation experiments further revealed that dNP2-SE binds strongly to PP1 and disrupts its interaction with PLN. Collectively, our findings suggest that lung-to-heart delivery of a CPP-conjugated therapeutic peptide, dNP2-SE, represents a promising approach for the treatment of HF. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

11 pages, 1736 KB  
Article
Immunogenicity and Protective Efficacy of Aerosolized Live-Attenuated Yellow Fever 17D Vaccine in Mice
by Feng Zhu, Meng-Xu Sun, Suo-Qun Zhao, Cheng-Feng Qin, Jin-Hua Wang and Yong-Qiang Deng
Vaccines 2024, 12(8), 856; https://doi.org/10.3390/vaccines12080856 - 30 Jul 2024
Viewed by 1938
Abstract
Yellow fever (YF), caused by the yellow fever virus (YFV), continually spreads and causes epidemics worldwide, posing a great threat to human health. The live-attenuated YF 17D vaccine (YF-17D) has been licensed for preventing YFV infection and administrated via the intramuscular (i.m.) route. [...] Read more.
Yellow fever (YF), caused by the yellow fever virus (YFV), continually spreads and causes epidemics worldwide, posing a great threat to human health. The live-attenuated YF 17D vaccine (YF-17D) has been licensed for preventing YFV infection and administrated via the intramuscular (i.m.) route. In this study, we sought to determine the immunogenicity and protective efficacy of aerosolized YF-17D via the intratracheal (i.t.) route in mice. YF-17D stocks in liquids were successfully aerosolized into particles of 6 μm. Further in vitro phenotype results showed the aerosolization process did not abolish the infectivity of YF-17D. Meanwhile, a single i.t. immunization with aerosolized YF-17D induced robust humoral and cellular immune responses in A129 mice, which is comparable to that received i.p. immunization. Notably, the aerosolized YF-17D also triggered specific secretory IgA (SIgA) production in bronchoalveolar lavage. Additionally, all immunized animals survived a lethal dose of YFV challenge in mice. In conclusion, our results support further development of aerosolized YF-17D in the future. Full article
Show Figures

Figure 1

17 pages, 2909 KB  
Article
Card9 Broadly Regulates Host Immunity against Experimental Pulmonary Cryptococcus neoformans 52D Infection
by Isabelle Angers, Wided Akik, Annie Beauchamp, Irah L. King, Larry C. Lands and Salman T. Qureshi
J. Fungi 2024, 10(6), 434; https://doi.org/10.3390/jof10060434 - 19 Jun 2024
Cited by 3 | Viewed by 2443
Abstract
The ubiquitous soil-associated fungus Cryptococcus neoformans causes pneumonia that may progress to fatal meningitis. Recognition of fungal cell walls by C-type lectin receptors (CLRs) has been shown to trigger the host immune response. Caspase recruitment domain-containing protein 9 (Card9) is an intracellular adaptor [...] Read more.
The ubiquitous soil-associated fungus Cryptococcus neoformans causes pneumonia that may progress to fatal meningitis. Recognition of fungal cell walls by C-type lectin receptors (CLRs) has been shown to trigger the host immune response. Caspase recruitment domain-containing protein 9 (Card9) is an intracellular adaptor that is downstream of several CLRs. Experimental studies have implicated Card9 in host resistance against C. neoformans; however, the mechanisms that are associated with susceptibility to progressive infection are not well defined. To further characterize the role of Card9 in cryptococcal infection, Card9em1Sq mutant mice that lack exon 2 of the Card9 gene on the Balb/c genetic background were created using CRISPR-Cas9 genome editing technology and intratracheally infected with C. neoformans 52D. Card9em1Sq mice had significantly higher lung and brain fungal burdens and shorter survival after C. neoformans 52D infection. Susceptibility of Card9em1Sq mice was associated with lower pulmonary cytokine and chemokine production, as well as reduced numbers of CD4+ lymphocytes, neutrophils, monocytes, and dendritic cells in the lungs. Histological analysis and intracellular cytokine staining of CD4+ T cells demonstrated a Th2 pattern of immunity in Card9em1Sq mice. These findings demonstrate that Card9 broadly regulates the host inflammatory and immune response to experimental pulmonary infection with a moderately virulent strain of C. neoformans. Full article
(This article belongs to the Special Issue New Perspectives on Cryptococcus and Cryptococcosis)
Show Figures

Figure 1

12 pages, 3981 KB  
Article
Stellate Ganglion Block Attenuates LPS-Induced Acute Lung Injury by Activating Sirt3 Regulation of Oxidative Stress and Inflammation
by Shiyun Dai, Jun Ji, Rongrong Li, Lu Gao and Xingying He
Biomedicines 2024, 12(6), 1148; https://doi.org/10.3390/biomedicines12061148 - 22 May 2024
Cited by 6 | Viewed by 2305
Abstract
Stellate ganglion blocks (SGBs) has been applied in clinics to alleviate pain-related syndromes for almost a century. In recent years, it has been reported that SGB can attenuate acute lung injury (ALI) in animals. However, the details of these molecular mechanisms remain complex [...] Read more.
Stellate ganglion blocks (SGBs) has been applied in clinics to alleviate pain-related syndromes for almost a century. In recent years, it has been reported that SGB can attenuate acute lung injury (ALI) in animals. However, the details of these molecular mechanisms remain complex and unclear. In this study, rats were randomly divided into four groups: group C (receiving no treatment), group NS (receiving the intratracheal instillation of normal saline), group L (receiving the intratracheal instillation of LPS) and group LS (receiving SGB after the intratracheal instillation of LPS). The pathological damage of lung tissue, arterial blood gases, the differentiation of alveolar macrophages (AMs) and inflammatory cytokines (IL-1β, IL-6, IL-10) were detected. Furthermore, the oxidative stress indexes (ROS, CYP-D, T-SOD, Mn-SOD and CAT) in serum and the levels of Sirt3 signaling-associated proteins (JAK2/STAT3, NF-κb p65, CIRP and NLRP3) in the lungs were measured. The results revealed that SGB could attenuate lung tissue damage, improve pulmonary oxygenation, promote the differentiation of AMs to the M2 phenotype, decrease the secretion of IL-1β and IL-6, and increase the secretion of IL-10. Meanwhile, SGB was found to inhibit the production of ROS and CYP-D, and enhance the activities of T-SOD, Mn-SOD and CAT. Furthermore, SGB upregulated Sirt3 and downregulated JAK2/STAT3 and NF-κb p65 phosphorylation, CIRP and NLRP3. Our work revealed that SGB could attenuate LPS-induced ALI by activating the Sirt3-mediated regulation of oxidative stress and pulmonary inflammation; this may shed new light upon the protection of SGB and provide a novel prophylactic strategy for LPS-induced ALI. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

13 pages, 2476 KB  
Article
The Effects of Heparan Sulfate Infusion on Endothelial and Organ Injury in a Rat Pneumosepsis Model
by Daan P. van den Brink, Derek J. B. Kleinveld, Annabel Bongers, Jaël Vos, Joris J. T. H. Roelofs, Nina C. Weber, Jaap D. van Buul and Nicole P. Juffermans
J. Clin. Med. 2023, 12(20), 6438; https://doi.org/10.3390/jcm12206438 - 10 Oct 2023
Cited by 1 | Viewed by 1845
Abstract
Septic shock is characterized by endothelial dysfunction, leading to tissue edema and organ failure. Heparan sulfate (HS) is essential for vascular barrier integrity, possibly via albumin as a carrier. We hypothesized that supplementing fluid resuscitation with HS would improve endothelial barrier function, thereby [...] Read more.
Septic shock is characterized by endothelial dysfunction, leading to tissue edema and organ failure. Heparan sulfate (HS) is essential for vascular barrier integrity, possibly via albumin as a carrier. We hypothesized that supplementing fluid resuscitation with HS would improve endothelial barrier function, thereby reducing organ edema and injury in a rat pneumosepsis model. Following intratracheal inoculation with Streptococcus pneumoniae, Sprague Dawley rats were randomized to resuscitation with a fixed volume of either Ringer’s Lactate (RL, standard of care), RL supplemented with 7 mg/kg HS, 5% human albumin, or 5% human albumin supplemented with 7 mg/kg HS (n = 11 per group). Controls were sham inoculated animals. Five hours after the start of resuscitation, animals were sacrificed. To assess endothelial permeability, 70 kD FITC-labelled dextran was administered before sacrifice. Blood samples were taken to assess markers of endothelial and organ injury. Organs were harvested to quantify pulmonary FITC-dextran leakage, organ edema, and for histology. Inoculation resulted in sepsis, with increased lactate levels, pulmonary FITC-dextran leakage, pulmonary edema, and pulmonary histologic injury scores compared to healthy controls. RL supplemented with HS did not reduce median pulmonary FITC-dextran leakage compared to RL alone (95.1 CI [62.0–105.3] vs. 87.1 CI [68.9–139.3] µg/mL, p = 0.76). Similarly, albumin supplemented with HS did not reduce pulmonary FITC-dextran leakage compared to albumin (120.0 [93.8–141.2] vs. 116.2 [61.7 vs. 160.8] µg/mL, p = 0.86). No differences were found in organ injury between groups. Heparan sulfate, as an add-on therapy to RL or albumin resuscitation, did not reduce organ or endothelial injury in a rat pneumosepsis model. Higher doses of heparan sulfate may decrease organ and endothelial injury induced by shock. Full article
Show Figures

Figure 1

16 pages, 8642 KB  
Article
Synergistic Power of Piceatannol and/or Vitamin D in Bleomycin-Induced Pulmonary Fibrosis In Vivo: A Preliminary Study
by Nehal Ezz Eldeen, Yasser M. Moustafa, Maha Abdullah Alwaili, Amani A. Alrehaili and Dina M. Khodeer
Biomedicines 2023, 11(10), 2647; https://doi.org/10.3390/biomedicines11102647 - 27 Sep 2023
Cited by 6 | Viewed by 2529
Abstract
Oxidative stress and epigenetic alterations, including the overexpression of all class I and II histone deacetylases (HDACs), particularly HDAC2 and HDAC4, have been identified as key molecular mechanisms driving pulmonary fibrosis. Treatment with piceatannol (PIC) or vitamin D (Vit D) has previously exhibited [...] Read more.
Oxidative stress and epigenetic alterations, including the overexpression of all class I and II histone deacetylases (HDACs), particularly HDAC2 and HDAC4, have been identified as key molecular mechanisms driving pulmonary fibrosis. Treatment with piceatannol (PIC) or vitamin D (Vit D) has previously exhibited mitigating impacts in pulmonary fibrosis models. The present study investigated the effects of PIC, Vit D, or a combination (PIC-Vit D) on the expression of HDAC2, HDAC4, and transforming growth factor-beta (TGF-β) in the lungs; the phosphatidylinositide-3-kinase (PI3K)/AKT signaling pathway; and the antioxidant status of the lungs. The objective was to determine if the treatments had protective mechanisms against pulmonary fibrosis caused by bleomycin (BLM) in rats. Adult male albino rats were given a single intratracheal dosage of BLM (10 mg/kg) to induce pulmonary fibrosis. PIC (15 mg/kg/day, oral (p.o.)), Vit D (0.5 μg/kg/day, intraperitoneal (i.p.)), or PIC-Vit D (15 mg/kg/day, p.o. plus 0.5 μg/kg/day, i.p.) were given the day following BLM instillation and maintained for 14 days. The results showed that PIC, Vit D, and PIC-Vit D significantly improved the histopathological sections; downregulated the expression of HDAC2, HDAC4, and TGF-β in the lungs; inhibited the PI3K/AKT signaling pathway; decreased extracellular matrix (ECM) deposition including collagen type I and alpha smooth muscle actin (α-SMA); and increased the antioxidant capacity of the lungs by increasing the levels of glutathione (GSH) that had been reduced and decreasing the levels of malondialdehyde (MDA) compared with the BLM group at a p-value less than 0.05. The concomitant administration of PIC and Vit D had a synergistic impact that was greater than the impact of monotherapy with either PIC or Vit D. PIC, Vit D, and PIC-Vit D exhibited a notable protective effect through their antioxidant effects, modulation of the expression of HDAC2, HDAC4, and TGF-β in the lungs, and suppression of the PI3K/AKT signaling pathway. Full article
(This article belongs to the Special Issue Bioactive Compounds in Chronic Diseases)
Show Figures

Figure 1

13 pages, 1538 KB  
Article
Glidescope Video Laryngoscopy in Patients with Severely Restricted Mouth Opening—A Pilot Study
by Zohal Popal, André Dankert, Philip Hilz, Viktor Alexander Wünsch, Jörn Grensemann, Lili Plümer, Lars Nawrath, Linda Krause, Christian Zöllner and Martin Petzoldt
J. Clin. Med. 2023, 12(15), 5096; https://doi.org/10.3390/jcm12155096 - 3 Aug 2023
Cited by 5 | Viewed by 2885
Abstract
Background: An inter-incisor gap <3 cm is considered critical for videolaryngoscopy. It is unknown if new generation GlideScope Spectrum™ videolaryngoscopes with low-profile hyperangulated blades might facilitate safe tracheal intubation in these patients. This prospective pilot study aims to evaluate feasibility and safety of [...] Read more.
Background: An inter-incisor gap <3 cm is considered critical for videolaryngoscopy. It is unknown if new generation GlideScope Spectrum™ videolaryngoscopes with low-profile hyperangulated blades might facilitate safe tracheal intubation in these patients. This prospective pilot study aims to evaluate feasibility and safety of GlideScopeTM videolaryngoscopes in severely restricted mouth opening. Methods: Feasibility study in 30 adults with inter-incisor gaps between 1.0 and 3.0 cm scheduled for ENT or maxillofacial surgery. Individuals at risk for aspiration or rapid desaturation were excluded. Results: The mean mouth opening was 2.2 ± 0.5 cm (range 1.1–3.0 cm). First attempt success rate was 90% and overall success was 100%. A glottis view grade 1 or 2a was achieved in all patients. Nasotracheal intubation was particularly difficult if Magill forceps were required (n = 4). Intubation time differed between orotracheal (n = 9; 33 (25; 39) s) and nasotracheal (n = 21; 55 (38; 94) s); p = 0.049 intubations. The airway operator’s subjective ratings on visual analogue scales (0–100) revealed that tube placement was more difficult in individuals with an inter-incisor gap <2.0 cm (n = 10; 35 (29; 54)) versus ≥2.0 cm (n = 20; 20 (10; 30)), p = 0.007, while quality of glottis exposure did not differ. Conclusions: GlidescopeTM videolaryngoscopy is feasible and safe in patients with severely restricted mouth opening if given limitations are respected. Full article
(This article belongs to the Special Issue Airway Management & Respiratory Therapy)
Show Figures

Figure 1

15 pages, 4620 KB  
Article
Platycodonis Radix Alleviates LPS-Induced Lung Inflammation through Modulation of TRPA1 Channels
by Tan Yang, Shuang Zhao, Yu Yuan, Xiaotong Zhao, Fanjie Bu, Zhiyuan Zhang, Qianqian Li, Yaxin Li, Zilu Wei, Xiuyan Sun, Yanqing Zhang and Junbo Xie
Molecules 2023, 28(13), 5213; https://doi.org/10.3390/molecules28135213 - 5 Jul 2023
Cited by 7 | Viewed by 2864
Abstract
Platycodonis Radix (PR), a widely consumed herbal food, and its bioactive constituents, platycodins, have therapeutic potential for lung inflammation. Transient Receptor Potential Ankyrin 1 (TRPA1), which is essential for the control of inflammation, may be involved in the development of inflammation in the [...] Read more.
Platycodonis Radix (PR), a widely consumed herbal food, and its bioactive constituents, platycodins, have therapeutic potential for lung inflammation. Transient Receptor Potential Ankyrin 1 (TRPA1), which is essential for the control of inflammation, may be involved in the development of inflammation in the lungs. The aim of this study was to determine the TRPA1-targeted effects of PR against pulmonary inflammation and to investigate the affinity of PR constituents for TRPA1 and their potential mechanisms of action. Using a C57BL/6J mouse lipopolysaccharides (LPS) intratracheal instillation pneumonia model and advanced analytical techniques (UPLC-Q-TOF-MS/MS, molecular docking, immuno-fluorescence), five platycodins were isolated from PR, and the interaction between these platycodins and hTRPA1 was verified. Additionally, we analyzed the impact of platycodins on LPS-induced TRPA1 expression and calcium influx in BEAS-2B cells. The results indicated that PR treatment significantly reduced the severity of LPS-triggered inflammation in the mouse model. Interestingly, there was a mild increase in the expression of TRPA1 caused by PR in healthy mice. Among five isolated platycodins identified in the PR extract, Platycodin D3 (PD3) showed the highest affinity for hTRPA1. The interaction between platycodins and TRPA1 was verified through molecular docking methods, highlighting the significance of the S5–S6 pore-forming loop in TRPA1 and the unique structural attributes of platycodins. Furthermore, PD3 significantly reduced LPS-induced TRPA1 expression and calcium ion influx in BEAS-2B cells, substantiating its own role as an effective TRPA1 modulator. In conclusion, PR and platycodins, especially PD3, show promise as potential lung inflammation therapeutics. Further research should explore the precise mechanisms by which platycodins modulate TRPA1 and their broader therapeutic potential. Full article
Show Figures

Figure 1

13 pages, 3820 KB  
Article
TNFR1 Mediated Apoptosis Is Protective against Mycobacterium avium in Mice
by Yuki Shundo, Rintaro On, Takemasa Matsumoto, Hiroshi Ouchi and Masaki Fujita
Microorganisms 2023, 11(3), 778; https://doi.org/10.3390/microorganisms11030778 - 17 Mar 2023
Cited by 4 | Viewed by 2332
Abstract
Mycobacterium avium is an intracellular proliferating pathogen that causes chronic refractory respiratory infection. Although apoptosis induced by M. avium has been reported in vitro, the role of apoptosis against M. avium infection in vivo remains unclear. Here, we investigated the role of apoptosis [...] Read more.
Mycobacterium avium is an intracellular proliferating pathogen that causes chronic refractory respiratory infection. Although apoptosis induced by M. avium has been reported in vitro, the role of apoptosis against M. avium infection in vivo remains unclear. Here, we investigated the role of apoptosis in mouse models of M. avium infection. Tumor necrosis factor receptor-1 knockout mice (TNFR1-KO) andTNFR2-KO micewere used. M. avium (1 × 107 cfu/body) was administered intratracheally to mice. Apoptosis in lungs was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling and lung histology as well as cell death detection kits using BAL fluids. TNFR1-KO mice were susceptible to M. avium infection compared with TNFR2-KO and wild type mice based on the bacterial number and lung histology. Higher numbers of apoptotic cells were detected in the lungs of TNFR2-KO and wild-type mice were compared with TNFR1-KO mice. The inhalation of Z-VAD-FMK deteriorated M. avium infection compared with vehicle-inhaled controls. Overexpression of Iκ-B alpha by adenovirus vector attenuated M. avium infection. Our study showed apoptosis had an important role in innate immunity against M. avium in mice. The induction of apoptosis in M. avium-infected cells might be a new strategy to control M. avium infection. Full article
Show Figures

Figure 1

11 pages, 2142 KB  
Article
Therapeutic Effects of Cornuside on Particulate Matter–Induced Lung Injury
by Go Oun Kim, Eui Kyun Park, Dong Ho Park, Gyu Yong Song and Jong-Sup Bae
Int. J. Mol. Sci. 2023, 24(5), 4979; https://doi.org/10.3390/ijms24054979 - 4 Mar 2023
Cited by 4 | Viewed by 2642
Abstract
Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 μm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid [...] Read more.
Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 μm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid glucoside derived from the fruit of Cornus officinalis Sieb, exerts protective properties against tissue damage via controlling the immunological response and reducing inflammation. However, information regarding the therapeutic potential of CN in patients with PM2.5-induced lung injury is limited. Thus, herein, we examined the protective properties of CN against PM2.5-induced lung damage. Mice were categorized into eight groups (n = 10): a mock control group, a CN control group (0.8 mg/kg mouse body weight), four PM2.5+CN groups (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight), and a PM2.5+CN group (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight). The mice were administered with CN 30 min following intratracheal tail vein injection of PM2.5. In mice exposed to PM2.5, different parameters including changes in lung tissue wet/dry (W/D) lung weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were examined. Our findings revealed that CN reduced lung damage, the W/D weight ratio, and hyperpermeability caused by PM2.5. Moreover, CN reduced the plasma levels of inflammatory cytokines produced because of PM2.5 exposure, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide, as well as the total protein concentration in the BALF, and successfully attenuated PM2.5-associated lymphocytosis. In addition, CN substantially reduced the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1, and increased protein phosphorylation of the mammalian target of rapamycin (mTOR). Thus, the anti-inflammatory property of CN renders it a potential therapeutic agent for treating PM2.5-induced lung injury by controlling the TLR4–MyD88 and mTOR–autophagy pathways. Full article
(This article belongs to the Special Issue Multi-Omics Analysis and Application of Plant Natural Products)
Show Figures

Graphical abstract

18 pages, 3849 KB  
Article
Saikosaponin A and Its Epimers Alleviate LPS-Induced Acute Lung Injury in Mice
by Donghui Peng, Yuchan Chen, Yanping Sun, Zhihong Zhang, Na Cui, Wensen Zhang, Ying Qi, Yuanning Zeng, Bin Hu, Bingyou Yang, Qiuhong Wang and Haixue Kuang
Molecules 2023, 28(3), 967; https://doi.org/10.3390/molecules28030967 - 18 Jan 2023
Cited by 21 | Viewed by 3291
Abstract
The purpose of this work was to illustrate the effect of processing with vinegar on saikosaponins of Bupleurum chinense DC. (BC) and the protective effects of saikosaponin A (SSA), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), and saikosaponin D (SSD) in lipopolysaccharide (LPS)-induced acute [...] Read more.
The purpose of this work was to illustrate the effect of processing with vinegar on saikosaponins of Bupleurum chinense DC. (BC) and the protective effects of saikosaponin A (SSA), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), and saikosaponin D (SSD) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice. We comprehensively evaluated the anti-inflammatory effects and potential mechanisms of SSA, SSb1, SSb2, and SSD through an LPS-induced ALI model using intratracheal injection. The results showed that SSA, SSb1, SSb2, and SSD significantly decreased pulmonary edema; reduced the levels of IL-6, TNF-α, and IL-1β in serum and lung tissues; alleviated pulmonary pathological damage; and decreased the levels of the IL-6, TNF-α, and IL-1β genes and the expression of NF-κB/TLR4-related proteins. Interestingly, they were similar in structure, but SSb2 had a better anti-inflammatory effect at the same dose, according to a principal component analysis. These findings indicated that it may not have been comprehensive to only use SSA and SSD as indicators to evaluate the quality of BC, especially as the contents of SSb1 and SSb2 in vinegar-processed BC were significantly increased. Full article
(This article belongs to the Special Issue Natural Products: Chemical Composition and Pharmacological Activity)
Show Figures

Figure 1

12 pages, 935 KB  
Article
Experimental Infection with Mycoplasma hyopneumoniae Strain 232 in Swine Influences the Lower Respiratory Microbiota
by Henrique Meiroz de Souza Almeida, Karina Sonalio, Marina Lopes Mechler-Dreibi, Fernando Antônio Moreira Petri, Gabriel Yuri Storino, Dominiek Maes and Luís Guilherme de Oliveira
Vet. Sci. 2022, 9(12), 674; https://doi.org/10.3390/vetsci9120674 - 5 Dec 2022
Cited by 2 | Viewed by 2940
Abstract
Mycoplasma (M.) hyopneumoniae, the etiological agent of swine enzootic pneumonia, has been reported to increase the susceptibility to secondary infections and modulate the respiratory microbiota in infected pigs. However, no studies have assessed the influence of M. hyopneumoniae on the respiratory microbiota [...] Read more.
Mycoplasma (M.) hyopneumoniae, the etiological agent of swine enzootic pneumonia, has been reported to increase the susceptibility to secondary infections and modulate the respiratory microbiota in infected pigs. However, no studies have assessed the influence of M. hyopneumoniae on the respiratory microbiota diversity under experimental conditions. Therefore, this study evaluated the impact of M. hyopneumoniae infection on the respiratory microbiota of experimentally infected swine over time. To accomplish this, 12 weaned pigs from a M. hyopneumoniae-free farm were divided into two groups: M. hyopneumoniae strain 232 infected (n = 8) and non-infected (n = 4). The first group received 10 mL of Friis medium containing 107 CCU/mL of M. hyopneumoniae while the control group received 10 mL of sterile Friis medium. Inoculation of both groups was performed intratracheally when the animals were 35 days old (d0). At 28 days post-inoculation (dpi) and 56 dpi, 4 infected animals plus 2 controls were humanely euthanized, and biopsy samples of nasal turbinates (NT) and bronchus-alveolar lavage fluid (BALF) samples were collected. The DNA was extracted from the individual samples, and each group had the samples pooled and submitted to next-generation sequencing. Taxonomic analysis, alpha and beta diversity indexes, weighted unifrac, and unweighted unifrac distances were calculated. A high relative frequency (99%) of M. hyopneumoniae in BALF samples from infected animals was observed with no significant variation between time points. The infection did not seem to alter the diversity and evenness of bacterial communities in NT, thus, M. hyopneumoniae relative frequency was low in NT pools from infected animals (28 dpi—0.83%; 56 dpi—0.89%). PCoA diagrams showed that BALF samples from infected pigs were grouped and far from the control samples, whereas NT from infected animals were not separated from the control. Under the present coditions, M. hyopneumoniae infection influenced the lower respiratory microbiota, which could contribute to the increased susceptibility of infected animals to respiratory infections. Full article
(This article belongs to the Special Issue New Findings on Long-Known Pathogens in Pigs)
Show Figures

Figure 1

9 pages, 2043 KB  
Article
Cirsilineol Treatment Attenuates PM2.5-Induced Lung Injury in Mice
by Chaeyeong Kim, Go Oun Kim and Jong-Sup Bae
Int. J. Mol. Sci. 2022, 23(22), 13948; https://doi.org/10.3390/ijms232213948 - 12 Nov 2022
Cited by 8 | Viewed by 2359
Abstract
Ultrafine particulate matter with less than 2.5 μm diameter (PM2.5) is an air pollutant that causes severe lung damage. Currently, effective treatment and preventive methods for PM2.5-induced lung damage are limited. Cirsilineol (CSL) is a small natural compound isolated [...] Read more.
Ultrafine particulate matter with less than 2.5 μm diameter (PM2.5) is an air pollutant that causes severe lung damage. Currently, effective treatment and preventive methods for PM2.5-induced lung damage are limited. Cirsilineol (CSL) is a small natural compound isolated from Artemisia vestita. In this study, the efficacy of CSL on PM2.5-induced lung toxicity was tested, and its mechanism was identified. Lung injury was caused by intratracheal administration of PM2.5 suspension in animal models. Two days after PM2.5 pretreatment, CSL was injected via mouse tail vein for two days. The effects of CSL on PM2.5-induced lung damage, autophagy, apoptosis, and pulmonary inflammation in a mouse model and their mechanisms were investigated. CSL significantly suppressed histological lung damage and lung wet/dry weight proportion. CSL also significantly reduced PM2.5-induced autophagy dysfunction, apoptosis, lymphocyte suppression, and inflammatory cytokine levels in bronchoalveolar fluid (BALF). Furthermore, CSL increased mammalian target of rapamycin (mTOR) phosphorylation and significantly inhibited the expression of Toll-like receptors (TLR) 2 and 4, MyD88, and the autophagy proteins, Beclin1 and LC3II. Thus, CSL exerts protective effects on pulmonary damage by regulating mTOR and TLR2,4–myD88 autophagy pathways. Therefore, CSL can be used as an effective treatment for PM2.5-induced lung damage. Full article
Show Figures

Graphical abstract

18 pages, 7671 KB  
Article
Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice
by Huanan Rao, Xiaominting Song, Jieting Lei, Peng Lu, Guiying Zhao, Xin Kang, Duanna Zhang, Tingrui Zhang, Yali Ren, Cheng Peng, Yuzhi Li, Jin Pei and Zhixing Cao
Int. J. Mol. Sci. 2022, 23(21), 13478; https://doi.org/10.3390/ijms232113478 - 3 Nov 2022
Cited by 9 | Viewed by 3665
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated [...] Read more.
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI. Full article
Show Figures

Figure 1

Back to TopTop