Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks
Abstract
:1. Introduction
2. Droplet and Bubble Settings
2.1. The Extended Gross–Pitaevskii Equation
2.2. The Effective-Potential Picture and Existence Regions of Droplets and Bubbles
2.3. The Bogoliubov–De Gennes Linearized Equations
3. Stability Analysis for Droplets
4. Stationary Bubbles
5. Dynamics and Interactions of Droplets
5.1. Droplet Collisions and Manton’s Method
5.2. Dynamics of Bubbles and Their Interactions
5.3. Droplet–Kink Interactions
5.4. The Kink–Antikink Interaction
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrov, D.S. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Debnath, A. Quantum Droplet in Lower Dimensions. Front. Phys. 2022, 10, 887338. [Google Scholar] [CrossRef]
- Schmitt, M.; Wenzel, M.; Böttcher, F.; Ferrier-Barbut, I.; Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 2016, 539, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Chomaz, L.; Ferrier-Barbut, I.; Ferlaino, F.; Laburthe-Tolra, B.; Lev, B.L.; Pfau, T. Dipolar physics: A review of experiments with magnetic quantum gases. Rep. Progr. Phys. 2022, 86, 026401. [Google Scholar]
- Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 2018, 359, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Cheiney, P.; Cabrera, C.R.; Sanz, J.; Naylor, B.; Tanzi, L.; Tarruell, L. Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. Phys. Rev. Lett. 2018, 120, 135301. [Google Scholar] [CrossRef] [Green Version]
- D’Errico, C.; Burchianti, A.; Prevedelli, M.; Salasnich, L.; Ancilotto, F.; Modugno, M.; Minardi, F.; Fort, C. Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 2019, 1, 033155. [Google Scholar] [CrossRef] [Green Version]
- Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M. Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 2018, 120, 235301. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 1957, 106, 1135. [Google Scholar] [CrossRef]
- Petrov, D.S.; Astrakharchik, G.E. Ultradilute Low-Dimensional Liquids. Phys. Rev. Lett. 2016, 117, 100401. [Google Scholar] [CrossRef] [Green Version]
- Ferioli, G.; Semeghini, G.; Terradas-Briansó, S.; Masi, L.; Fattori, M.; Modugno, M. Dynamical formation of quantum droplets in a 39K mixture. Phys. Rev. Res. 2020, 2, 013269. [Google Scholar] [CrossRef] [Green Version]
- Fort, C.; Modugno, M. Self-Evaporation Dynamics of Quantum Droplets in a 41K-87Rb Mixture. Appl. Sci. 2021, 11, 866. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Volosniev, A.G.; Barfknecht, R.E.; Fogarty, T.; Busch, T.; Foerster, A.; Schmelcher, P.; Zinner, N.T. Cold atoms in low dimensions–a laboratory for quantum dynamics. arXiv 2022, arXiv:2202.11071. [Google Scholar]
- Tylutki, M.; Astrakharchik, G.E.; Malomed, B.A.; Petrov, D.S. Collective excitations of a one-dimensional quantum droplet. Phys. Rev. A 2020, 101, 051601. [Google Scholar] [CrossRef]
- Englezos, I.A.; Mistakidis, S.I.; Schmelcher, P. Correlated dynamics of collective droplet excitations in a one-dimensional harmonic trap. Phys. Rev. A 2023, 107, 023320. [Google Scholar] [CrossRef]
- Stürmer, P.; Tengstrand, M.N.; Sachdeva, R.; Reimann, S.M. Breathing mode in two-dimensional binary self-bound Bose-gas droplets. Phys. Rev. A 2021, 103, 053302. [Google Scholar] [CrossRef]
- Cappellaro, A.; Macrì, T.; Salasnich, L. Collective modes across the soliton-droplet crossover in binary Bose mixtures. Phys. Rev. A 2018, 97, 053623. [Google Scholar] [CrossRef] [Green Version]
- De Rosi, G.; Astrakharchik, G.E.; Massignan, P. Thermal instability, evaporation, and thermodynamics of one-dimensional liquids in weakly interacting Bose-Bose mixtures. Phys. Rev. A 2021, 103, 043316. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Liu, X.J. Thermal destabilization of self-bound ultradilute quantum droplets. New J. Phys. 2020, 22, 103044. [Google Scholar] [CrossRef]
- Mithun, T.; Maluckov, A.; Kasamatsu, K.; Malomed, B.A.; Khare, A. Modulational Instability, Inter-Component Asymmetry, and Formation of Quantum Droplets in One-Dimensional Binary Bose Gases. Symmetry 2020, 12, 174. [Google Scholar] [CrossRef] [Green Version]
- Mithun, T.; Mistakidis, S.I.; Schmelcher, P.; Kevrekidis, P.G. Statistical mechanics of one-dimensional quantum droplets. Phys. Rev. A 2021, 104, 033316. [Google Scholar] [CrossRef]
- Otajonov, S.R.; Tsoy, E.N.; Abdullaev, F.K. Modulational instability and quantum droplets in a two-dimensional Bose-Einstein condensate. Phys. Rev. A 2022, 106, 033309. [Google Scholar] [CrossRef]
- Katsimiga, G.C.; Mistakidis, S.I.; Koutsokostas, G.N.; Frantzeskakis, D.J.; Carretero-González, R.; Kevrekidis, P.G. Solitary waves in a quantum droplet-bearing system. Phys. Rev. A 2023, 107, 063308. [Google Scholar] [CrossRef]
- Saqlain, S.; Mithun, T.; Carretero-González, R.; Kevrekidis, P.G. Dragging a defect in a droplet Bose-Einstein condensate. Phys. Rev. A 2023, 107, 033310. [Google Scholar] [CrossRef]
- Gangwar, S.; Ravisankar, R.; Muruganandam, P.; Mishra, P.K. Dynamics of quantum solitons in Lee-Huang-Yang spin–orbit-coupled Bose-Einstein condensates. Phys. Rev. A 2022, 106, 063315. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Lashkin, V.M.; Modugno, M.; Torner, L. Spinor-induced instability of kinks, holes and quantum droplets. New J. Phys. 2022, 24, 073012. [Google Scholar] [CrossRef]
- Tengstrand, M.N.; Stürmer, P.; Karabulut, E.; Reimann, S.M. Rotating binary Bose-Einstein condensates and vortex clusters in quantum droplets. Phys. Rev. Lett. 2019, 123, 160405. [Google Scholar] [CrossRef] [Green Version]
- Barranco, M.; Guardiola, R.; Hernández, S.; Mayol, R.; Navarro, J.; Pi, M. Helium nanodroplets: An overview. J. Low Temp. Phys. 2006, 142, 1–81. [Google Scholar] [CrossRef]
- Toennies, J.P.; Vilesov, A.F. Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem. Int. Ed. 2004, 43, 2622–2648. [Google Scholar] [CrossRef] [PubMed]
- Kevrekidis, P.G.; Khare, A.; Saxena, A. Solitary wave interactions in dispersive equations using Manton’s approach. Phys. Rev. E 2004, 70, 057603. [Google Scholar] [CrossRef] [Green Version]
- Manton, N.S. An effective Lagrangian for solitons. Nucl. Phys. B 1979, 150, 397–412. [Google Scholar] [CrossRef]
- Zhao, W.; Bourkoff, E. Interactions between dark solitons. Opt. Lett. 1989, 14, 1371–1373. [Google Scholar] [CrossRef]
- Katsimiga, G.C.; Koutentakis, G.M.; Mistakidis, S.I.; Kevrekidis, P.G.; Schmelcher, P. Dark—Bright soliton dynamics beyond the mean-field approximation. New J. Phys. 2017, 19, 073004. [Google Scholar] [CrossRef] [Green Version]
- Ferioli, G.; Semeghini, G.; Masi, L.; Giusti, G.; Modugno, G.; Inguscio, M.; Gallemí, A.; Recati, A.; Fattori, M. Collisions of Self-Bound Quantum Droplets. Phys. Rev. Lett. 2019, 122, 090401. [Google Scholar] [CrossRef] [Green Version]
- Cikojević, V.; Markić, L.V.; Pi, M.; Barranco, M.; Ancilotto, F.; Boronat, J. Dynamics of equilibration and collisions in ultradilute quantum droplets. Phys. Rev. Res. 2021, 3, 043139. [Google Scholar] [CrossRef]
- Hu, Y.; Fei, Y.; Chen, X.L.; Zhang, Y. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys. 2022, 17, 61505. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Malomed, B.A. Dynamics of one-dimensional quantum droplets. Phys. Rev. A 2018, 98, 013631. [Google Scholar] [CrossRef] [Green Version]
- Gangwar, S.; Ravisankar, R.; Muruganandam, P.; Mishra, P.K. Effect of beyond mean-field interaction on the structure and dynamics of the one-dimensional quantum droplet. arXiv 2023, arXiv:2303.01216. [Google Scholar]
- Debnath, A.; Khan, A.; Malomed, B. Interaction of One-Dimensional Quantum Droplets with Potential Wells and Barriers. arXiv 2023, arXiv:2302.13367. [Google Scholar] [CrossRef]
- Edmonds, M. Dark quantum droplets in beyond-mean-field Bose-Einstein condensate mixtures. Phys. Rev. Research 2023, 5, 023175. [Google Scholar] [CrossRef]
- Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010, 82, 1225. [Google Scholar] [CrossRef] [Green Version]
- Olshanii, M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 1998, 81, 938. [Google Scholar] [CrossRef] [Green Version]
- Katsimiga, G.C.; Mistakidis, S.I.; Bersano, T.M.; Ome, M.K.H.; Mossman, S.M.; Mukherjee, K.; Schmelcher, P.; Engels, P.; Kevrekidis, P.G. Observation and analysis of multiple dark-antidark solitons in two-component Bose-Einstein condensates. Phys. Rev. A 2020, 102, 023301. [Google Scholar] [CrossRef]
- Barashenkov, I.; Gocheva, A.; Makhankov, V.; Puzynin, I. Stability of the soliton-like “bubbles”. Phys. D Nonlinear Phenom. 1989, 34, 240–254. [Google Scholar] [CrossRef]
- de Bouard, A. Instability of Stationary Bubbles. SIAM J. Math. Anal. 1995, 26, 566–582. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 4th ed.; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Kapitula, T.; Promislow, K. Spectral and Dynamical Stability of Nonlinear Waves; Springer: New York, NY, USA, 2013. [Google Scholar]
- Nguyen, J.H.V.; Dyke, P.; Luo, D.; Malomed, B.A.; Hulet, R.G. Collisions of matter-wave solitons. Nat. Phys. 2014, 10, 918–922. [Google Scholar] [CrossRef] [Green Version]
- Malomed, B. Potential of interaction between two- and three-dimensional solitons. Phys. Rev. E 1998, 58, 7928–7933. [Google Scholar] [CrossRef] [Green Version]
- Manton, N.S. Forces between kinks and antikinks with long-range tails. J. Phys. Math. Theor. 2019, 52, 065401. [Google Scholar] [CrossRef] [Green Version]
- Theocharis, G.; Weller, A.; Ronzheimer, J.P.; Gross, C.; Oberthaler, M.K.; Kevrekidis, P.G.; Frantzeskakis, D.J. Multiple atomic dark solitons in cigar-shaped Bose-Einstein condensates. Phys. Rev. A 2010, 81, 063604. [Google Scholar] [CrossRef] [Green Version]
- Khaykovich, L.; Malomed, B. Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons. Phys. Rev. A 2006, 74, 023607. [Google Scholar] [CrossRef] [Green Version]
- El, G.; Hoefer, M. Dispersive shock waves and modulation theory. Phys. D Nonlinear Phenom. 2016, 333, 11–65. [Google Scholar] [CrossRef] [Green Version]
- Filatrella, G.; Malomed, B.A.; Salerno, M. Domain walls and bubble droplets in immiscible binary Bose gases. Phys. Rev. A 2014, 90, 043629. [Google Scholar] [CrossRef] [Green Version]
- Martone, G.I.; Recati, A.; Pavloff, N. Supersolidity of cnoidal waves in an ultracold Bose gas. Phys. Rev. Res. 2021, 3, 013143. [Google Scholar] [CrossRef]
- Ma, M.; Navarro, R.; Carretero-González, R. Solitons riding on solitons and the quantum Newton’s cradle. Phys. Rev. E 2016, 93, 022202. [Google Scholar] [CrossRef] [Green Version]
- Parisi, L.; Astrakharchik, G.E.; Giorgini, S. Liquid State of One-Dimensional Bose Mixtures: A Quantum Monte Carlo Study. Phys. Rev. Lett. 2019, 122, 105302. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Mithun, T.; Kevrekidis, P.G.; Sadeghpour, H.R.; Schmelcher, P. Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension. Phys. Rev. Res. 2021, 3, 043128. [Google Scholar] [CrossRef]
- Ota, M.; Astrakharchik, G. Beyond Lee-Huang-Yang description of self-bound Bose mixtures. Sci. Phys. 2020, 9, 020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsimiga, G.C.; Mistakidis, S.I.; Malomed, B.A.; Frantzeskakis, D.J.; Carretero-Gonzalez, R.; Kevrekidis, P.G. Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks. Condens. Matter 2023, 8, 67. https://doi.org/10.3390/condmat8030067
Katsimiga GC, Mistakidis SI, Malomed BA, Frantzeskakis DJ, Carretero-Gonzalez R, Kevrekidis PG. Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks. Condensed Matter. 2023; 8(3):67. https://doi.org/10.3390/condmat8030067
Chicago/Turabian StyleKatsimiga, Garyfallia C., Simeon I. Mistakidis, Boris A. Malomed, Dimitris J. Frantzeskakis, Ricardo Carretero-Gonzalez, and Panayotis G. Kevrekidis. 2023. "Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks" Condensed Matter 8, no. 3: 67. https://doi.org/10.3390/condmat8030067
APA StyleKatsimiga, G. C., Mistakidis, S. I., Malomed, B. A., Frantzeskakis, D. J., Carretero-Gonzalez, R., & Kevrekidis, P. G. (2023). Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks. Condensed Matter, 8(3), 67. https://doi.org/10.3390/condmat8030067