Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (119)

Search Parameters:
Keywords = international logistics networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 - 31 Jul 2025
Viewed by 459
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

14 pages, 2727 KiB  
Article
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation
by Xin Yan, Furui Duan, Lu Chen, Runhong Wang, Kexin Li, Qiao Sun and Kuang Fu
Curr. Oncol. 2025, 32(8), 431; https://doi.org/10.3390/curroncol32080431 - 30 Jul 2025
Viewed by 182
Abstract
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through [...] Read more.
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through SHapley Additive exPlanations (SHAP) analysis and deep learning visualization. Methods: This multicenter retrospective study included 463 patients with pathologically confirmed colorectal cancer from two institutions, divided into training (n = 256), internal testing (n = 111), and external validation (n = 96) sets. Radiomics features were extracted from manually segmented regions on axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). Deep learning features were obtained from a pretrained ResNet101 network using the same MRI inputs. A least absolute shrinkage and selection operator (LASSO) logistic regression classifier was developed for clinical, radiomics, deep learning, and combined models. Model performance was evaluated by AUC, sensitivity, specificity, and F1-score. SHAP was used to assess feature contributions, and Grad-CAM was applied to visualize deep feature attention. Results: The combined model integrating features across the three modalities achieved the highest performance across all datasets, with AUCs of 0.889 (training), 0.838 (internal test), and 0.822 (external validation), outperforming single-modality models. Decision curve analysis (DCA) revealed enhanced clinical net benefit from the integrated model, while calibration curves confirmed its good predictive consistency. SHAP analysis revealed that radiomic features related to T2WI texture (e.g., LargeDependenceLowGrayLevelEmphasis) and clinical biomarkers (e.g., CA19-9) were among the most predictive for CRLM. Grad-CAM visualizations confirmed that the deep learning model focused on tumor regions consistent with radiological interpretation. Conclusions: This study presents a robust and interpretable multiparametric MRI-based model for noninvasively predicting liver metastasis in colorectal cancer patients. By integrating handcrafted radiomics and deep learning features, and enhancing transparency through SHAP and Grad-CAM, the model provides both high predictive performance and clinically meaningful explanations. These findings highlight its potential value as a decision-support tool for individualized risk assessment and treatment planning in the management of colorectal cancer. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

22 pages, 1724 KiB  
Article
Development and Clinical Interpretation of an Explainable AI Model for Predicting Patient Pathways in the Emergency Department: A Retrospective Study
by Émilien Arnaud, Pedro Antonio Moreno-Sanchez, Mahmoud Elbattah, Christine Ammirati, Mark van Gils, Gilles Dequen and Daniel Aiham Ghazali
Appl. Sci. 2025, 15(15), 8449; https://doi.org/10.3390/app15158449 - 30 Jul 2025
Viewed by 365
Abstract
Background: Overcrowded emergency departments (EDs) create significant challenges for patient management and hospital efficiency. In response, Amiens Picardy University Hospital (APUH) developed the “Prediction of the Patient Pathway in the Emergency Department” (3P-U) model to enhance patient flow management. Objectives: To develop and [...] Read more.
Background: Overcrowded emergency departments (EDs) create significant challenges for patient management and hospital efficiency. In response, Amiens Picardy University Hospital (APUH) developed the “Prediction of the Patient Pathway in the Emergency Department” (3P-U) model to enhance patient flow management. Objectives: To develop and clinically validate an explainable artificial intelligence (XAI) model for hospital admission predictions, using structured triage data, and demonstrate its real-world applicability in the ED setting. Methods: Our retrospective, single-center study involved 351,019 patients consulting in APUH’s EDs between 2015 and 2018. Various models (including a cross-validation artificial neural network (ANN), a k-nearest neighbors (KNN) model, a logistic regression (LR) model, and a random forest (RF) model) were trained and assessed for performance with regard to the area under the receiver operating characteristic curve (AUROC). The best model was validated internally with a test set, and the F1 score was used to determine the best threshold for recall, precision, and accuracy. XAI techniques, such as Shapley additive explanations (SHAP) and partial dependence plots (PDP) were employed, and the clinical explanations were evaluated by emergency physicians. Results: The ANN gave the best performance during the training stage, with an AUROC of 83.1% (SD: 0.2%) for the test set; it surpassed the RF (AUROC: 71.6%, SD: 0.1%), KNN (AUROC: 67.2%, SD: 0.2%), and LR (AUROC: 71.5%, SD: 0.2%) models. In an internal validation, the ANN’s AUROC was 83.2%. The best F1 score (0.67) determined that 0.35 was the optimal threshold; the corresponding recall, precision, and accuracy were 75.7%, 59.7%, and 75.3%, respectively. The SHAP and PDP XAI techniques (as assessed by emergency physicians) highlighted patient age, heart rate, and presentation with multiple injuries as the features that most specifically influenced the admission from the ED to a hospital ward. These insights are being used in bed allocation and patient prioritization, directly improving ED operations. Conclusions: The 3P-U model demonstrates practical utility by reducing ED crowding and enhancing decision-making processes at APUH. Its transparency and physician validation foster trust, facilitating its adoption in clinical practice and offering a replicable framework for other hospitals to optimize patient flow. Full article
Show Figures

Figure 1

25 pages, 4047 KiB  
Article
Vulnerability Analysis of the China Railway Express Network Under Emergency Scenarios
by Huiyong Li, Wenlu Zhou, Laijun Zhao, Lixin Zhou and Pingle Yang
Appl. Sci. 2025, 15(15), 8205; https://doi.org/10.3390/app15158205 - 23 Jul 2025
Viewed by 240
Abstract
In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially [...] Read more.
In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially triggering cascading failures that critically compromise network performance. This study introduces a Coupled Map Lattice model that incorporates cargo flow dynamics, distributing cargo based on distance and the residual capacity of neighboring nodes. We analyze cascading failures in the CRN under three scenarios, isolated node failure, isolated edge disruption, and simultaneous node and edge failure, to assess the network’s vulnerability during emergencies. Our findings show that deliberate attacks targeting cities with high node strength result in more significant damage than attacks on cities with a high node degree or betweenness. Additionally, when edges are disrupted by unexpected events, the impact of edge removals on cascading failures depends on their strategic position and connections within the network, not just their betweenness and weight. The study further reveals that removing collinear edges can effectively slow the propagation of cascading failures in response to deliberate attacks. Furthermore, a single-factor cargo flow allocation method significantly enhances the network’s resilience against edge failures compared to node failures. These insights provide practical guidance and strategic support for the CR Express in mitigating the effects of both unforeseen events and intentional attacks. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 387
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

22 pages, 1837 KiB  
Article
Anthropometric Measurements for Predicting Low Appendicular Lean Mass Index for the Diagnosis of Sarcopenia: A Machine Learning Model
by Ana M. González-Martin, Edgar Samid Limón-Villegas, Zyanya Reyes-Castillo, Francisco Esparza-Ros, Luis Alexis Hernández-Palma, Minerva Saraí Santillán-Rivera, Carlos Abraham Herrera-Amante, César Octavio Ramos-García and Nicoletta Righini
J. Funct. Morphol. Kinesiol. 2025, 10(3), 276; https://doi.org/10.3390/jfmk10030276 - 17 Jul 2025
Viewed by 561
Abstract
Background: Sarcopenia is a progressive muscle disease that compromises mobility and quality of life in older adults. Although dual-energy X-ray absorptiometry (DXA) is the standard for assessing Appendicular Lean Mass Index (ALMI), it is costly and often inaccessible. This study aims to [...] Read more.
Background: Sarcopenia is a progressive muscle disease that compromises mobility and quality of life in older adults. Although dual-energy X-ray absorptiometry (DXA) is the standard for assessing Appendicular Lean Mass Index (ALMI), it is costly and often inaccessible. This study aims to develop machine learning models using anthropometric measurements to predict low ALMI for the diagnosis of sarcopenia. Methods: A cross-sectional study was conducted on 183 Mexican adults (67.2% women and 32.8% men, ≥60 years old). ALMI was measured using DXA, and anthropometric data were collected following the International Society for the Advancement of Kinanthropometry (ISAK) protocols. Predictive models were developed using Logistic Regression (LR), Decision Trees (DTs), Random Forests (RFs), Artificial Neural Networks (ANNs), and LASSO regression. The dataset was split into training (70%) and testing (30%) sets. Model performance was evaluated using classification performance metrics and the area under the ROC curve (AUC). Results: ALMI indicated strong correlations with BMI, corrected calf girth, and arm relaxed girth. Among models, DT achieved the best performance in females (AUC = 0.84), and ANN indicated the highest AUC in males (0.92). Regarding the prediction of low ALMI, specificity values were highest in DT for females (100%), while RF performed best in males (92%). The key predictive variables varied depending on sex, with BMI and calf girth being the most relevant for females and arm girth for males. Conclusions: Anthropometry combined with machine learning provides an accurate, low-cost approach for identifying low ALMI in older adults. This method could facilitate sarcopenia screening in clinical settings with limited access to advanced diagnostic tools. Full article
Show Figures

Figure 1

12 pages, 334 KiB  
Protocol
Clinical Course, Outcomes, and Risk Factors of Myocarditis and Pericarditis Following Administration of mRNA-1273 Vaccination: A Protocol for a Federated Real-World Evidence Vaccine Safety Study Using Data from Five European Data Sources
by Laura C. Zwiers, Diederick E. Grobbee, Rob Schneijdenberg, Corine Baljé, Samantha St. Laurent, Daina B. Esposito, Lei Zhu, Veronica V. Urdaneta, Magalie Emilebacker, Daniel Weibel, Felipe Villalobos, Carlo Alberto Bissacco, Arantxa Urchueguía Fornes, Juan José Carreras-Martínez, Anteneh A. Desalegn, Angela Lupattelli, Lei Wang, Jannik Wheler, Vera Ehrenstein, Denise Morris, Catherine Fry, Marjolein Jansen, Brianna M. Goodale and David S. Y. Ongadd Show full author list remove Hide full author list
Vaccines 2025, 13(7), 755; https://doi.org/10.3390/vaccines13070755 - 16 Jul 2025
Viewed by 700
Abstract
Background: Myocarditis and pericarditis are recognised risks following COVID-19 vaccination, including the mRNA-1273 vaccine. Most cases occur shortly following the second dose of this vaccine, and incidence is highest among young males. However, little is known about risk factors beyond age and [...] Read more.
Background: Myocarditis and pericarditis are recognised risks following COVID-19 vaccination, including the mRNA-1273 vaccine. Most cases occur shortly following the second dose of this vaccine, and incidence is highest among young males. However, little is known about risk factors beyond age and sex and about the longer-term clinical course. This study aims to identify possible risk factors for myocarditis and pericarditis following mRNA-1273 vaccination, to characterise the clinical course of myocarditis and pericarditis, both associated with mRNA-1273 vaccination and not associated with vaccination, and to identify risk factors for severe outcomes (i.e., cardiac or thromboembolic complications, severe hospital outcomes, all-cause hospital readmission, and death). Methods: This study is being conducted within the Vaccine Monitoring Collaboration for Europe (VAC4EU) association using routinely collected healthcare data from five data sources from four European countries (Denmark, Norway, Spain, and the United Kingdom). The study is being performed using a common data model, and all analyses are performed separately in each data source in a federated manner following a common protocol. A case–cohort analysis set is identified within each data source for identifying potential risk factors for myocarditis and pericarditis following mRNA-1273 vaccination using logistic regression analysis. The clinical course of myocarditis and pericarditis is being assessed using a cohort study design and describes all cases (i.e., cases associated with mRNA-1273 and unexposed cases). Cox regression analysis is applied to assess the associations between risk factors and several follow-up outcomes. Conclusions: This protocol describes the study methodology of an international collaborative initiative with the aim of assessing the risk factors and clinical course of myocarditis and pericarditis following mRNA-1273 vaccination using a federated network of five European data sources. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

13 pages, 830 KiB  
Article
Machine Learning-Based Prediction of Postoperative Deep Vein Thrombosis Following Tibial Fracture Surgery
by Humam Baki and İsmail Bülent Özçelik
Diagnostics 2025, 15(14), 1787; https://doi.org/10.3390/diagnostics15141787 - 16 Jul 2025
Viewed by 313
Abstract
Background/Objectives: Postoperative deep vein thrombosis (DVT) is a common and serious complication after tibial fracture surgery. This study aimed to develop and evaluate machine learning (ML) models to predict the occurrence of DVT following tibia fracture surgery. Methods: A retrospective analysis [...] Read more.
Background/Objectives: Postoperative deep vein thrombosis (DVT) is a common and serious complication after tibial fracture surgery. This study aimed to develop and evaluate machine learning (ML) models to predict the occurrence of DVT following tibia fracture surgery. Methods: A retrospective analysis was conducted on patients who had undergone surgery for isolated tibial fractures. A total of 42 predictive models were developed using combinations of six ML algorithms—logistic regression, support vector machine, random forest, extreme gradient boosting, Light Gradient Boosting Machine (LightGBM), and neural networks—and seven feature selection methods, including SHapley Additive exPlanations (SHAP), Least Absolute Shrinkage and Selection Operator (LASSO), Boruta, recursive feature elimination, univariate filtering, and full-variable inclusion. Model performance was assessed based on discrimination, quantified by the area under the receiver operating characteristic curve (AUC-ROC), and calibration, measured using Brier scores, with internal validation performed via bootstrapping. Results: Of 471 patients, 80 (17.0%) developed postoperative DVT. The ML models achieved high overall accuracy in predicting DVT. Twenty-four models showed similarly excellent discrimination (pairwise AUC comparisons, p > 0.05). The top-performing model (random forest with RFE) attained an AUC of ~0.99, while several others (including LightGBM and SVM-based models) also reached AUC values in the 0.97–0.99 range. Notably, support vector machine models paired with Boruta or LASSO feature selection demonstrated the best calibration (lowest Brier scores), indicating reliable risk estimation. The final selected SVM models achieved high specificity (≥95%) with moderate sensitivity (~75–80%) for DVT detection. Conclusions: ML models demonstrated high accuracy in predicting postoperative DVT following tibial fracture surgery. Support vector machine-based models showed particularly favorable discrimination and calibration. These results suggest the potential utility of ML-based risk stratification to guide individualized prophylaxis, warranting further validation in prospective clinical settings. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Orthopedics)
Show Figures

Figure 1

18 pages, 847 KiB  
Article
Modeling Public Transportation Use Among Short-Term Rental Guests in Madrid
by Daniel Gálvez-Pérez, Begoña Guirao and Armando Ortuño
Appl. Sci. 2025, 15(14), 7828; https://doi.org/10.3390/app15147828 - 12 Jul 2025
Viewed by 401
Abstract
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property [...] Read more.
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property managers and luggage-storage services to examine factors influencing public transport (PT) use. Responses on bus and metro usage were combined into a three-level ordinal variable and modeled using ordered logistic regression against tourist demographics, trip characteristics, and accommodation attributes, including geocoded location zones. The results indicate that first-time and international visitors are less likely to use PT at high levels, while tourists visiting more points of interest and those who rated PT importance highly when choosing accommodation are significantly more frequent users. Accommodation in the central almond or periphery correlates positively with higher PT use compared to the city center. Distances to transit stops were not significant predictors, reflecting overall network accessibility. These findings suggest that enhancing PT connectivity in peripheral areas could support the spatial dispersion of tourism benefits and improve sustainable mobility for STR guests. Full article
Show Figures

Figure 1

27 pages, 1211 KiB  
Article
Universities as Hubs for MSME Capacity Building: Lessons from a Kenyan Bank-Higher Education Institution Training Initiative
by Dickson Okello, Patience M. Mshenga, George Owuor, Mwanarusi Saidi, Joshua Nyangidi, Patrick Owino, Fahad Juma, Benson Nyamweno and Jacqueline Wanjiku
Trends High. Educ. 2025, 4(3), 32; https://doi.org/10.3390/higheredu4030032 - 8 Jul 2025
Viewed by 436
Abstract
Micro, Small, and Medium Enterprises (MSMEs) are vital drivers of economic growth in Kenya, yet they face persistent barriers, including limited capacity, financial exclusion, and weak market integration. This study assessed the potential of universities as strategic hubs for MSME capacity building through [...] Read more.
Micro, Small, and Medium Enterprises (MSMEs) are vital drivers of economic growth in Kenya, yet they face persistent barriers, including limited capacity, financial exclusion, and weak market integration. This study assessed the potential of universities as strategic hubs for MSME capacity building through a collaborative initiative between Egerton University and the KCB Foundation. Using the International Labour Organization’s Start and Improve Your Business (SIYB) methodology, 481 entrepreneurs from Egerton, Njoro, and Gilgil were trained in a business development bootcamp. This study evaluated the training effectiveness, participant demographics, confidence in skill application, networking outcomes, and satisfaction levels. The results showed high participant confidence (over 95% across all regions), strong financial management uptake (85%), and mobile banking adoption (70%). Gilgil led in inclusivity and peer engagement, while Njoro showed stronger gender representation. However, logistical challenges caused 25% absenteeism in rural areas, and only 23% accessed post-training mentorship. These findings underscore the transformative role of HEIs in fostering sustainable entrepreneurship through localized, inclusive, and industry-aligned training. Policy recommendations include hybrid delivery models, tiered curricula for diverse skill levels, and institutionalized mentorship through public–private partnerships. This case demonstrates the value of embedding entrepreneurship support within university mandates to advance national MSME development agendas. Full article
Show Figures

Figure 1

40 pages, 7119 KiB  
Article
Optimizing Intermodal Port–Inland Hub Systems in Spain: A Capacitated Multiple-Allocation Model for Strategic and Sustainable Freight Planning
by José Moyano Retamero and Alberto Camarero Orive
J. Mar. Sci. Eng. 2025, 13(7), 1301; https://doi.org/10.3390/jmse13071301 - 2 Jul 2025
Viewed by 429
Abstract
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net [...] Read more.
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net Present Value (NPVsocial) to support the design of intermodal freight networks under asymmetric spatial and socio-environmental conditions. The empirical case focuses on Spain, leveraging its strategic position between Asia, North Africa, and Europe. The model includes four major ports—Barcelona, Valencia, Málaga, and Algeciras—as intermodal gateways connected to the 47 provinces of peninsular Spain through calibrated cost matrices based on real distances and mode-specific road and rail costs. A Genetic Algorithm is applied to evaluate 120 scenarios, varying the number of active hubs (4, 6, 8, 10, 12), transshipment discounts (α = 0.2 and 1.0), and internal parameters. The most efficient configuration involved 300 generations, 150 individuals, a crossover rate of 0.85, and a mutation rate of 0.40. The algorithm integrates guided mutation, elitist reinsertion, and local search on the top 15% of individuals. Results confirm the central role of Madrid, Valencia, and Barcelona, frequently accompanied by high-performance inland hubs such as Málaga, Córdoba, Jaén, Palencia, León, and Zaragoza. Cities with active ports such as Cartagena, Seville, and Alicante appear in several of the most efficient network configurations. Their recurring presence underscores the strategic role of inland hubs located near seaports in supporting logistical cohesion and operational resilience across the system. The COVID-19 crisis, the Suez Canal incident, and the persistent tensions in the Red Sea have made clear the fragility of traditional freight corridors linking Asia and Europe. These shocks have brought renewed strategic attention to southern Spain—particularly the Mediterranean and Andalusian axes—as viable alternatives that offer both geographic and intermodal advantages. In this evolving context, the contribution of southern hubs gains further support through strong system-wide performance indicators such as entropy, cluster diversity, and Pareto efficiency, which allow for the assessment of spatial balance, structural robustness, and optimal trade-offs in intermodal freight planning. Southern hubs, particularly in coordination with North African partners, are poised to gain prominence in an emerging Euro–Maghreb logistics interface that demands a territorial balance and resilient port–hinterland integration. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 2699 KiB  
Article
Development of AI-Based Predictive Models for Osteoporosis Diagnosis in Postmenopausal Women from Panoramic Radiographs
by Francesco Fanelli, Giuseppe Guglielmi, Giuseppe Troiano, Federico Rivara, Giovanni Passeri, Gianluca Prencipe, Khrystyna Zhurakivska, Riccardo Guglielmi and Elena Calciolari
J. Clin. Med. 2025, 14(13), 4462; https://doi.org/10.3390/jcm14134462 - 23 Jun 2025
Viewed by 517
Abstract
Objectives: The aim of this study was to develop AI-based predictive models to assess the risk of osteoporosis in postmenopausal women using panoramic radiographs (OPTs). Methods: A total of 301 panoramic radiographs (OPTs) from postmenopausal women were collected and labeled based [...] Read more.
Objectives: The aim of this study was to develop AI-based predictive models to assess the risk of osteoporosis in postmenopausal women using panoramic radiographs (OPTs). Methods: A total of 301 panoramic radiographs (OPTs) from postmenopausal women were collected and labeled based on DXA-assessed bone mineral density. Of these, 245 OPTs from the Hospital of San Giovanni Rotondo were used for model training and internal testing, while 56 OPTs from the University of Parma served as an external validation set. A mandibular region of interest (ROI) was defined on each image. Predictive models were developed using classical radiomics, deep radiomics, and convolutional neural networks (CNNs), evaluated based on AUC, accuracy, sensitivity, and specificity. Results: Among the tested approaches, classical radiomics showed limited predictive ability (AUC = 0.514), whereas deep radiomics using DenseNet-121 features combined with logistic regression achieved the best performance in this group (AUC = 0.722). For end-to-end CNNs, ResNet-50 using a hybrid feature extraction strategy achieved the highest AUC in external validation (AUC = 0.786), with a sensitivity of 90.5%. While internal testing yielded high performance metrics, external validation revealed reduced generalizability, highlighting the challenges of translating AI models into clinical practice. Conclusions: AI-based models show potential for opportunistic osteoporosis screening from OPT images. Although the results are promising, particularly those obtained with deep radiomics and transfer learning strategies, further refinement and validation in larger and more diverse populations are essential before clinical application. These models could support the early, non-invasive identification of at-risk patients, complementing current diagnostic pathways. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

28 pages, 1007 KiB  
Article
Predicting the Event Types in the Human Brain: A Modeling Study Based on Embedding Vectors and Large-Scale Situation Type Datasets in Mandarin Chinese
by Xiaorui Ma and Hongchao Liu
Appl. Sci. 2025, 15(11), 5916; https://doi.org/10.3390/app15115916 - 24 May 2025
Viewed by 422
Abstract
Event types classify Chinese verbs based on the internal temporal structure of events. The categorization of verb event types is the most fundamental classification of concept types represented by verbs in the human brain. Meanwhile, event types exhibit strong predictive capabilities for exploring [...] Read more.
Event types classify Chinese verbs based on the internal temporal structure of events. The categorization of verb event types is the most fundamental classification of concept types represented by verbs in the human brain. Meanwhile, event types exhibit strong predictive capabilities for exploring collocational patterns between words, making them crucial for Chinese teaching. This work focuses on constructing a statistically validated gold-standard dataset, forming the foundation for achieving high accuracy in recognizing verb event types. Utilizing a manually annotated dataset of verbs and aspectual markers’ co-occurrence features, the research conducts hierarchical clustering of Chinese verbs. The resulting dendrogram indicates that verbs can be categorized into three event types—state, activity and transition—based on semantic distance. Two approaches are employed to construct vector matrices: a supervised method that derives word vectors based on linguistic features, and an unsupervised method that uses four models to extract embedding vectors, including Word2Vec, FastText, BERT and ChatGPT. The classification of verb event types is performed using three classifiers: multinomial logistic regression, support vector machines and artificial neural networks. Experimental results demonstrate the superior performance of embedding vectors. Employing the pre-trained FastText model in conjunction with an artificial neural network classifier, the model achieves an accuracy of 98.37% in predicting 3133 verbs, thereby enabling the automatic identification of event types at the level of Chinese verbs and validating the high accuracy and practical value of embedding vectors in addressing complex semantic relationships and classification tasks. This work constructs datasets of considerable semantic complexity, comprising a substantial volume of verbs along with their feature vectors and situation type labels, which can be used for evaluating large language models in the future. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence and Semantic Mining Technology)
Show Figures

Figure 1

26 pages, 2141 KiB  
Review
Intelligent Maritime Shipping: A Bibliometric Analysis of Internet Technologies and Automated Port Infrastructure Applications
by Yangqiong Zou, Guangnian Xiao, Qingjun Li and Salvatore Antonio Biancardo
J. Mar. Sci. Eng. 2025, 13(5), 979; https://doi.org/10.3390/jmse13050979 - 19 May 2025
Cited by 10 | Viewed by 1544
Abstract
Amid the dual imperatives of global trade expansion and low-carbon transition, intelligent maritime shipping has emerged as a central driver for the innovation of international logistics systems, now entering a critical window period for the deep integration of Internet technologies and automated port [...] Read more.
Amid the dual imperatives of global trade expansion and low-carbon transition, intelligent maritime shipping has emerged as a central driver for the innovation of international logistics systems, now entering a critical window period for the deep integration of Internet technologies and automated port infrastructure. While existing research predominantly focuses on isolated applications of intelligent technologies, systematic evaluations of the synergistic effects of technological integration on maritime ecosystems, policy compatibility, and contributions to global carbon emission governance remain under-explored. Leveraging bibliometric analysis, this study systematically examines 488 publications from the Web of Science (WoS) Core Collection (2000–2024), yielding three pivotal findings: firstly, China dominates the research landscape, with a 38.5% contribution share, where Artificial Intelligence (AI), the Internet of Things (IoT), and port automation constitute the technological pillars. However, critical gaps persist in cross-system protocol standardization and climate-adaptive modeling, accounting for only 2.7% and 4.2% of the literature, respectively. Secondly, international collaboration networks exhibit pronounced “Islamization”, characterized by an inter-team collaboration rate of 17.3%, while the misalignment between rapid technological iteration and existing maritime regulations exacerbates industry risks. Thirdly, a dual-track pathway integrating Cyber–Physical System (CPS)-based digital twin ports and open-source vertical domain-specific large language models is proposed. Empirical evidence demonstrates its efficacy in reducing cargo-handling energy consumption by 15% and decision-making latency by 40%. This research proposes a novel tripartite framework, encompassing technological, institutional, and data sovereignty dimensions, to resolve critical challenges in integrating multi-source maritime data and managing cross-border governance. The model provides academically validated and industry-compatible strategies for advancing sustainable maritime intelligence. Subsequent investigations should expand data sources to include regional repositories and integrate interdisciplinary approaches, ensuring the adaptability of both technical systems and international policy coordination mechanisms across diverse maritime ecosystems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 3005 KiB  
Article
Risk Transmission and Resilience of China’s Corn Import Trade Network
by Jun Wu and Jing Zhu
Foods 2025, 14(8), 1401; https://doi.org/10.3390/foods14081401 - 18 Apr 2025
Viewed by 695
Abstract
The global corn trade is an important pillar of the agricultural economy, but its supply chain is vulnerable to geopolitical conflicts, climate change, and market volatility. As one of the major importers of corn in the world, China has long relied on the [...] Read more.
The global corn trade is an important pillar of the agricultural economy, but its supply chain is vulnerable to geopolitical conflicts, climate change, and market volatility. As one of the major importers of corn in the world, China has long relied on the United States and Ukraine, and the risk of import concentration is prominent. The complicated international situation intensifies the external uncertainty of China’s import supply chain. This study utilized bilateral trade data from 2010 to 2023 and employed advanced methodologies including complex network modeling, network index quantification, and simulation analysis to assess the impacts of external risks from major trading partners on China’s corn import system and trace risk transmission pathways. The research objectives focused on examining the structural evolution of China’s corn import trade network over the past decade, evaluating its resilience against external shocks, and identifying the critical roles played by key node countries in risk propagation mechanisms. The results showed that the resilience of China’s corn import trade network had been enhanced in recent years and that the complementarity of planting cycles in the Northern and Southern Hemispheres and the adjustment of trade structure caused by the Russia–Ukraine conflict had improved its risk resistance. The United States, France, Romania, and Turkey were key intermediate nodes in risk transmission due to their geographical advantages and trade hub statuses. The risk transmission path presented regional heterogeneity. China should strengthen trade with countries in the Southern Hemisphere and built a more stable import system by taking advantage of complementary resource endowments and growth periods. Bilateral agreements with transit countries could ensure security of supply. Reserve centers and modern logistics infrastructure should be built in key areas. In addition, platforms such as the Regional Comprehensive Economic Partnership could promote harmonized standards and digital support for corn trade, and regional financial instruments and supply chain optimization could have balanced risks. Full article
(This article belongs to the Special Issue Food Insecurity: Causes, Consequences and Remedies—Volume II)
Show Figures

Figure 1

Back to TopTop