Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = intermediate dispersal model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2040 KB  
Article
Microstructures as Models for Origin of Life in Hot Water: Hydrogen-Assisted Self-Assembly of Glycine and Alanine Zwitterions
by Ignat Ignatov
Hydrogen 2025, 6(3), 67; https://doi.org/10.3390/hydrogen6030067 - 9 Sep 2025
Viewed by 545
Abstract
Building on the early investigation by Sidney W. Fox that dry-heated amino acids can spontaneously form microspheres, this research studies the self-organization of glycine and alanine with hydrogen in a liquid system. This study aimed to investigate the spontaneous formation of membraneless, microscale [...] Read more.
Building on the early investigation by Sidney W. Fox that dry-heated amino acids can spontaneously form microspheres, this research studies the self-organization of glycine and alanine with hydrogen in a liquid system. This study aimed to investigate the spontaneous formation of membraneless, microscale amino acid assemblies under simulated prebiotic hydrothermal conditions, such as hot mineral sources and ponds. Aqueous solutions of glycine and alanine were prepared in a hydrogen-rich mineral buffer and thermally incubated at 75 °C. Phase-contrast microscopy, transmission electron microscopy (TEM), and molecular modeling were employed to analyze the morphology and internal organization of the resulting structures. Microscopy revealed that zwitterionic glycine and alanine spontaneously self-organize into spherical microspheres (~12 µm), in which the charged –NH3+ and –COO groups orient outward, while the hydrophobic methyl groups of alanine point inward, forming a stabilized internal core. The primary studies were performed with hot mineral water from Rupite, Bulgaria, at 73.4 °C. The resulting osmotic pressure difference Δπ ≈ 2490 Pa, derived from the van’t Hoff equalization. This suggests a chemically asymmetric system capable of sustaining directional water flux and passive molecular enrichment. The zwitterionic nature of glycine and alanine, which possesses both –NH3+ and –COO groups, supports the formation of microspheres in our experiments. Under conditions with hot mineral water and hydrogen acting as a reducing agent in the primordial atmosphere, these amino acids self-organized into dense interfacial microspheres. These findings support the idea that thermally driven, zwitterion-mediated aggregation of simple amino acids, such as glycine and alanine, with added hydrogen, could generate membraneless, selectively organized microenvironments on the early Earth. Such microspheres may represent a plausible intermediate between dispersed organisms and microspheres. Full article
Show Figures

Graphical abstract

21 pages, 12605 KB  
Article
Impact of Sharp Soil Interfaces on Solute Transport: Insights from a Reactive Tracer Test in a 2D Intermediate-Scale Experiment
by Guido González-Subiabre, Oriol Bertran and Daniel Fernàndez-Garcia
Water 2025, 17(16), 2382; https://doi.org/10.3390/w17162382 - 12 Aug 2025
Viewed by 479
Abstract
Understanding solute transport across interfaces between different porous materials is crucial for subsurface applications. Column tracer experiments have suggested solute accumulation at these interfaces. This effect cannot be explained by standard models based on Fickian flux continuity and the advection–dispersion equation. To analyze [...] Read more.
Understanding solute transport across interfaces between different porous materials is crucial for subsurface applications. Column tracer experiments have suggested solute accumulation at these interfaces. This effect cannot be explained by standard models based on Fickian flux continuity and the advection–dispersion equation. To analyze this phenomenon, we present reactive transport experiments in a 2D intermediate-scale horizontal tank to visualize and evaluate the spatiotemporal evolution of a solute plume crossing a sharp interface between coarse and fine materials. The plume results from the reaction of two fluid solutions entering the tank in parallel through inlet ports. The reaction product is analyzed using mixing and reaction metrics. Results show the reaction product encounters anomalous resistance when the plume crosses the coarse-to-fine (CF) interface. This effect is less pronounced in the fine-to-coarse (FC) transition. This asymmetric resistance does not produce solute accumulation behind the interface, a difference from the results obtained with the one-dimensional model. Instead, results show enhanced transverse spread of the reaction product in the coarse-to-fine transition, with slow release in the fine material. A sudden decrease in the longitudinal concentration profile across the interface is observed. Mixing metrics show that as apparent transverse dispersivity increases closer to the interface in the CF transition, the scalar dissipation rate and total mass reacted increase, indicating that the CF configuration promotes greater solute reactivity near the interface compared to the FC configuration. Full article
(This article belongs to the Topic Advances in Groundwater Science and Engineering)
Show Figures

Figure 1

14 pages, 1089 KB  
Article
Modeling Plant Diversity Responses to Fire Recurrence in Disjunct Amazonian Savannas
by Mariana Martins Medeiros de Santana, Rodrigo Nogueira de Vasconcelos, Salustiano Vilar da Costa Neto, Eduardo Mariano Neto and Washington de Jesus Sant’Anna da Franca Rocha
Land 2025, 14(7), 1455; https://doi.org/10.3390/land14071455 - 13 Jul 2025
Cited by 1 | Viewed by 615
Abstract
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five [...] Read more.
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five phytophysiognomies in Amapá State, Brazil, and compiled trait data for 226 plant species. Generalized Additive Mixed Models (GAMMs) were used to evaluate the relationships between fire frequency and diversity metrics across five landscape scales. The results showed that taxonomic diversity—particularly Shannon diversity—exhibited a unimodal response to fire recurrence, with peak diversity occurring at intermediate fire frequencies. Abundance increased with fire frequency, indicating potential dominance by fire-tolerant species. Functional diversity responded more subtly: functional richness and dispersion showed weak, non-linear associations with fire, while functional evenness remained stable. These findings suggest that recurrent fire can reduce taxonomic diversity without strongly altering functional structure, possibly due to functional redundancy among species. The use of multiscale models revealed that biodiversity–fire relationships vary with spatial context. In conclusion, this study highlights the moderate resilience of Amazonian savannas to fire recurrence and emphasizes the need to incorporate these ecosystems into fire management plans in climate change scenarios. Full article
Show Figures

Figure 1

27 pages, 1137 KB  
Article
Enhancing Flexibility in Forest Biomass Procurement: A Matheuristic Approach for Resilient Bioenergy Supply Chains Under Resource Variability
by Reinaldo Gomes, Alexandra Marques, Fábio Neves-Moreira, Carlos Amaral Netto, Ruxanda Godina Silva and Pedro Amorim
Processes 2025, 13(7), 2074; https://doi.org/10.3390/pr13072074 - 30 Jun 2025
Viewed by 481
Abstract
The sustainable utilization of forest biomass for bioenergy production is increasingly challenged by the variability and unpredictability of raw material availability. These challenges are particularly critical in regions like Central Portugal, where seasonality, dispersed resources, and wildfire prevention policies disrupt procurement planning. This [...] Read more.
The sustainable utilization of forest biomass for bioenergy production is increasingly challenged by the variability and unpredictability of raw material availability. These challenges are particularly critical in regions like Central Portugal, where seasonality, dispersed resources, and wildfire prevention policies disrupt procurement planning. This study investigates two flexibility strategies—dynamic network reconfiguration and operations postponement—as policy relevant tools to enhance resilience in forest-to-bioenergy supply chains. A novel mathematical model, the mobile Facility Location Problem with dynamic Operations Assignment (mFLP-dOA), is proposed and solved using a scalable matheuristic approach. Applying the model to a real case study, we demonstrate that incorporating temporary intermediate nodes and adaptable processing schedules can reduce costs by up to 17% while improving operational responsiveness and reducing non-productive machine time. The findings offer strategic insights for policymakers, biomass operators, and regional planners aiming to design more adaptive and cost-effective biomass supply systems, particularly under environmental risk scenarios such as summer operation bans. This work supports evidence-based planning and investment in flexible logistics infrastructure for cleaner and more resilient bioenergy supply chains. Full article
(This article belongs to the Special Issue Research on Biomass Energy and Resource Utilization Technology)
Show Figures

Figure 1

17 pages, 2585 KB  
Article
Mineral-Forming Effect of the Joint Participation of Natural Infusible Calcium Silicate and Dust-like Silica in Ceramic Compositions
by Mukhtar Yendibayevich Kurbanbayev, Begen Omarovich Yessimov, Vladimir Ivanovich Vereshchagin, Tatyana Amanovna Adyrbayeva and Yelena Sergeevna Dubinina
Materials 2025, 18(13), 2991; https://doi.org/10.3390/ma18132991 - 24 Jun 2025
Viewed by 563
Abstract
Original compositions of electrical ceramics have been developed and tested using marshalite and wollastonite as raw materials. An analysis of the equilibrium states of the created porcelain masses at different temperatures in Na2O-Al2O3-SiO2 and K2 [...] Read more.
Original compositions of electrical ceramics have been developed and tested using marshalite and wollastonite as raw materials. An analysis of the equilibrium states of the created porcelain masses at different temperatures in Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2 systems was carried out. The amount of melt in these systems was calculated based on equilibrium flux curves. The characteristics of the sintering process of the masses were identified. A scheme for the formation of key secondary needle-like mullite during the thermal treatment of the masses was outlined and the temperature intervals for the formation of intermediate compounds were found. X-ray diffraction patterns and micrographs of the synthesized samples were decoded, and the phase composition and microstructure of the samples were analyzed. The effective influence of silica component dispersion on the mineral formation processes during the sintering of the porcelain masses in model samples of feldspar compositions with quartz sand and marshalite was noted. The optimal firing temperatures for full mineral formation and structure formation have been determined, as well as the physical–mechanical and dielectric properties of the obtained ceramic samples. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

10 pages, 2833 KB  
Communication
Crust and Upper Mantle Structure of Mars Determined from Surface Wave Analysis
by Víctor Corchete
Appl. Sci. 2025, 15(9), 4732; https://doi.org/10.3390/app15094732 - 24 Apr 2025
Viewed by 705
Abstract
The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. [...] Read more.
The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. From these traces, Love and Rayleigh waves are measured in the period range of 4 to 40 s. This dispersion was calculated with a combination of digital filtering techniques, and later was inverted to obtain both models: isotropic (from 0 to 100 km depth) and anisotropic (from 0 to 15 km depth), which were calculated considering the hypothesis of the surface wave propagation in slightly anisotropic media. The seismic anisotropy determined from 0 to 5 km depth (7% of S-velocity variation and ξ ~ 1.1) could be associated with the presence of sediments or lava-flow layering, and wide damage zones surrounding the long-term fault networks. For greater depths, the observed anisotropy (17% of S-velocity variation and ξ ~ 1.4) could be due to the possible presence of volcanic materials and/or the layering of lava flows. Another cause for this anisotropy could be the presence of layered intrusions due to a single or multiple impacts, which could cause internal layering within the crust. Finally, the Moho depth is determined at 50 km as a gradual transition from crust to mantle S-velocities, through an intermediate value (3.90 km/s) determined from 50 to 60 km-depth. Full article
Show Figures

Figure 1

21 pages, 14342 KB  
Article
Phenology and Spatial Genetic Structure of Anadenanthera colubrina (Vell.), a Resilient Species Amid Territorial Transformation in an Urban Deciduous Forest of Southeastern Brazil
by Ana Lilia Alzate-Marin, Paulo Augusto Bomfim Rodrigues, Fabio Alberto Alzate-Martinez, Gabriel Pinheiro Machado, Carlos Alberto Martinez and Fernando Bonifácio-Anacleto
Genes 2025, 16(4), 388; https://doi.org/10.3390/genes16040388 - 28 Mar 2025
Viewed by 892
Abstract
Background/Objectives: Anadenanthera colubrina (popularly known as angico; in this study: Acol) is a bee-pollinated tree with gravity-dispersed seeds that occurs in dry tropical forests (SDTF), one of the most fragmented tropical ecosystems. In this study, we analyzed the resilience of 30 Acol Forest [...] Read more.
Background/Objectives: Anadenanthera colubrina (popularly known as angico; in this study: Acol) is a bee-pollinated tree with gravity-dispersed seeds that occurs in dry tropical forests (SDTF), one of the most fragmented tropical ecosystems. In this study, we analyzed the resilience of 30 Acol Forest fragments of Ribeirão Preto, São Paulo, Brazil, and the flow of pollinators among these fragments based on the flight ranges of Apis mellifera (6 km) and Trigona spinipes (8 km). Additionally, we investigated genetic diversity, spatial genetic structure (SGS), and phenology across generations of one Acol population (AcolPM), located in the urban fragment M103 in the “Parque Municipal Morro de São Bento” (a municipal park in Ribeirão Preto). Methods: We mapped Acol fragments using geospatial data, with relief and slope analysis derived from digital terrain modeling. We created a flow diagram based on the pollinator’s flight ranges and calculated betweenness centrality. We amplified DNA from AcolPM individuals using 14 SSR molecular markers. Results: Notably, 17 of the 30 fragments occurred on slopes > 12%, terrain unsuitable for agriculture or construction, indicating that the presence of A. colubrina may serve as an indicator of territorial transformations. The AcolPM population (Fragment M103) emerged as a key node among the angicais, connected by the native pollinator T. spinipes, being fundamental for regional gene flow. In this focal population, we observed a slight but significant inbreeding (Fis, Fit, p < 0.01) and an SGS up to ~17 m. Genetic diversity was intermediate (He ≈ 0.62), and PCoA, Fst, and AMOVA values suggest low generational isolation, with most genetic variation within generations. This highlights AcolPM as a promising source for seed collection for reforestation. Phenological observations showed that fructification occurs between September and October, at the beginning of the rainy season. Conclusions: We concluded that Acol resilience is linked to the species’ mixed-mating system and pollinator dynamics-driven connectivity, allowing for the maintenance of genetic diversity in fragmented landscapes, as well as its natural tendency to form dense angicais clusters in non-arable slopes. We reaffirmed A. colubrina as a valuable species for restoration and urban climate resilience, providing cooling shade to humans and wildlife alike while offering refuge and food for local insects and birds in a warming landscape. Full article
Show Figures

Graphical abstract

17 pages, 5071 KB  
Article
Non-Hydrostatic Galerkin Model with Weighted Average Pressure Profile
by Lucas Calvo, Diana De Padova and Michele Mossa
Computation 2025, 13(3), 73; https://doi.org/10.3390/computation13030073 - 13 Mar 2025
Viewed by 554
Abstract
This work develops a novel two-dimensional, depth-integrated, non-hydrostatic model for wave propagation simulation using a weighted average non-hydrostatic pressure profile. The model is constructed by modifying an existing non-hydrostatic discontinuous/continuous Galerkin finite-element model with a linear, vertical, non-hydrostatic pressure profile. Using a weighted [...] Read more.
This work develops a novel two-dimensional, depth-integrated, non-hydrostatic model for wave propagation simulation using a weighted average non-hydrostatic pressure profile. The model is constructed by modifying an existing non-hydrostatic discontinuous/continuous Galerkin finite-element model with a linear, vertical, non-hydrostatic pressure profile. Using a weighted average linear/quadratic non-hydrostatic pressure profile has been shown to increase the performance of earlier models. The results suggest that implementing a weighted average non-hydrostatic pressure profile, in conjunction with a calculated or optimized Ө weight parameter, improves the dispersion characteristics of depth-integrated, non-hydrostatic models in shallow and intermediate water depths. A series of analytical solutions and data from previous laboratory experiments verify and validate the model. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

18 pages, 295 KB  
Article
On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
by Robert G. Zakinyan, Alaa H. Kamil, Vladislav A. Svetlichny and Arthur R. Zakinyan
Atmosphere 2025, 16(1), 73; https://doi.org/10.3390/atmos16010073 - 10 Jan 2025
Cited by 1 | Viewed by 905
Abstract
This paper is devoted to the dynamics of the propagation of non-planetary scale internal gravity waves (IGWs) in the stratified atmosphere. We consider the system of equations describing internal gravity waves in three approximations: (1) the incompressible fluid approximation, (2) the anelastic gas [...] Read more.
This paper is devoted to the dynamics of the propagation of non-planetary scale internal gravity waves (IGWs) in the stratified atmosphere. We consider the system of equations describing internal gravity waves in three approximations: (1) the incompressible fluid approximation, (2) the anelastic gas (compressible fluid) approximation, and (3) a new approximation called the non-Boussinesq gas approximation. For each approximation, a different dispersion relation is given, from which it follows that the oscillation frequency of internal gravity waves depends on the direction of propagation, the horizontal and vertical components of the wave vector, the vertical gradient of the background temperature, and the background wind shear. In each of the three cases, the maximum frequency of internal gravity waves is different. Moreover, in the anelastic gas approximation, the maximum frequency is equal to the Brunt–Väisälä buoyancy frequency, and in the incompressible fluid approximation, it is larger than the Brunt–Väisälä frequency by a factor of 72.6. In the model proposed in this paper, the value of the maximum frequency of internal gravity waves occupies an intermediate position between the above limits. The question arises: which of the above fluid representations adequately describe the dynamics of internal gravity waves? This paper compares the above theories with observational data and experiments. Full article
(This article belongs to the Section Planetary Atmospheres)
17 pages, 4847 KB  
Article
Inverse Method-Based Kinetic Modelling and Process Optimization of Reverse-Phase Chromatography for Molnupiravir Synthesis
by Athanasios Kritikos, Ravendra Singh, Fernando Muzzio and George Tsilomelekis
Processes 2024, 12(6), 1273; https://doi.org/10.3390/pr12061273 - 20 Jun 2024
Viewed by 1641
Abstract
Our research addresses the shift towards continuous manufacturing in the pharmaceutical industry, focusing on optimizing chromatographic separation for the synthesis of molnupiravir. Using an inverse method with six different inlet concentrations for a single objective function, we systematically evaluated the adsorption of key [...] Read more.
Our research addresses the shift towards continuous manufacturing in the pharmaceutical industry, focusing on optimizing chromatographic separation for the synthesis of molnupiravir. Using an inverse method with six different inlet concentrations for a single objective function, we systematically evaluated the adsorption of key intermediates, i.e., hydroxylamine and isobutyrate, in an isocratic solvent, determining the relevant isotherm constants. The study systematically evaluates the effects of operational variables, including flowrate, column geometry, dispersivity coefficient, and injection volume, on chromatographic performance. Findings reveal that specific operational adjustments, such as reducing flowrates or altering column dimensions, significantly influence retention times and peak profiles, thus potentially impacting the efficiency of molnupiravir production. Utilizing the inverse method, we efficiently determined equilibrium isotherms by integrating a nonlinear chromatography model and adjusting isotherm parameters to match the observed band profiles. Our research offers critical insights into optimizing chromatographic separation performance through precise operational control, leveraging computational tools for rapid and adaptable drug development. Full article
Show Figures

Figure 1

13 pages, 4991 KB  
Article
Anomalous Dispersion in Reflection and Emission of Dye Molecules Strongly Coupled to Surface Plasmon Polaritons
by Md Golam Rabbani Chowdhury, Leila Hesami, Kanij Mehtanin Khabir, Shamaar R. Howard, Md Afzalur Rab, Natalia Noginova and Mikhail A. Noginov
Nanomaterials 2024, 14(2), 148; https://doi.org/10.3390/nano14020148 - 9 Jan 2024
Cited by 2 | Viewed by 1836
Abstract
We have studied dispersion of surface plasmon polaritons (SPPs) in the Kretschmann geometry (prism/Ag/dye-doped polymer) in weak, intermediate, and ultra-strong exciton–plasmon coupling regimes. The dispersion curves obtained in the reflection experiment were in good agreement with the simple model predictions at small concentrations [...] Read more.
We have studied dispersion of surface plasmon polaritons (SPPs) in the Kretschmann geometry (prism/Ag/dye-doped polymer) in weak, intermediate, and ultra-strong exciton–plasmon coupling regimes. The dispersion curves obtained in the reflection experiment were in good agreement with the simple model predictions at small concentrations of dye (Rhodamine 590, Rh590) in the polymer (Poly(methyl methacrylate), PMMA). At the same time, highly unusual multi-segment “staircase-like” dispersion curves were observed at extra-large dye concentrations, also in agreement with the simple theoretical model predicting large, small, and negative group velocities featured by different polariton branches. In a separate experiment, we measured angular dependent emission of Rh590 dye and obtained the dispersion curves consisting of two branches, one nearly resembling the SPP dispersion found in reflection and the second one almost horizontal. The results of our study pave the road to unparalleled fundamental science and future applications of weak and strong light—matter interactions. Full article
Show Figures

Figure 1

18 pages, 4779 KB  
Article
Model Investigation of Argon Injection into Liquid Steel at Ladle Furnace Station with Using of Innovative Module
by Tomasz Merder, Piotr Warzecha, Jacek Pieprzyca, Marek Warzecha, Robert Wende and Artur Hutny
Materials 2023, 16(24), 7698; https://doi.org/10.3390/ma16247698 - 18 Dec 2023
Cited by 5 | Viewed by 1977
Abstract
High-quality steels are defined primarily by a small quantity of non-metallic inclusions and a high degree of chemical homogenisation. The ladle furnace (LF) is the most important metallurgical unit in which the quantity of non-metallic inclusions can be significantly reduced while ensuring metal [...] Read more.
High-quality steels are defined primarily by a small quantity of non-metallic inclusions and a high degree of chemical homogenisation. The ladle furnace (LF) is the most important metallurgical unit in which the quantity of non-metallic inclusions can be significantly reduced while ensuring metal chemical homogenisation. It is achieved largely due to appropriate controlling and the use of increasingly developed inert gas purging techniques. Various types of porous plugs (channel or radial type) are used in the metallurgical ladles. In aggregate units of intermediate-ladle type, various types of channel plugs and/or gas curtains are successfully used. In the research presented herein, a new and innovative module for inert gas injection into liquid steel for deep refining was tested. The presented research relates to the innovative module using to replace the standard porous plug in the steelmaking ladle on the outside-furnace (LF) processing station. Hybrid modelling methods (numerical and physical modelling) were used to carry out research. Module using causes significantly faster alloy additive dispersion in ladle volume compared with the standard solution (the standard porous plug). Furthermore, the obtained flowing structure positively affects liquid steel refining and mixing processes after alloy additive addition. A new technological solution, i.e., gas-injection module—differs from the traditional porous plugs currently used in the steel mills in terms of geometric parameters, external and internal structure, and what is most importantly, terms of the active surface area—shall be understood in as the surface area wherein slots occur. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 2544 KB  
Article
Modeling Wet Air Oxidation of Sodium Acetate in a Bubble Column
by Jinghao Bi, Weijun Qin, Dongjie Xie, Fan Xie and Xiao Xu
Processes 2023, 11(10), 2926; https://doi.org/10.3390/pr11102926 - 7 Oct 2023
Cited by 1 | Viewed by 1581
Abstract
Scale-up bubble columns for wet air oxidation (WAO) represent a novel solution to the growing problem of sodium acetate-containing waste discharge. This study used an axial dispersion model to simulate a reactor at a high temperature of 320 °C. By minimizing the structure [...] Read more.
Scale-up bubble columns for wet air oxidation (WAO) represent a novel solution to the growing problem of sodium acetate-containing waste discharge. This study used an axial dispersion model to simulate a reactor at a high temperature of 320 °C. By minimizing the structure size and gas fed into the system, the estimated optimal reactor dimensions were obtained. At the optimized reactor diameter, total height, initial oxygen partial pressure, and superficial gas velocity of 1 m, 7 m, 40 bar, and 0.07 m/s, respectively, a degradation efficiency of over 90% was obtained, at which the residual concentration of sodium acetate degraded from 700 mol/m3 to 70 mol/m3. The axial distributions of the dissolved oxygen, sodium acetate, and oxygen concentrations in the gas were nearly uniform. The bubble column reactor exhibited an intermediate state between well-mixed flow and plug flow for both liquid and gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

27 pages, 10487 KB  
Article
A Multi-Objective Tri-Level Algorithm for Hub-and-Spoke Network in Short Sea Shipping Transportation
by Panagiotis Farmakis, Athanasios Chassiakos and Stylianos Karatzas
Algorithms 2023, 16(8), 379; https://doi.org/10.3390/a16080379 - 7 Aug 2023
Cited by 1 | Viewed by 3247
Abstract
Hub-and-Spoke (H&S) network modeling is a form of transport topology optimization in which network joins are connected through intermediate hub nodes. The Short Sea Shipping (SSS) problem aims to efficiently disperse passenger flows involving multiple vessel routes and intermediary hubs through which passengers [...] Read more.
Hub-and-Spoke (H&S) network modeling is a form of transport topology optimization in which network joins are connected through intermediate hub nodes. The Short Sea Shipping (SSS) problem aims to efficiently disperse passenger flows involving multiple vessel routes and intermediary hubs through which passengers are transferred to their final destination. The problem contains elements of the Hub-and-Spoke and Travelling Salesman, with different levels of passenger flows among islands, making it more demanding than the typical H&S one, as the hub selection within nodes and the shortest routes among islands are internal optimization goals. This work introduces a multi-objective tri-level optimization algorithm for the General Network of Short Sea Shipping (GNSSS) problem to reduce travel distances and transportation costs while improving travel quality and user satisfaction, mainly by minimizing passenger hours spent on board. The analysis is performed at three levels of decisions: (a) the hub node assignment, (b) the island-to-line assignment, and (c) the island service sequence within each line. Due to the magnitude and complexity of the problem, a genetic algorithm is employed for the implementation. The algorithm performance has been tested and evaluated through several real and simulated case studies of different sizes and operational scenarios. The results indicate that the algorithm provides rational solutions in accordance with the desired sub-objectives. The multi-objective consideration leads to solutions that are quite scattered in the solution space, indicating the necessity of employing formal optimization methods. Typical Pareto diagrams present non-dominated solutions varying at a range of 30 percent in terms of the total distance traveled and more than 50 percent in relation to the cumulative passenger hours. Evaluation results further indicate satisfactory algorithm performance in terms of result stability (repeatability) and computational time requirements. In conclusion, the work provides a tool for assisting network operation and transport planning decisions by shipping companies in the directions of cost reduction and traveler service upgrade. In addition, the model can be adapted to other applications in transportation and in the supply chain. Full article
(This article belongs to the Special Issue Optimization Algorithms for Decision Support Systems)
Show Figures

Graphical abstract

17 pages, 2549 KB  
Article
Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks
by Garyfallia C. Katsimiga, Simeon I. Mistakidis, Boris A. Malomed, Dimitris J. Frantzeskakis, Ricardo Carretero-Gonzalez and Panayotis G. Kevrekidis
Condens. Matter 2023, 8(3), 67; https://doi.org/10.3390/condmat8030067 - 4 Aug 2023
Cited by 25 | Viewed by 3801
Abstract
We explore the dynamics and interactions of multiple bright droplets and bubbles, as well as the interactions of kinks with droplets and with antikinks, in the extended one-dimensional Gross–Pitaevskii model including the Lee–Huang–Yang correction. Existence regions are identified for the one-dimensional droplets and [...] Read more.
We explore the dynamics and interactions of multiple bright droplets and bubbles, as well as the interactions of kinks with droplets and with antikinks, in the extended one-dimensional Gross–Pitaevskii model including the Lee–Huang–Yang correction. Existence regions are identified for the one-dimensional droplets and bubbles in terms of their chemical potential, verifying the stability of the droplets and exposing the instability of the bubbles. The limiting case of the droplet family is a stable kink. The interactions between droplets demonstrate in-phase (out-of-phase) attraction (repulsion), with the so-called Manton’s method explicating the observed dynamical response, and mixed behavior for intermediate values of the phase shift. Droplets bearing different chemical potentials experience mass-exchange phenomena. Individual bubbles exhibit core expansion and mutual attraction prior to their destabilization. Droplets interacting with kinks are absorbed by them, a process accompanied by the emission of dispersive shock waves and gray solitons. Kink–antikink interactions are repulsive, generating counter-propagating shock waves. Our findings reveal dynamical features of droplets and kinks that can be detected in current experiments. Full article
(This article belongs to the Topic Quantum Droplets)
Show Figures

Figure 1

Back to TopTop