error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = intracellular localisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1489 KB  
Article
Intraluminal Vesicles as Transfection Intermediaries
by Nourhan A. M. Mahmoud, Hadeer K. S. Abdelrahman, Benedita K. L. Feron, Andra Pintilie, Marc Fivaz, Joanna J. Miest-Bray, Timothy Gomez, Natalie Youens, Vineeta Tripathi and Simon C. W. Richardson
Pharmaceutics 2025, 17(12), 1584; https://doi.org/10.3390/pharmaceutics17121584 - 9 Dec 2025
Viewed by 394
Abstract
Background: To address hepatotropic body distribution and toxicity, transfection systems based on protein architecture have been proposed. Attenuated anthrax toxin (aATx) has provided the backbone for a first in class transfection system that, in the wild, uses intraluminal vesicles (ILVs) as an intermediary [...] Read more.
Background: To address hepatotropic body distribution and toxicity, transfection systems based on protein architecture have been proposed. Attenuated anthrax toxin (aATx) has provided the backbone for a first in class transfection system that, in the wild, uses intraluminal vesicles (ILVs) as an intermediary compartment during the translocation of large molecules into the cytosol. Small interfering (si)RNA molecules non-covalently attached to a carrier (LFn-PKR) would not be predicted to be an aATx translocase (protective antigen (PA)) substrate. Previously, siRNA has been shown to be delivered to the cytosol using this system. Methods: Here, the localisation of 32P-labelled siRNA delivered using aATx was quantified directly and related to siRNA activity. In addition, inhibition of ILV formation by hypertonic sucrose or wheatgerm agglutinin (WGA) was shown to inhibit the aATx-mediated cytosolic translocation of siRNA. Results: MCF-7 cells were used to establish siRNA intracellular distribution in relation to pharmacological activity by targeting STAT3 gene expression. After Lipofectamine-mediated transfection using 100 nM 32P-labelled siRNA, 45 ± 3.2% (±SD; n = 3) of the cell associated siRNA was found in the cytosol. After the transfection of 100 nM 32P-labelled siRNA using aATx, 77 ± 2.5% (±SD; n = 3) of the cell associated siRNA was found in the cytosol and resulted in a reduction in STAT3 expression of 64.04 ± 14.17% (±SD; n = 3) relative to an untreated control by Western analysis. Further, 25 μg/mL of WGA inhibited 75.23 ± 0.06% (±SD; n = 3) of the knockdown attributed to a non-WGA-treated control. Relative to the control, treatment with 200 mM sucrose resulted in a reduction of 74.58 ± 7.76% (±SD; n = 3) of target gene knockdown. Conclusions: These data indicated that the insertion of the PA pore into endosomal membrane did not weaken the endosomal limiting membrane, leading to vesicular bursting during transfection and ILVs played critical role in translocase activity. Full article
(This article belongs to the Special Issue Biomimetic Nanoparticles for Disease Treatment and Diagnosis)
Show Figures

Graphical abstract

16 pages, 3942 KB  
Article
Widespread Changes in the Immunoreactivity of Bioactive Peptide T14 After Manipulating the Activity of Cortical Projection Neurons
by Auguste Vadisiute, Sara Garcia-Rates, Clive W. Coen, Susan Adele Greenfield and Zoltán Molnár
Int. J. Mol. Sci. 2025, 26(12), 5786; https://doi.org/10.3390/ijms26125786 - 17 Jun 2025
Viewed by 968
Abstract
Previous studies have suggested that T14, a 14-amino-acid peptide derived from acetylcholinesterase (AChE), functions as an activity-dependent signalling molecule with key roles in brain development, and its dysregulation has been linked to neurodegeneration in Alzheimer’s disease. In this study, we examined the distribution [...] Read more.
Previous studies have suggested that T14, a 14-amino-acid peptide derived from acetylcholinesterase (AChE), functions as an activity-dependent signalling molecule with key roles in brain development, and its dysregulation has been linked to neurodegeneration in Alzheimer’s disease. In this study, we examined the distribution of T14 under normal developmental conditions in the mouse forebrain, motor cortex (M1), striatum (STR), and substantia nigra (SN). T14 immunoreactivity declined from E16 to E17 and further decreased by P0, then peaked at P7 during early postnatal development before declining again by adulthood at P70. Lower T14 immunoreactivity in samples processed without Triton indicated that T14 is primarily localised intracellularly. To explore the relationship between T14 expression and neuronal activity, we used mouse models with chronic silencing (Rbp4Cre-Snap25), acute silencing (Rbp4Cre-hM4Di), and acute activation (Rbp4Cre-hM3D1). Chronic silencing altered the location and size of intracellular T14-immunoreactive particles in adult brains, while acute silencing had no observable effect. In contrast, acute activation increased T14+ density in the STR, modified T14 puncta size near Rbp4Cre cell bodies in M1 layer 5 and their projections to the STR, and enhanced co-localisation of T14 with presynaptic terminals in the SN. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 9006 KB  
Article
X-Ray Exposure Induces Structural Changes in Human Breast Proteins
by Ren Jie Tuieng, Sarah H. Cartmell, Cliona C. Kirwan, Alexander Eckersley and Michael J. Sherratt
Int. J. Mol. Sci. 2025, 26(12), 5696; https://doi.org/10.3390/ijms26125696 - 13 Jun 2025
Viewed by 1436
Abstract
During radiotherapy, X-rays can deliver significant doses of ionising radiation to both cancerous and healthy tissue, often leading to undesirable side effects that compromise patient outcomes. While the cellular effects of such therapeutic X-ray exposures are well studied, the impact on extracellular matrix [...] Read more.
During radiotherapy, X-rays can deliver significant doses of ionising radiation to both cancerous and healthy tissue, often leading to undesirable side effects that compromise patient outcomes. While the cellular effects of such therapeutic X-ray exposures are well studied, the impact on extracellular matrix (ECM) proteins remains poorly understood. This study characterises the response of ECM proteins, including the major tissue components collagen I and fibronectin (FN), to X-ray doses similar to those used in clinical practice (50 Gy, as employed in breast radiotherapy, and 100 Gy), using a combination of gel electrophoresis, biochemical assays, and mass spectrometry-based peptide location fingerprinting (PLF) analysis. In purified protein solutions, 50 Gy X-ray exposure led to the fragmentation of constituent collagen I α chains. Irradiation of purified plasma FN (pFN) induced localised changes in peptide yields (detected by liquid chromatography and tandem mass spectrometry (LC-MS/MS) and PLF) and enhanced its binding to collagen I. In complex environments, such as newly synthesised fibroblast-derived ECM and mature ex vivo breast tissue, X-ray exposure induced peptide yield changes in not only collagen I and FN but also key basement membrane proteins, including collagen IV, laminin, and perlecan. Intracellular proteins associated with gene expression (RPS3, MeCP2), the cytoskeleton (moesin, plectin), and the endoplasmic reticulum (calnexin) were also found to be impacted. These X-ray-induced structural changes may impair the ECM integrity and alter cell–ECM interactions, with potential implications for tissue stiffening, fibrosis, and impaired wound healing in irradiated tissues. Full article
Show Figures

Figure 1

15 pages, 7211 KB  
Article
Glucocorticoid Receptor Isoforms in Breast Cancer Raise Implications for Personalised Supportive Therapies
by Henriett Butz, Viktória Vereczki, Barna Budai, Gábor Rubovszky, Rebeka Gyebrovszki, Ramóna Vida, Erika Szőcs, Bence Gerecs, Andrea Kohánka, Erika Tóth, István Likó, Imre Kacskovics and Attila Patócs
Int. J. Mol. Sci. 2024, 25(21), 11813; https://doi.org/10.3390/ijms252111813 - 3 Nov 2024
Cited by 1 | Viewed by 2489
Abstract
Glucocorticoid receptor (GR) activation may promote metastasis in oestrogen receptor-negative and triple-negative breast cancer (TNBC). However, the role of the GRβ isoform, which has opposing effects to the main isoform, has not been studied in clinical samples. We aimed to analyse the intracellular [...] Read more.
Glucocorticoid receptor (GR) activation may promote metastasis in oestrogen receptor-negative and triple-negative breast cancer (TNBC). However, the role of the GRβ isoform, which has opposing effects to the main isoform, has not been studied in clinical samples. We aimed to analyse the intracellular localisation of total GR and GRβ in vitro using plasmid constructs and fluorescent immunocytochemistry. Additionally, our goal was to perform immunostaining for total GR and GRβ on two cohorts: (i) on 194 clinical breast cancer samples to compare the expression in different molecular subtypes, and (ii) on 161 TNBC samples to analyse the association of GR with survival. We supplemented our analysis with RNA data from 1097 TNBC cases. We found that in the absence of the ligand, GR resided in the cytoplasm of breast cancer cells, while upon ligand activation, it translocated to the nucleus. A negative correlation was found between cytoplasmic GRtotal and Ki67 in luminal A tumours, while the opposite trend was observed in TNBC samples. Tumours with strong lymphoid infiltration showed higher cytoplasmic GRtotal staining compared to those with weaker infiltration. Patients with high nuclear GRtotal staining had shorter progression-free survival in univariate analysis. High cytoplasmic GRβ was a marker for better overall survival in multivariate analysis (10-year overall survival HR [95% CI]: 0.46 [0.22–0.95], p = 0.036). As a conclusions, this study is the first to investigate GRβ expression in breast tumours. Different expression and cellular localisation of GRtotal and GRβ were observed in the context of molecular subtypes, underscoring the complex role of GR in breast cancer. An inverse association between cytoplasmic GRtotal and the Ki67 proliferation index was observed in luminal A and TNBC. Regarding the impact of GR on outcomes in TNBC patients, while cytoplasmic GRβ was associated with a better prognosis, patients with nuclear GRtotal staining may be at a higher risk of disease progression, as it negatively affects survival. Caution should be exercised when using glucocorticoids in patients with nuclear GR staining, as it may negatively impact survival. Full article
(This article belongs to the Special Issue Nuclear Receptors in Diseases)
Show Figures

Figure 1

23 pages, 1937 KB  
Review
The Synergistic Effects of Polyol Pathway-Induced Oxidative and Osmotic Stress in the Aetiology of Diabetic Cataracts
by Courtney A. Thorne, Angus C. Grey, Julie C. Lim and Paul J. Donaldson
Int. J. Mol. Sci. 2024, 25(16), 9042; https://doi.org/10.3390/ijms25169042 - 20 Aug 2024
Cited by 24 | Viewed by 8346
Abstract
Cataracts are the world’s leading cause of blindness, and diabetes is the second leading risk factor for cataracts after old age. Despite this, no preventative treatment exists for cataracts. The altered metabolism of excess glucose during hyperglycaemia is known to be the underlying [...] Read more.
Cataracts are the world’s leading cause of blindness, and diabetes is the second leading risk factor for cataracts after old age. Despite this, no preventative treatment exists for cataracts. The altered metabolism of excess glucose during hyperglycaemia is known to be the underlying cause of diabetic cataractogenesis, resulting in localised disruptions to fibre cell morphology and cell swelling in the outer cortex of the lens. In rat models of diabetic cataracts, this damage has been shown to result from osmotic stress and oxidative stress due to the accumulation of intracellular sorbitol, the depletion of NADPH which is used to regenerate glutathione, and the generation of fructose metabolites via the polyol pathway. However, differences in lens physiology and the metabolism of glucose in the lenses of different species have prevented the translation of successful treatments in animal models into effective treatments in humans. Here, we review the stresses that arise from hyperglycaemic glucose metabolism and link these to the regionally distinct metabolic and physiological adaptations in the lens that are vulnerable to these stressors, highlighting the evidence that chronic oxidative stress together with osmotic stress underlies the aetiology of human diabetic cortical cataracts. With this information, we also highlight fundamental gaps in the knowledge that could help to inform new avenues of research if effective anti-diabetic cataract therapies are to be developed in the future. Full article
Show Figures

Figure 1

20 pages, 7681 KB  
Article
A Short Sequence Targets Transmembrane Proteins to Primary Cilia
by Viviana Macarelli, Edward C. Harding, David C. Gershlick and Florian T. Merkle
Cells 2024, 13(13), 1156; https://doi.org/10.3390/cells13131156 - 6 Jul 2024
Cited by 2 | Viewed by 3632
Abstract
Primary cilia are finger-like sensory organelles that extend from the bodies of most cell types and have a distinct lipid and protein composition from the plasma membrane. This partitioning is maintained by a diffusion barrier that restricts the entry of non-ciliary proteins, and [...] Read more.
Primary cilia are finger-like sensory organelles that extend from the bodies of most cell types and have a distinct lipid and protein composition from the plasma membrane. This partitioning is maintained by a diffusion barrier that restricts the entry of non-ciliary proteins, and allows the selective entry of proteins harboring a ciliary targeting sequence (CTS). However, CTSs are not stereotyped and previously reported sequences are insufficient to drive efficient ciliary localisation across diverse cell types. Here, we describe a short peptide sequence that efficiently targets transmembrane proteins to primary cilia in all tested cell types, including human neurons. We generate human-induced pluripotent stem cell (hiPSC) lines stably expressing a transmembrane construct bearing an extracellular HaloTag and intracellular fluorescent protein, which enables the bright, specific labeling of primary cilia in neurons and other cell types to facilitate studies of cilia in health and disease. We demonstrate the utility of this resource by developing an image analysis pipeline for the automated measurement of primary cilia to detect changes in their length associated with altered signaling or disease state. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases)
Show Figures

Graphical abstract

24 pages, 7433 KB  
Article
Cellular Imaging and Time-Domain FLIM Studies of Meso-Tetraphenylporphine Disulfonate as a Photosensitising Agent in 2D and 3D Models
by Andrea Balukova, Kalliopi Bokea, Paul R. Barber, Simon M. Ameer-Beg, Alexander J. MacRobert and Elnaz Yaghini
Int. J. Mol. Sci. 2024, 25(8), 4222; https://doi.org/10.3390/ijms25084222 - 11 Apr 2024
Cited by 1 | Viewed by 5000
Abstract
Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an [...] Read more.
Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an effective model photosensitiser for both Photodynamic Therapy (PDT) and Photochemical Internalisation (PCI). This microspectrofluorimetric study aimed firstly to investigate the uptake and subcellular localisation of TPPS2a, and evaluate the photo-oxidative mechanism using reactive oxygen species (ROS) and lipid peroxidation probes combined with appropriate ROS scavengers. Light-induced intracellular redistribution of TPPS2a was observed, consistent with rupture of endolysosomes where the porphyrin localises. Using the same range of light doses, time-lapse confocal imaging permitted observation of PDT-induced generation of ROS in both 2D and 3D cancer models using fluorescence-based ROS together with specific ROS inhibitors. In addition, the use of red light excitation of the photosensitiser to minimise auto-oxidation of the probes was investigated. In the second part of the study, the photophysical properties of TPPS2a in cells were studied using a time-domain FLIM system with time-correlated single photon counting detection. Owing to the high sensitivity and spatial resolution of this system, we acquired FLIM images that enabled the fluorescence lifetime determination of the porphyrin within the endolysosomal vesicles. Changes in the lifetime dynamics upon prolonged illumination were revealed as the vesicles degraded within the cells. Full article
(This article belongs to the Special Issue Molecular Advances in Oncologic Photodynamic Therapy)
Show Figures

Figure 1

13 pages, 3253 KB  
Article
Modelling and Molecular Dynamics Predict the Structure and Interactions of the Glycine Receptor Intracellular Domain
by James R. E. Thompson, Christopher A. Beaudoin and Sarah C. R. Lummis
Biomolecules 2023, 13(12), 1757; https://doi.org/10.3390/biom13121757 - 7 Dec 2023
Cited by 3 | Viewed by 2227
Abstract
Glycine receptors (GlyRs) are glycine-gated inhibitory pentameric ligand-gated ion channels composed of α or α + β subunits. A number of structures of these proteins have been reported, but to date, these have only revealed details of the extracellular and transmembrane domains, with [...] Read more.
Glycine receptors (GlyRs) are glycine-gated inhibitory pentameric ligand-gated ion channels composed of α or α + β subunits. A number of structures of these proteins have been reported, but to date, these have only revealed details of the extracellular and transmembrane domains, with the intracellular domain (ICD) remaining uncharacterised due to its high flexibility. The ICD is a region that can modulate function in addition to being critical for receptor localisation and clustering via proteins such as gephyrin. Here, we use modelling and molecular dynamics (MD) to reveal details of the ICDs of both homomeric and heteromeric GlyR. At their N and C ends, both the α and β subunit ICDs have short helices, which are major sites of stabilising interactions; there is a large flexible loop between them capable of forming transient secondary structures. The α subunit can affect the β subunit ICD structure, which is more flexible in a 4α2:1β than in a 4α1:1β GlyR. We also explore the effects of gephyrin binding by creating GlyR models bound to the gephyrin E domain; MD simulations suggest these are more stable than the unbound forms, and again there are α subunit-dependent differences, despite the fact the gephyrin binds to the β subunit. The bound models also suggest that gephyrin causes compaction of the ICD. Overall, the data expand our knowledge of this important receptor protein and in particular clarify features of the underexplored ICD. Full article
(This article belongs to the Section Molecular Structure and Dynamics)
Show Figures

Figure 1

22 pages, 2599 KB  
Review
Role of Akt/Protein Kinase B in Cancer Metastasis
by Mohammad Islam, Sarah Jones and Ian Ellis
Biomedicines 2023, 11(11), 3001; https://doi.org/10.3390/biomedicines11113001 - 8 Nov 2023
Cited by 12 | Viewed by 3900
Abstract
Metastasis is a critical step in the process of carcinogenesis and a vast majority of cancer-related mortalities result from metastatic disease that is resistant to current therapies. Cell migration and invasion are the first steps of the metastasis process, which mainly occurs by [...] Read more.
Metastasis is a critical step in the process of carcinogenesis and a vast majority of cancer-related mortalities result from metastatic disease that is resistant to current therapies. Cell migration and invasion are the first steps of the metastasis process, which mainly occurs by two important biological mechanisms, i.e., cytoskeletal remodelling and epithelial to mesenchymal transition (EMT). Akt (also known as protein kinase B) is a central signalling molecule of the PI3K-Akt signalling pathway. Aberrant activation of this pathway has been identified in a wide range of cancers. Several studies have revealed that Akt actively engages with the migratory process in motile cells, including metastatic cancer cells. The downstream signalling mechanism of Akt in cell migration depends upon the tumour type, sites, and intracellular localisation of activated Akt. In this review, we focus on the role of Akt in the regulation of two events that control cell migration and invasion in various cancers including head and neck squamous cell carcinoma (HNSCC) and the status of PI3K-Akt pathway inhibitors in clinical trials in metastatic cancers. Full article
(This article belongs to the Special Issue Head and Neck Tumors, 3rd Edition)
Show Figures

Figure 1

16 pages, 6560 KB  
Article
Ascorbate Uptake and Retention by Breast Cancer Cell Lines and the Intracellular Distribution of Sodium-Dependent Vitamin C Transporter 2
by Citra Praditi, Stephanie M. Bozonet, Gabi U. Dachs and Margreet C. M. Vissers
Antioxidants 2023, 12(11), 1929; https://doi.org/10.3390/antiox12111929 - 30 Oct 2023
Cited by 6 | Viewed by 3496
Abstract
Ascorbate plays a vital role as a co-factor for a superfamily of enzymes, the 2-oxoglutarate dependent dioxygenases (2-OGDDs), which govern numerous pathways in cancer progression, including the hypoxic response and the epigenetic regulation of gene transcription. Ascorbate uptake into most cells is through [...] Read more.
Ascorbate plays a vital role as a co-factor for a superfamily of enzymes, the 2-oxoglutarate dependent dioxygenases (2-OGDDs), which govern numerous pathways in cancer progression, including the hypoxic response and the epigenetic regulation of gene transcription. Ascorbate uptake into most cells is through active transport by the sodium-dependent vitamin C transporter 2 (SVCT2). The aims of this study were to determine the kinetics of ascorbate uptake and retention by breast cancer cell lines under various oxygen conditions, and to investigate the role of SVCT2 in mediating ascorbate uptake and intracellular trafficking. Human MDA-MB231 cells accumulated up to 5.1 nmol ascorbate/106 cells, human MCF7 cells 4.5 nmol/106 cells, and murine EO771 cells 26.7 nmol/106 cells. Intracellular ascorbate concentrations decreased rapidly after reaching maximum levels unless further ascorbate was supplied to the medium, and there was no difference in the rate of ascorbate loss under normoxia or hypoxia. SVCT2 was localised mainly to subcellular compartments, with the nucleus apparently containing the most SVCT2 protein, followed by the mitochondria. Much less SVCT2 staining was observed on the plasma membrane. Our data showed that careful management of the doses and incubation times with ascorbate in vitro allows for an approximation of in vivo conditions. The localisation of SVCT2 suggests that the distribution of ascorbate to intracellular compartments is closely aligned to the known function of ascorbate in supporting 2-OGDD enzymatic functions in the organelles and with supporting antioxidant protection in the mitochondria. Full article
(This article belongs to the Special Issue Current Insights and Trends in Vitamin C Research)
Show Figures

Figure 1

15 pages, 3313 KB  
Article
Immunohistochemical Expression of Glutathione Peroxidase 1 (Gpx-1) as an Independent Prognostic Factor in Colon Adenocarcinoma Patients
by Marlena Brzozowa-Zasada, Adam Piecuch, Karolina Bajdak-Rusinek, Kamil Janelt, Marek Michalski, Olesya Klymenko and Natalia Matysiak
Pharmaceuticals 2023, 16(5), 740; https://doi.org/10.3390/ph16050740 - 12 May 2023
Cited by 5 | Viewed by 2676
Abstract
Several studies revealed that expression levels of glutathione peroxidase 1 (Gpx-1) can be associated with cancer development, mainly through its role in hydroperoxide scavenging by regulating intracellular reactive oxygen species (ROS) levels. Therefore, our aim was to investigate the expression of Gpx-1 protein [...] Read more.
Several studies revealed that expression levels of glutathione peroxidase 1 (Gpx-1) can be associated with cancer development, mainly through its role in hydroperoxide scavenging by regulating intracellular reactive oxygen species (ROS) levels. Therefore, our aim was to investigate the expression of Gpx-1 protein in a population of Polish patients with colon adenocarcinoma in the absence of any therapy prior to radical surgery. The study was carried out using colon tissue from patients with adenocarcinoma of the colon confirmed by histopathological examination. Gpx-1 antibody was used to determine the immunohistochemical expression of Gpx-1. The Chi2test or Chi2Yatesa test were used to analyse the associations between the immunohistochemical expression of Gpx-1 and clinical parameters. The relationship between Gpx-1 expression, and 5-year patient survival was examined using Kaplan–Meier analysis and the log-rank test. Intracellular localisation of Gpx-1 was detected by the use of transmission electron microscopy (TEM). Western blot analysis was used for the evaluation of Gpx-1 protein expression levels in cancer cell lines in vitro. Immunohistochemical study revealed that the high expression of Gpx-1 was associated with the tumour’s histological grade, proliferating cell nuclear antigen (PCNA) immunohistochemical expression, depth of invasion, and angioinvasion (all p < 0.001) (4). The high immunohistochemical expression of Gpx-1 is correlated with poor prognosis of colon adenocarcinoma patients. Full article
(This article belongs to the Special Issue Pharmacological Treatment of Colorectal Cancer)
Show Figures

Graphical abstract

17 pages, 8967 KB  
Article
The Clinical Application of Immunohistochemical Expression of Notch4 Protein in Patients with Colon Adenocarcinoma
by Marlena Brzozowa-Zasada, Adam Piecuch, Marek Michalski, Natalia Matysiak, Marek Kucharzewski and Marek J. Łos
Int. J. Mol. Sci. 2023, 24(8), 7502; https://doi.org/10.3390/ijms24087502 - 19 Apr 2023
Cited by 4 | Viewed by 2261
Abstract
The Notch signalling pathway is one of the most conserved and well-characterised pathways involved in cell fate decisions and the development of many diseases, including cancer. Among them, it is worth noting the Notch4 receptor and its clinical application, which may have prognostic [...] Read more.
The Notch signalling pathway is one of the most conserved and well-characterised pathways involved in cell fate decisions and the development of many diseases, including cancer. Among them, it is worth noting the Notch4 receptor and its clinical application, which may have prognostic value in patients with colon adenocarcinoma. The study was performed on 129 colon adenocarcinomas. Immunohistochemical and fluorescence expression of Notch4 was performed using the Notch4 antibody. The associations between the IHC expression of Notch4 and clinical parameters were analysed using the Chi2 test or Chi2Yatesa test. The Kaplan–Meier analysis and the log-rank test were used to verify the relationship between the intensity of Notch4 expression and the 5-year survival rate of patients. Intracellular localisation of Notch4 was detected by the use of the immunogold labelling method and TEM. 101 (78.29%) samples had strong Notch4 protein expression, and 28 (21.71%) samples were characterised by low expression. The high expression of Notch4 was clearly correlated with the histological grade of the tumour (p < 0.001), PCNA immunohistochemical expression (p < 0.001), depth of invasion (p < 0.001) and angioinvasion (p < 0.001). We can conclude that high expression of Notch4 is correlated with poor prognosis of colon adenocarcinoma patients (log-rank, p < 0.001). Full article
(This article belongs to the Special Issue Notch Signaling in Health and Disease)
Show Figures

Graphical abstract

18 pages, 5109 KB  
Article
DRAM1 Promotes Lysosomal Delivery of Mycobacterium marinum in Macrophages
by Adrianna Banducci-Karp, Jiajun Xie, Sem A. G. Engels, Christos Sarantaris, Patrick van Hage, Monica Varela, Annemarie H. Meijer and Michiel van der Vaart
Cells 2023, 12(6), 828; https://doi.org/10.3390/cells12060828 - 7 Mar 2023
Cited by 9 | Viewed by 3369
Abstract
Damage-Regulated Autophagy Modulator 1 (DRAM1) is an infection-inducible membrane protein, whose function in the immune response is incompletely understood. Based on previous results in a zebrafish infection model, we have proposed that DRAM1 is a host resistance factor against intracellular mycobacterial infection. To [...] Read more.
Damage-Regulated Autophagy Modulator 1 (DRAM1) is an infection-inducible membrane protein, whose function in the immune response is incompletely understood. Based on previous results in a zebrafish infection model, we have proposed that DRAM1 is a host resistance factor against intracellular mycobacterial infection. To gain insight into the cellular processes underlying DRAM1-mediated host defence, here we studied the interaction of DRAM1 with Mycobacterium marinum in murine RAW264.7 macrophages. We found that, shortly after phagocytosis, DRAM1 localised in a punctate pattern to mycobacteria, which gradually progressed to full DRAM1 envelopment of the bacteria. Within the same time frame, DRAM1-positive mycobacteria colocalised with the LC3 marker for autophagosomes and LysoTracker and LAMP1 markers for (endo)lysosomes. Knockdown analysis revealed that DRAM1 is required for the recruitment of LC3 and for the acidification of mycobacteria-containing vesicles. A reduction in the presence of LAMP1 further suggested reduced fusion of lysosomes with mycobacteria-containing vesicles. Finally, we show that DRAM1 knockdown impairs the ability of macrophages to defend against mycobacterial infection. Together, these results support that DRAM1 promotes the trafficking of mycobacteria through the degradative (auto)phagolysosomal pathway. Considering its prominent effect on host resistance to intracellular infection, DRAM1 is a promising target for therapeutic modulation of the microbicidal capacity of macrophages. Full article
(This article belongs to the Collection Feature Papers in Autophagy)
Show Figures

Figure 1

15 pages, 1958 KB  
Review
Localisation of Intracellular Signals and Responses during Phagocytosis
by Maurice B. Hallett
Int. J. Mol. Sci. 2023, 24(3), 2825; https://doi.org/10.3390/ijms24032825 - 1 Feb 2023
Cited by 12 | Viewed by 2646
Abstract
Phagocytosis is one of the most polarised of all cellular activities. Both the stimulus (the target for phagocytosis) and the response (its internalisation) are focussed at just one part of the cell. At the locus, and this locus alone, pseudopodia form a phagocytic [...] Read more.
Phagocytosis is one of the most polarised of all cellular activities. Both the stimulus (the target for phagocytosis) and the response (its internalisation) are focussed at just one part of the cell. At the locus, and this locus alone, pseudopodia form a phagocytic cup around the particle, the cytoskeleton is rearranged, the plasma membrane is reorganised, and a new internal organelle, the phagosome, is formed. The effect of signals from the stimulus must, thus, both be complex and yet be restricted in space and time to enable an effective focussed response. While many aspects of phagocytosis are being uncovered, the mechanism for the restriction of signalling or the effects of signalling remains obscure. In this review, the details of the problem of restricting chemical intracellular signalling are presented, with a focus on diffusion into the cytosol and of signalling lipids along the plasma membrane. The possible ways in which simple diffusion is overcome so that the restriction of signalling and effective phagocytosis can be achieved are discussed in the light of recent advances in imaging, biophysics, and cell biochemistry which together are providing new insights into this area. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

17 pages, 2478 KB  
Article
Antigen Unmasking Is Required to Clinically Assess Levels and Localisation Patterns of Phospholipase C Zeta in Human Sperm
by Junaid Kashir, Bhavesh V. Mistry, Lujain BuSaleh, Michail Nomikos, Sarah Almuqayyil, Raed Abu-Dawud, Nadya AlYacoub, Hamdan Hamdan, Saad AlHassan, F. Anthony Lai, Abdullah M. Assiri and Serdar Coskun
Pharmaceuticals 2023, 16(2), 198; https://doi.org/10.3390/ph16020198 - 28 Jan 2023
Cited by 4 | Viewed by 2933
Abstract
Mammalian oocyte activation is initiated by intracellular calcium (Ca2+) oscillations, driven by the testis-specific phospholipase C zeta (PLCζ). Sperm PLCζ analysis represents a diagnostic measure of sperm fertilisation capacity. The application of antigen unmasking/retrieval (AUM) generally enhanced the visualisation efficacy of [...] Read more.
Mammalian oocyte activation is initiated by intracellular calcium (Ca2+) oscillations, driven by the testis-specific phospholipase C zeta (PLCζ). Sperm PLCζ analysis represents a diagnostic measure of sperm fertilisation capacity. The application of antigen unmasking/retrieval (AUM) generally enhanced the visualisation efficacy of PLCζ in mammalian sperm, but differentially affected the PLCζ profiles in sperm from different human males. It is unclear whether AUM affects the diagnosis of PLCζ in human sperm. Herein, we examined whether the application of AUM affected the correlation of PLCζ profiles with sperm parameters and fertilisation capacity. PLCζ fluorescence levels and localisation patterns were examined within the sperm of males undergoing fertility treatment (55 patients aged 29–53) using immunofluorescence in the absence/presence of AUM. The changes in PLCζ profiles following AUM were examined in relation to sperm health and fertilisation outcome. AUM enhanced the observable levels and specific localisation patterns of PLCζ in relation to both optimal sperm parameters and fertilisation outcome, without which significant differences were not observed. The extent of the change in levels and localisation ratios of PLCζ was also affected to a larger degree in terms of the optimal parameters of sperm fertility and fertilisation capacity by AUM. Collectively, AUM was essential to accurately assesses PLCζ in human sperm in both scientific and clinical contexts. Full article
(This article belongs to the Special Issue Diagnostics and Pharmacology of Male Reproduction)
Show Figures

Figure 1

Back to TopTop