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Abstract: Metastasis is a critical step in the process of carcinogenesis and a vast majority of cancer-
related mortalities result from metastatic disease that is resistant to current therapies. Cell migration
and invasion are the first steps of the metastasis process, which mainly occurs by two important
biological mechanisms, i.e., cytoskeletal remodelling and epithelial to mesenchymal transition (EMT).
Akt (also known as protein kinase B) is a central signalling molecule of the PI3K-Akt signalling
pathway. Aberrant activation of this pathway has been identified in a wide range of cancers. Several
studies have revealed that Akt actively engages with the migratory process in motile cells, including
metastatic cancer cells. The downstream signalling mechanism of Akt in cell migration depends upon
the tumour type, sites, and intracellular localisation of activated Akt. In this review, we focus on the
role of Akt in the regulation of two events that control cell migration and invasion in various cancers
including head and neck squamous cell carcinoma (HNSCC) and the status of PI3K-Akt pathway
inhibitors in clinical trials in metastatic cancers.
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1. Introduction

The primary reason for cancer-related deaths is metastatic disease [1]. The spreading
of tumour cells from the primary lesion is the main cause for the mortality and morbidity
of cancer patients, whether it exists at the time of diagnosis, progresses during treatment,
or happens at the time of disease relapse [2]. The metastasis process involve a series of
sequential, interconnected steps including: separation of tumour cells from the primary
lesion and invasion of neighbouring, healthy connective tissue, intravasation into the blood
and lymphatic vessels, circulation through the blood vessels (circulating tumour cells) to
other tissues in the body, extravasation from the blood vessel into the new tissue, growth in
specific distant organs, and building a secondary tumour [3–5] (Figure 1).

Recently, a novel ecological dispersal model of multidirectional cancer progression
is proposed by Luo [6]. Taking nasopharyngeal cancer metastasis as an example, Luo
hypothesized that the “nature of NPC is not a genetic disease but an ecological disease:
A multidimensional spatiotemporal unity of ecological and evolution pathological ecosys-
tem”. To adapt to the selective pressure from the remodelling microenvironment, NPC cells
with cancer stem cells (CSCs) characteristics undergo EMT to dissociate from budding cells
(tumour–host interface) and interplay with the local primary ecosystem (various stroma
components); intravasate and survive into the circulation, and extravasate to circulating
ecosystem (lymph node or a distant metastatic site); developing a distant metastatic ecosys-
tem by entering slow-cycling states of dormancy, evading immune response, constructing
organ-specific niches to colonise micro/macro metastases and later spread; self-feeding
by CTCs or metastatic cells seeding at a distant site or secreting exosomes, cytokines,
and chemokines and creating a multidirectional ecosystem by host cells including CAFs
and immune cells to return to the primary tumour [6]. Many of the metastatic stages are
dependent on tumour cell migration and invasion, which allows the cells to change tissue
location. Tumour cells employ a similar mechanism of migration to spread to other tissues
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to those that happen in non-tumour cells during physiological events such as wound
healing, angiogenesis, inflammatory immune responses, and embryonic morphogenesis [7].
However, tumour cell migration has been shown to be stimulated by diverse promigra-
tory factors ignoring stop signals, including tumour cell-derived autocrine factors and the
soluble factors present at secondary sites [8,9]. Due to this imbalance of signals, cancer
cells become unceasingly migratory and invasive, causing tumour expansion across tissue
boundaries and hence the development of cancer metastases [4,8].

Figure 1. Metastasis cascade. Tumour cells proliferate uncontrollably and eventually lose their
adhesive phenotype. Tumour cells then migrate and invade into surrounding tissues induced by the
tumour microenvironment and intravasate to lymphatic and blood vessels. Circulating tumour cells
then extravasate, enter into another tissue, and form micro-metastases at the secondary site.

Cell migration through tissues results from highly integrated multistep cellular
events [7,10,11]. First, the moving cell polarises, elongates, and extends protrusions in the
way of migration reacting to migration-promoting agents. There are two types of protru-
sions, which can be spike-like filopodia, or large and broad lamellipodia. Protrusions are
typically guided by actin polymerisation and are stabilised by adhering to the extracellular
matrix or adjacent cells via related transmembrane receptors [12]. Consequently, forward
extension of a lamellipodium and retraction of the trailing edge causes the translocation
of the cell body [8,12]. Reorganisation of the actin cytoskeleton is the most important
processes of cell motility and is vital for most types of cell migration [13]. In the process of
cell migration, the actin cytoskeleton is dynamically remodelled, and this reorganisation
creates the physical force essential for cell migration [14].
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Variable experimental behaviour and histological patterns of tumour cells suggest
that tumour cells can utilise different cellular and molecular modes of migration based
on cell-type-specific autonomous mechanisms and reactive mechanisms stimulated by
the local microenvironments [15,16]. Tumour cells are detected as both single cells and
organized collective sheets in malignant cancer patients, indicating that cancer cells exhibit
the plasticity to switch between single and collective cell migration. Studies on single
cell migration have founded the cellular and molecular basis, providing a significant
understanding into the spreading of tumours whose cells migrate constitutively as single
cells such as leukaemia or lymphomas, after separation from cohesive lesions through the
epithelial to mesenchymal transition (EMT) [11,17]. Collective cell migration occurs when
the junctions between cells are retained over extended periods of time, so cells are adherent
to their neighbours. The efficiency of the metastatic process is increased by the transition to
single cell migration. However, circulating grouped tumour cells detected in the patient
peripheral blood samples suggests that the intravasation process can also be enacted by a
cell cluster [18,19]. Cell migration is the first step to invasion. The extracellular matrix is
degraded by invasive cells via proteolysis before entering neighbouring tissues [8,20].

Highly integrated multistep cellular events lead to cell migration and invasion through
tissues that are regulated by various cell signalling pathways, including the PI3K-Akt sig-
nalling pathway. The serine/threonine kinase Akt is also known as protein kinase B (PKB).
It was originally discovered as a proto-oncogene. Akt plays a significant regulatory role
in various cellular activities including cell survival, cell migration and invasion progres-
sion, insulin metabolism, and protein synthesis and has thus become a focus of major
attention. The Akt signalling pathway is activated by receptor tyrosine kinases (RTK), cy-
tokine receptors, G-protein coupled receptors, integrins, B and T cells receptors, and other
stimuli that stimulate the production of phosphatidylinositol 3,4,5, triphosphates (PIP3)
through phosphoinositide 3-kinase (PI3K) [21]. The PI3 kinases are a set of lipid kinases
that phosphorylate the membrane phospholipid, phosphatidylinositol 4,5 biphosphate
(PIP2), generating phosphatidylinositol 3,4,5, triphosphates (PIP3). PIP3 controls a range of
effector molecules including the Akt group of oncogenic kinases termed Akt1, Akt2, and
Akt3. The activation of Akt1, a 60 kDa kinase, depends on PI3K [22]. An increase in cellular
PIP3 by PI3K eventually allows the activation of Akt1 by phosphorylation at Thr308 and
Ser473 residues [23]. This activation is completed by structural modification stimulated by
PI3K-dependent kinase-1 (PDK-1)-dependent phosphorylation at Thr308 and stabilisation
by mTORC2 or DNA-PK (DNA-activated protein kinase) dependent phosphorylation at
Ser473 [24–26]. A third phosphorylation site on Akt1 has been identified at Thr450 [27].
This site is referred to as the turn phosphorylation site and is controlled by mTORC2
activity [28,29]. The activation of the three Akt isoforms plays a pivotal role in fundamental
cellular functions such as protein synthesis, cell survival, proliferation, and autophagy by
regulating a variety of downstream substrates such as mTORC1, MDM2, Cyclin D1, and
Beclin1, respectively [21,30,31] (Figure 2).

There are frequent alterations of the PI3K-Akt pathway in various types of human
cancers. Amplification of the PIK3C gene encoding PI3K or the Akt gene lead to the
constitutive activation of the PI3K-Akt pathway. PTEN (phosphatase and tensin homologue
deleted on chromosome 10) can inhibit the Akt activation, and mutation in the PTEN gene
also causes the constitutive activation of Akt [32–34]. Recent evidence has also suggested
that Akt plays an important role in cancer cell migration and invasion [35,36]. This review
focuses on the regulatory roles of Akt in cancer cell metastasis including head and neck
cancer, emphasising cell migration. This review also briefly updates the status of clinical
trials with PI3K-Akt inhibitors alone or in combination therapy in metastatic cancers.
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Figure 2. PI3K-Akt signalling pathway. Upon ligand binding, conformational changes occur in the
receptor tyrosine kinase (RTK), the PI3 kinases are then activated by RTK and translocate to the
plasma membrane. Activated PI3K then converts PIP2 to PIP3. Pleckstrin homology (PH) domain
containing protein, Akt then translocate to the membrane, bind to PIP3, and phosphorylate at the
Threonine 308 residue by PDK1. Akt translocates back to the cytoplasm and is phosphorylated further
at Serine 473 and Threonine 450 residues by mTORC2. Activated Akt is responsible for initiating
various cellular activities such as proliferation, protein synthesis, autophagy, cell survival, etc.

2. Akt in Cytoskeletal Rearrangements

The cytoskeleton is the supporting structure of cells which is composed of a filamen-
tous network of micro filaments such as actin and myosin, intermediate filaments such
as vimentin and keratin, and microtubules such as tubulin [37]. The main purpose of the
cytoskeleton is to maintain cellular structure, intracellular transport, and supporting cell
division. Cytoskeletal rearrangements occur in various physiological and pathological
events such as cell movement, wound healing, and cancer metastasis [38]. Cellular motility
either in physiological events or in pathological conditions is driven by cytoskeletal remod-
elling, initiated by various signalling pathways. The synergistic effect of all the three basic
elements—filamentous actin, microtubules, and the intermediate filament vimentin—is
the potential basis for a cell to migrate [35]. Wide-ranging studies have focused on how
the stabilisation of intracellular filaments and dynamic polymerisation control cell migra-
tion [14,39]. Akt can phosphorylate a diverse group of key factors associated with the
skeletal filaments.

Growth of the vascular network is essential for the spread of cancer cells. Angiogenesis
is the process whereby new vessels are formed and involved in the supply of nutrients,
oxygen, and immune cells and also the removal of waste products [40]. Angiogenic factors
play a huge role in neoplastic vascularisation, thus increasingly gaining attention. Vascular
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endothelial cell migration is a vital step for angiogenesis. Vascular endothelial growth factor
(VEGF) activates Akt and stimulates the migration of endothelial cells by increasing actin
polymerisation. Abrogated Akt activity by expression of a kinase-dead mutant inhibits actin
bundle formation and blocks cell migration. This effect is enhanced when myristylated Akt
is expressed [41], demonstrating that Akt is a critical mediator of VEGF-induced endothelial
cell migration through actin reorganisation. Data also suggest that eNOS activation via
phosphorylation of Ser-1177 by Akt is necessary and sufficient for VEGF-mediated EC
migration [42,43].

In chicken embryonic fibroblasts (CEF), PI3K-transduced migratory signal was blocked
by inhibiting Akt activity. PI3K also activated p70S6K1 via Rac and induced actin fila-
ment remodelling and cell migration in CEF cells. This study confirms that the activation
of PI3K activity alone is adequate to remodel actin filaments to increase cell migration
through the activation of Akt and p70S6K1 in CEF cells [44]. Another study suggested
that overexpression of the integrin-linked kinase (ILK) pathway is sufficient to stimulate
PI3K-dependent Rac1 activation. Blocking of Akt, p70S6K1, or Rac1 inhibited the effect of
ILK on actin filaments, hence blocking cell migration, implying a regulatory role for the
PI3K/Akt/p70S6K1/Rac1 signalling pathway in response to ILK [45]. In ovarian cancer,
p70S6K1, downstream of the PI3K/Akt pathway, stimulated the rapid activation of Rac1
and cdc42 and their downstream effector molecule p21 activated kinase (PAK1) [46]. In
neutrophils, activation of G-protein coupled receptors results in F-actin polymerisation
and cytoskeleton contraction through PIP3 signalling. This pattern of actin reorganisation
ensures pseudopod extension in human neutrophils during chemoattractant stimulation,
which is dependent on Akt activity [47]. Breast cancer cell migration and invasion often
occurs in an Akt dependent manner which is characterised by increased filopodia pro-
duction. A specific Akt inhibitor named API-2 (Akt phosphorylation inhibitor 2) blocks
breast cancer cell migration by blocking filopodia formation [48]. These observations of
Akt activation and its role suggest that Akt can potentially regulate cell migration through
direct modulation of actin.

Other studies have shown that actin preferentially binds to phosphorylated Akt at
pseudopodia with enriched bundles [49,50]. Another study further confirmed that Akt
can phosphorylate actin and therefore cortical reorganisation of actin associated with
cell migration is strongly dependent on Akt activation [51]. Studies with HeLa cells
revealed that Akt phosphorylates PAK1, a protein which belongs to the p21-activated
serine/threonine kinase family and facilitates its binding with the non-catalytic region of
the tyrosine kinase adaptor protein (Nck) promoting chemotaxis [52]. This effect of Akt
through PAK1 may be mediated by enhanced myosin 2 assembly and polarity [53].

The actin-rich structure of highly motile cells like invadopodia, filopodia, and pseu-
dopodia needs to be stabilised to function properly. Actin-associated proteins are re-
sponsible for stabilising this actin structure by blocking the degradation of newly formed
actin filaments [54]. ALE (the Akt phosphorylation enhancer), also termed the ‘girder’ of
actin filaments (Girdin), is one of the best examples of this type of protein. APE/Girdin
provides the integrity of the actin meshwork (actin filament) at the leading edge of mi-
grating cells. Reduction in APE/Girdin destabilises the actin bundles, triggering the
ablation of stress fibres and actin structure. This results in the loss of directional migratory
ability and establishes the vital activity of APE/Girdin in the regulation of cell migration.
Enomoto et al. proved that APE/Girdin is phosphorylated by Akt on Serine 1416 (S1416) [55].
Upon stimulation by EGF, S1416 phosphorylation initiates the translocation of APE/Girdin,
regulating actin reconstructions and Akt-controlled cell motility in cancer-associated fi-
broblasts, fibroblasts, breast cancer, and oesophageal squamous cell carcinoma cells [56–60].
Akt has also been shown to promote actin reorganisation and cell motility mediated by
the mechano-protein and Akt substrate ANKRD2 (Ankyrin repeat domain protein 2, also
known as ARPP) [61].

An actin-associated structural (cross-linker) protein, filamin A, is phosphorylated
by Akt on residue S2152 [62–64]. In turn, phosphorylated filamin A mediates caveolin-1-
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induced cancer cell migration through the IGF signalling pathway [65,66]. Akt has been
shown to phosphorylate NHE1 (sodium-hydrogen exchanger isoform 1), a key mediator of
stress fibre disassembly on S648 and suggested to be critical for the growth factor-induced
cytoskeletal rearrangements that favour cell migration and invasion [67]. Other studies
have demonstrated the migration of different cell types by modulation of the cytoskeleton
through NHE1, although the role of Akt was not elucidated [68–71]. A study in fibroblasts
demonstrated that the Akt pathway is necessary for the translocation of NHE1 to the
leading edge and actin nucleation at the lamellipodium that supports directional cell
migration [72].

Extensive studies have been carried out to investigate the role of intermediate filaments
in cell motility [73,74]. The most abundant intermediate protein that maintains normal cell
and tissue integrity is called vimentin, a type three filamentous protein. It is phosphorylated
by Akt1 on residue S39, stabilised, and thereby regulates cancer cell invasion in aggressive
sarcoma [75]. It has also been shown that vimentin is highly expressed in breast cancer
lung metastases [76,77]; however, the specific mechanisms to control cell migration by
some Akt substrates are still undefined. For example, S-phase kinase-associated protein
2 (skp2), a component of E3 ligase, is phosphorylated by Akt on the S72 residue, stimulates
Skp-2 dependent ligase activity, and induces cell migration [78,79]. Akt also promotes cell
migration by regulating microtubule dynamics through Akt/GSK3 beta axis-dependent
activation of the microtubule binding protein, APC (adenomatous polyposis coli) [80–82].

Akt interacts with promigratory proteins, in addition to targeting cytoskeletal proteins,
thus facilitating crosstalk between associated signalling axes. The VEGFR/eNOS signalling
pathway-controlled cell migration is dependent on Akt-mediated phosphorylation on
S1177 [42]. Accumulating evidence has indicated the importance of nitric oxide (NO) in
pathological conditions, especially in malignant tumours [83,84]. Furthermore, VEGFR
signalling often cooperates with the G-protein coupled receptor, sphingosine-1-phosphate
receptor 1 (SIPR1, also known as endothelial differentiation gene 1, EDG-1). SIP/SIPR1
activation leads to the phosphor-activation of VEGFR which phosphorylates Src kinase,
consequently activating the PI3K/Akt/eNOS axis [85]. Akt-mediated phosphorylation
of SIPR1 on T236 further enhances their activity and stimulates cortical actin assembly,
angiogenesis, and chemotaxis [86,87]. Thus, Akt plays a vital role in regulating VEGFR
and the SIP/SIPR1 signalling pathway and actively regulates cell migration. EphA2
(Ephrin receptor tyrosine kinase A2), a member of the largest tyrosine kinase family, is also
phosphorylated by Akt on S897 residue. In human brain cancer cells, S897 phosphorylation
in EphA2 is responsible for cell migration and invasion through dendritic actin cytoskeletal
rearrangements and lamellipodia formation [88,89]. Scientists have shown that EphA2
recruits Ephexin 4 (a guanine nucleotide exchange factor for the small GTPase, RhoG) upon
phosphorylation of S896 and promotes breast and colorectal cancer cell migration and
anoikis resistance [90].

It is now well established that membrane redistribution of integrin by various sig-
nalling pathways is a critical mediator of cellular movement. The ANK repeat and pleck-
strin homology domain-containing protein 1 (ACAP 1) is a GTPase activating protein
(GAP) for ADP ribosylation factor 6 (ARF6) known to participate in integrin beta recycling.
ACAP1 is phosphorylated by Akt on S554, stimulates integrin recycling, and therefore
promotes cell migration [91]. Another GTPase activation protein, RhoGAP22, is shown to
be phosphorylated by Akt on S16, upon stimulation by insulin or possibly PDGF, and this
plays a vital role in regulating cell migration, leading to modulation of Rac1 activity [92].
Various studies have established the role of the mammalian targets of rapamycin complex 1
(mTORC1) in the cell migration and relationship with Akt [93,94]. Akt regulates mTORC1
activation and, in turn, activates the phosphorylation of p70S6K1 (S6K1) and inhibits eu-
karyotic initiation factor 4E binding protein (4EBP1). It is suggested that tuberous sclerosis
complex 1/2 (TSC 1/2), a tumour suppressor gene, inhibits S6K1 and activates 4EBP1, facil-
itated by inhibiting mTORC1. Akt-mediated phosphorylation of TSC2 also destabilises the
complex and activates mTORC1 [95]. In the single cell motility assay, IGF-1-stimulated cell
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motility was inhibited by downregulation of S6K1 using lentiviral and ectopic expression
of constitutively hypophosphorylated 4EBP1 [96]. S6K1 regulates cell motility, which might
be related to regulating phosphorylation of focal adhesion kinase (FAK), paxillin, p130cas,
and F-actin organisation (or lamellipodia formation) [97]. Furthermore, mTORC1 mediates
phosphorylation of ERK1/2 (extracellular signal related kinase) on T202 through direct and
indirect regulation of PP2A (protein phosphatase 2A). Inhibition of PP2A activates ERK1/2
and promotes motility in several transformed cancer cells [98–102].

Several studies have also demonstrated that transforming growth factor beta 1 (TGFβ1)
enhances human chondrosarcoma and lung cancer cells’ migration through the PI3K/Akt
signalling pathway. Akt phosphorylates IKKαβ (IkB kinase) which activates IkBα and p65
on S536 residue. This causes NFkB to dissociate from IkBα and hence activate β1 and αvβ3
integrin, promoting human lung cancer and chondrosarcoma cell migration [103,104]. Abro-
gation of mTOR signalling leads to the lack of functional mTORC1 in human trophoblast
cells. mTORC1 regulates the JAK/STAT signalling pathway and contributes to the inva-
siveness of trophoblast cells by regulating matrix remodelling enzymes such as MMP9
(matrix metalloproteinase), MMP2, uPA (urokinase plasminogen activator), and PAI-1 (plas-
minogen activator inhibitor) [9,105]. The opposing role of Akt in cell migration has also
been discussed in different studies. Akt phosphorylates kidney ankyrin repeat-containing
protein (Kank), which consequently leads to a negative regulation of stress fibre assembly
and RhoA activation, attenuating cell migration [106]. An actin binding protein, paladin,
phosphorylated by Akt1 on S507, inhibits breast cancer cell migration by disrupting F-actin
bundles [107]. On the other hand, Akt2 contributes to paladin stability independent of S507
phosphorylation [108]. Similarly, Akt phosphorylates TSC2 (tuberous sclerosis complex),
a Rho GTPase regulator that inhibits breast cancer cell migration due to impaired F-actin
assembly [109].

3. Akt in EMT

Epithelial cells are tightly connected to their adjacent cells via E-cadherin and with
actin filaments via α- or β-catenin. Epithelial tumour cells must break these intercellular
junctions before migrating as single cells and invading stromal tissues. Epithelial tumour
cells undergo a process named epithelial to mesenchymal transition (EMT) to facilitate the
invasion as a single cell. The EMT process can be induced either by extracellular growth
factors, for example EGF, TGF-α and β, FGF, or by intracellular cues, such as oncogenic
Ras [110,111]. Epithelial cells gain a mesenchymal phenotype by losing their polarity and
cell–cell contacts during EMT. Functional loss of E-Cadherin and downregulation of epithe-
lial cell markers such as cytokeratins and ZO-1, and the overexpression of mesenchymal
or fibroblast cell markers such as N-cadherin, vimentin, and fibronectin are the main char-
acteristics of EMT [112,113]. EMT is a complex biological process that plays a critical role
in cancer metastasis. In head and neck cancer, EMT can be involved in the dissemination
of cancer cells to distant sites. However, it is important to understand that EMT is not an
all-or-nothing phenomenon; there are partial or hybrid states of EMT that can have unique
implications for cancer metastasis.

Partial EMT (p-EMT) is a term used to describe a state in which cancer cells exhibit
some, but not all, of the characteristics associated with a full EMT [114]. p-EMT can
enhance the invasive capacity of cancer cells. These cells may have an increased ability to
break away from the primary tumour as a group of cells and infiltrate surrounding tissues,
which is a crucial step in metastasis. Partially EMT-activated cancer cells might be less
susceptible to apoptosis. This allows them to survive in the bloodstream and at distant
site, where they might otherwise be eliminated by the body’s natural defences [115,116].
Cells which undergo p-EMT may also evade the immune system to some extent, making
it more challenging for the body to recognize and destroy these cells. Partial EMT can
also contribute to the formation of a pre-metastatic niche at distant sites. This involves
the recruitment and conditioning of stromal cells and immune cells to create a supportive
microenvironment for incoming cancer cells [117,118]. Puram et al. (2017) provided
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evidence that TGFβ signals from CAFs in the stroma induced p-EMT at the leading edge
of HNSCC tumours by upregulating Snail2 expression, potentially promoting invasive
properties of this subpopulation [119] (Figure 3).

Figure 3. Partial epithelial to mesenchymal transition (p-EMT) and full EMT with associated biological
markers. When appropriate signalling pathways are switched on, non-polarised, cobblestone-shaped
epithelial cells lose their cell–cell contacts and change to mesenchymal-type motile cells. Extracellular
matrix degradation enzymes, MMPs, then degrade the ECM and cells migrate through the basal
lamina. This event can be detected at a molecular level by a reduction in levels of epithelial markers
such as E-cadherin, b-catenin, cytokeratin, etc., and higher levels of mesenchymal markers such as
vimentin, Snail, and Twist, etc. p-EMT cells also exists in a meta-stable, intermediary state between
the epithelial and mesenchymal poles, suggesting this as a spectrum instead of a switch.

EMT is reversible and, sometimes, cells undergo the reciprocal mesenchymal to epithe-
lial transition (MET). During the development process, EMT plays an essential role in the
development of various tissues and organs such as the heart, neural crest, and peripheral
nervous and musculoskeletal systems. Only a small number of cells in adult organisms
have the ability to go through the EMT process in specific physiological or pathological
events such as wound healing. Nevertheless, tumour cells often gain the ability to reactivate
the EMT process during metastasis, which enhances the migration and invasion capacity of
cancer cells [113,120]. A number of studies have reported that Akt is frequently activated in
human carcinomas [121–125]. Akt2 has been shown to be activated in ovarian carcinoma,
affecting epithelial cell morphology, tumorigenicity, cell motility, and invasiveness, which is
characterised by the loss of histological features of epithelial differentiation [126]. Evidence
that Akt was shown to regulateEMT was first published in 2003, where squamous cell car-
cinoma cells, overexpressing an activated mutant of Akt, were shown to undergo EMT and
downregulate E-cadherin [127]. Loss of E-cadherin and relocalisation of β-catenin from the
membrane to the nucleus is frequently detected in tumour cells undergoing EMT [128,129].
Several transcription factors have been recognized that can induce and maintain the EMT
process, including Snail, Twist, and Zeb. The definitive molecular signalling mechanisms
of normal regulation of these transcription factors are still uncertain; however, they are
apparently deregulated in many invasive cancers [112,130]. Evidence suggests a strong
relationship between Akt and EMT-inducing transcription factors. Snail is phosphorylated
by GSK3β (glycogen synthase kinase 3 beta) in normal epithelial cells but is very unstable
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and hardly detectable. Expression of Snail in epithelial cells strongly induces morphologi-
cal changes associated with enhanced migratory capacity [131,132]. Phosphorylated Akt
downregulates GSK3β by phosphorylating the S9 residue. GSK3β activates β-catenin and
Snail that leads to their ubiquitination and degradation. Abrogated GSK3β, on the other
hand, causes the stabilisation and nuclear accumulation of β-catenin and Snail. Nuclear
Snail suppresses transcription of the CDH1 gene encoding E-cadherin to stimulate the
EMT process. Abrogated GSK3β stabilised the transcription factor Snail and increases
the expression of vimentin, N-cadherin, and MMP-9. Nuclear β-catenin stimulates the
transcription of cMYC and the cyclin D1 gene, which plays a vital role in the EMT process.
This is possibly consistent with invasive cancers, where increased Akt phosphorylation
leads to the downregulation of GSK3β and Snail overexpression [133–136]. A recent study
also suggested that the activation of the Akt/GSK3β/Snail pathway induced by Collagen
type X1 α1 (COL11A1) plays a major role in the progression of pancreatic ductal cancer by
facilitating EMT [137].

Y-box binding protein-1 (YB-1), a transcription/translation regulatory protein, is
reported to be activated by Akt and translocated to the nucleus. Nuclear YB-1 thus phos-
phorylates Snail and decreases E-cadherin expression, which in turn induces EMT in
invasive breast carcinoma [138]. Furthermore, upregulated Snail could, in turn, increase
Akt activity. Snail increases the binding of Akt2 to the E-cadherin (CDH1) promoter and
Akt2 interference unexpectedly inhibits Snail repression of the CDH1 gene [139]. Akt2
could also be activated by another EMT-inducer, Twist, in invasive breast cancer cells [140].
Inhibition of Akt also downregulates Twist in cancer cells [80]. Furthermore, Akt phospho-
rylates and activates Twist1, which in turn enhances the phosphorylation of Akt because
of increased TGFβ signalling in human breast cancer [141–143]. Data also suggest that
the polycomb group protein named B lymphoma Mo-MLV insertion region 1 homolog
(Bmi1) is a downstream target of Twist1 and is crucial for EMT and cancer metastasis [144].
Akt can phosphorylate Bmi1 directly in high-grade prostate tumours [145]. Promotion of
Akt activity by Bmi1 was also found to promote EMT by blocking the GSK3β-mediated
degradation of Snail in HNSCC and breast cancer [146,147]. Twist and Bmi1 also mediate
suppression of a micro-RNA, miR let-7i, which results in NEDD9 and DOCK3 overexpres-
sion and promotes mesenchymal motility in HNSCC, melanoma, and breast cancer via
Rac1 [148–150]. In many cases, breast cancer metastasis may be under the control of balance
between Akt1 and Akt2 and their link with MiR-200/Zeb/E-cadherin axis [151,152]. Taken
together, numerous studies establish the significant interaction between Akt and EMT
inducer-associated signalling. This synergistic interaction has serious adverse pathological
effects: (1) it sustains upregulation of PI3K/Akt signalling, which increases further the anti-
apoptotic potential of cancer cells; (2) it induces pro-invasive/metastatic gene expression;
and (3) it halts the stress-induced cell cycle arrest in cancer cells [35,113,134]. It is essential
to note that partial EMT is a dynamic and heterogeneous process, meaning that not all
cancer cells within a tumour will exhibit the same characteristics or degree of EMT. The
presence of partial EMT within a tumour can complicate treatment strategies, as these cells
may respond differently to therapies [114].

Figure 4 illustrates the role of Akt in regulating downstream signalling molecules that
in turn regulate cytoskeletal remodelling and EMT events in cancer cells.
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Figure 4. The role of Akt in the metastasis process. Cellular motility or migration is the first step
of the tumour cell metastatic process. Cytoskeletal remodelling and/or epithelial to mesenchymal
transition are the two cellular events that are responsible for cell migration. Akt plays significant
roles in cellular migration by controlling various downstream substrates which regulate these two
events. The function of Akt has been found to be cell type, tumour type, and site dependent.

4. Akt in HNSCC Metastasis

Head and neck squamous cell carcinoma (HNSCC) denotes epithelial tumours that
develop in the oral cavity, pharynx, larynx, and nasal cavity. The main risk factors of
HNSCC are alcohol and tobacco use and HPV infection [153,154]. It is the seventh most
common cancer worldwide, with more than 887,000 cases and 450,000 deaths every year
(accumulation of different head and neck cancer sites) [155]. It has recently been shown
that Akt is persistently activated in the vast majority of HNSCC cases. Active forms of
Akt (phosphorylated) can readily be detected in both experimental and human HNSCCs
and HNSCC-derived cell lines [156–158]. Akt can be phosphorylated, hence activated by
different growth factors, chemokines, integrins, etc., and their respective receptors, ras
mutations, PI3Ka gene amplification, overexpression, or activating mutations. Akt can also
be activated by aberrant PTEN activity due to genetic alterations or reduced expression
in HNSCC [159,160]. Akt activation is an early event in HNSCC progression which can
be identified in as many as 50% of tongue preneoplastic lesions [161]. Akt activation also
represents an independent prognostic marker of poor clinical outcome in both tongue
and oropharyngeal HNSCCs [161,162] and is linked with the conversion of a potentially
malignant oral lesion to OSCC (oral squamous cell carcinoma) [163].

Akt is known to induce morphological changes associated with EMT, loss of cell–cell
adhesion, and increased motility and invasion in HNSCC [112]. Oral carcinoma cells, of
epithelial origin, ectopically express a mesenchyme-specific transcription factor (HMGA2)
at the invasive front, which has a significant impact on tumour progression and patient
survival [164]. However, the definitive evidence that EMT was induced by Akt was
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provided by a study in which oral squamous cell carcinoma cell lines overexpressing
activated mutant Akt were shown to undergo EMT and downregulate E-cadherin [127].
Snail and SIP1 exhibit an inverse correlation with E-cadherin expression levels in oral
carcinoma cells [165,166]. An OSCC clone with stable Snail overexpression displayed
spindle morphology, amplified expression of vimentin, and reduced expression of E-
cadherin [167]. Julien et al. reported that phosphorylation of NF-κB by Akt stimulates
Snail expression and induces EMT in OSCC [168]. Bmi1 was found to bind with the
promoter of the Akt inhibitor, PTEN and thus promoted Akt activity and in turn EMT by
blocking GSK3β-mediated degradation of Snail. Interestingly, Bmi1 binds to the E-cadherin
promoter but depends on Snail for E-cadherin repression. Thus, Bmi1 was found to be
a player in EMT by activation of Akt, stabilisation of Snail, and repression of E-cadherin
in HNSCC [134,147]. Increased Twist expression is associated with downregulation of
E-cadherin and may also influence the Akt pathway through an unclear mechanism in
nasopharyngeal carcinoma cells [169]. Another study showed that pAkt inhibition could
induce mesenchymal to epithelial transition (MET) though interaction between Twist
and pAkt during EMT in OSCC [80]. The SDF-1/CXCR4 system can also induce EMT
via activation of the PI3k-Akt signalling pathway, resulting in lymph node metastasis of
OSCC [170]. NOTCH1-inactivating mutations are observed in around 30% of HNSCC cases
which activate cell proliferation and EMT though the induction of the EGFR/PI3K/Akt
axis [171,172].

Research from our group suggested that VEGFA stimulated OSCC and oral cancer-
associated fibroblast cell migration and can be inhibited by a specific PI3 kinase and
mTORC2 inhibitor. Addition of VEGF also caused increased Akt phosphorylation at both
T308 and S473 residues. The phosphorylation of Akt was found to vary according to the
concentration of VEGF, cell types, incubation time, and assay format [157]. Although
it has been suggested that differential phosphorylation of Akt at these two sites may
modulate the substrate selectivity of Akt, a clear picture of this is yet to emerge [24]. In
another study, we also found the nuclear localisation of pAkt T308 both in VEGF-induced
migrated oral carcinoma cells and VEGF-positive head and neck cancer tissue, while pAkt
S473 was mainly localised in the cytoplasm. Vasco et al. showed that the localisation of
phosphorylated Akt varies between two forms of thyroid cancer, but nuclear localisation
is linked with tumour invasion in both subtypes [173]. Akt has been reported to be
abundant in the nucleus in many cancer cells, yet the mechanism of translocation, biological
importance, and activity has not yet been established [174]. Published data from our group
also revealed that EGF (epidermal growth factor), TGFα (transforming growth factor α),
TGFβ1 (transforming growth factor β1), and NGF (nerve growth factor) can stimulate
head and neck cancer cell migration, and a specific PI3k/Akt pathway inhibitor such as
PI103 or MK2206 can effectively block growth factor-induced cell migration [175,176]. A
study from our research group also suggested that receptor tyrosine kinase inhibitors
such as Gefitinib and Erlotinib inhibited the migration of head and neck cancer cells
by inhibiting both Akt and MAPK phosphorylation [177]. Cetuximab, a monoclonal
antibody, targeting EGFR is the only FDA-approved targeted therapy for the treatment of
recurrent/metastatic head and neck cancer, in combination with radiation therapy or as a
single agent in patients who have had prior platinum-based therapy. The response rate,
as a single agent, is only 13% and the patients who respond initially eventually develop
resistance [178]. Evidence showed that an EGFR mutation at S493R inhibits Cetuximab-
binding with the receptor but does not block EGF or TGFα binding. EGF or TGFα may
therefore activate the downstream PI3K/Akt signalling pathway. Cetuximab resistance
can also be mediated by the activation of the Akt signalling pathway in an alternative
way, such as the overexpression of other growth factors (TGFβ, VEGF, and NGF) and
their associated receptors by the tumour cells and/or the tumour microenvironment [179].
A recent study also demonstrated increased Akt 1/2/3 phosphorylation to be the cause
for acquired Cetuximab resistance in head and neck squamous cell carcinoma [180]. The
PI3K/Akt pathway can also promote tumour immune evasion by modulating the tumour
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microenvironment, upregulating immunosuppressive molecules, and inhibiting the activity
of cytotoxic T cells. Inhibiting this pathway by blocking immune checkpoint molecules, PD-
1 or PD-L1, may help to sensitise HNSCC tumours to immunotherapy by creating a more
favourable immune microenvironment. A potential treatment strategy might involve the
inhibition of PI3K/Akt pathway which can help reduce tumour growth and sensitise cancer
cells to immune attack and administer an immune checkpoint inhibitor concurrently, to
recognize and attack cancer cells more effectively. There is some preclinical and early clinical
evidence suggesting that the combination of PI3K/Akt inhibitors and immunotherapy
agents such as PD-1/PD-L1 inhibitors may have synergistic effects, resulting in improved
anti-tumour responses [181,182].

The growth of HNSCC is maintained by a population of specialized cells, cancer stem
cells (CSCs), which possess unlimited self-renewal potential and induce tumour regrowth,
if not eliminated by therapy. Given their self-renewal properties, CSCs are thought to
play a key role in tumour growth and metastasis, but also in recurrence, making CSC-
related gene and protein expression a promising biomarker candidate and therapeutic
target [183]. Evidence suggests that HNSCC metastasis is associated with Bmi1-positive
CSCs, which are responsible for tumour invasion, drug resistance, and lymph node metas-
tasis. Migration/invasion abilities, cancer stemness and EMT phenotype of HNSCC CSCs
are maintained by the Twist/Bmi1/Akt/β-catenin signalling pathway [184,185]. Thus,
targeting the Akt pathway in HNSCC CSCs could be an innovative way to treat cancer
whilst avoiding drug resistance.

5. PI3K/Akt Inhibitors in Clinical Trials

A few recent clinical trials using PI3K/Akt inhibitor alone or in combination with
other agents to treat metastatic cancer did not show promising outcomes (Table 1).

Table 1. Recently completed clinical trials of PI3k/Akt pathway inhibitors in various metastatic cancers.

Trial Identifier Phase Type of Cancer PI3K/Akt Inhibitor Combination Result Ref

NCT01349933 II IV/recurrent NPC MK2206 (Akt
inhibitor) None

CR—0%, PR—4.8%, stable disease
52.4%, OS—10 months,

PFS—3.5 months
[186]

NCT01370070 II Recurrent NPC MK2206 None
CR—0%, PR—5%, Stable

disease—52%, OS—10 months,
PFS—3.5 months

[187]

NCT01604772 II IV/recurrent ADCC MK2206 None CR/PR—0%, Stable disease—81%,
PFS—9.7 months, OS—18 months [188]

NCT02145312 II Recurrent/metastatic
HNSCC

BYL719/Alpelisib
(PI3K inhibitor) None Not published [189]

NCT01527877 II Recurrent/metastatic
HNSCC

BKM120/Buparlisib
(PI3K inhibitor) None RR—3%, Stable disease—49%,

PFS—63 days, OS—143 days [190]

NCT02021751 Ib Recurrent/metastatic
HNSCC BYL719 Paclitaxel Challenging safety profile, dose

expansion phase was not initiated [191]

NCT02113878 Ib Locally advanced HNSCC BKM120 Cisplatin/RT Not published yet [192]

NCT03292250 II HNSCC BYL719 Poziotinib (EGFR
inhibitor) Not published yet [193]

NCT01816984 I/II Recurrent/metastatic
HNSCC BKM120 Cetuximab OS—9.3 months, PFS—2 months,

RR—8–9% [194]

NCT01562275 Ib
Locally

advanced/metastatic
solid tumours

GDC0068
(Ipatasertib)

GDC0973 (MEK1
inhibitor)

PFS—not measured due to very
few participants with measurable

response
[195]

NCT01625286 II Advanced/metastatic
breast cancer

AZD5363
(Capivasertib) Paclitaxel

Adding capivasertib did not
prolong PFS in the
overall population

[196]

NCT01625286 II Advanced/metastatic
breast cancer Ipatasertib Paclitaxel Not completed due to high

number of patient death [197]

NCT01231919 I Recurrent solid tumours
and leukaemia MK2206 Not published [198]

NCT01658943 II Metastatic pancreatic
cancer MK2206 Selumetinib OS—3.9 months, PFS—1.9 months,

Disease increased—19% [199]
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Table 1. Cont.

Trial Identifier Phase Type of Cancer PI3K/Akt Inhibitor Combination Result Ref

NCT01971515 I Advanced malignancy
MSC2363318A
(p70S6K/Akt

inhibitor)
Trastuzumab Not published [200]

NCT1344031 I
Postmenopausal women

with metastatic breast
cancer

MK2206 Anastrozole,
Fulvestrant Not published [201]

NCT01802320 II Recurrent/metastatic
colon cancer MK2206 OS—6.8 months, PFS—1.8 month,

ORR—O% [202]

NCT01245205 I Metastatic solid
tumour/breast cancer MK2206 Lapatinib Not published [203]

NCT01783171 I Pancreatic cancer MK2206 Dinaciclib Not published [204]

NCT01333475 Pilot Advanced colorectal
cancer MK2206 Selumetinib Biomarker analysis [205]

NCT01979523 II Metastatic uveal
melanoma GSK2141795 Trametinib PFS—15.6 wks, OS—88 wks,

disease progressed—22% [206]

NCT01604772 II Adenoid cyst carcinoma MK2206 PFS—9 months, PS—18 months,
Grade 3 adverse event—62% [207]

NCT01896531 II Metastatic
gastro-oesophageal cancer Ipatasertib mFOLFOX6 pFS—6.57 months, OS—12

months, ORR—52% [208]

NCT01349933 II Metastatic HNSCC MK2206 Disease progressed or dead: 57%,
PR—4.8% [186]

NCT01263145 I Metastatic solid or
breast cancer MK2206 Paclitaxel Not published [209]

NCT01964924 II Metastatic triple-negative
breast cancer GSK2141795 Trametinib ORR—5.4%, CBR—31.2% [210]

NCT02018874 Ib
Solid tumours and

non-Hodgkin’s
Lymphoma

LY2780301(p70S6K
/Akt inhibitor) Gemcitabine Not published [211]

RR = Response rate, ORR—objective response rate, CR—complete response, PR—partial response, CBR = CR
+ PR + stable disease, OS—overall survival, PFS—progression-free survival, NPC—nasopharyngeal cancer,
ADCC—adenoid cystic carcinoma.

It is worth noting here that activated receptor tyrosine kinases activate not only the
PI3K-Akt signalling pathway, but also other pathways including the MAPK and SMAD
pathways. Signalling pathways are activated in a context-dependent manner and crosstalk
among each other. Hence, targeted inhibition of one pathway downstream of the receptors
may not affect other pathways and that adds complexity to therapeutic targeting. A recent
study suggested that the combination of an Akt inhibitor and Cetuximab might be a
favourable novel therapeutic strategy to overcome acquired Cetuximab resistance in HN-
SCC patients [180]. Patient selection, tumour characteristics, and the specific agents used
can also influence the effectiveness of the combination therapy.

6. Conclusions

Extensive studies have demonstrated that the activation of Akt by phosphorylation
of different amino acid residues determines substrate selectivity and thus exerts different
biological activity in different cell types. Three highly homologous Akt isoforms have
non-overlapping and opposing functions in different cancer types. As Akt is the central
signalling node that incorporates cell membrane, cytoplasmic and nuclear signals regulating
cell fate, analysing Akt isoforms and cell-type-specific signalling pathways and targeting
them will contribute to personalised targeted HNSCC therapy. Thus, carefully designing a
clinical study using a combination of a PI3K-Akt pathway inhibitor and another signalling
molecule inhibitor or receptor inhibitor during the early stages of HNSCC might result in
an expected positive outcome.
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