Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = interleukin-1 receptor antagonist protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1777 KiB  
Article
The Seminal Role of the Proinflammatory Cytokine IL-1β and Its Signaling Cascade in Glioblastoma Pathogenesis and the Therapeutic Effect of Interleukin-1β Receptor Antagonist (IL-1RA) and Tolcapone
by Jagadeesh Narasimhappagari, Ling Liu, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara, Orwa Aboud and W. Sue T. Griffin
Int. J. Mol. Sci. 2025, 26(14), 6893; https://doi.org/10.3390/ijms26146893 - 18 Jul 2025
Viewed by 342
Abstract
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor [...] Read more.
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor Antagonist (IL-1RA) and Tolcapone against untoward aspects of tumor pathogenesis. Here, we report that IL-1β treatment at 50 ng/mL for 48 h increased proliferation and metastasis by 30-fold (p ≤ 0.05), leading to the formation of clones of rapidly dividing cancer cells, leading to the formation of organized glial fibrillary acid protein (GFAP)-immunoreactive, clone-like structures with protruding spikes. Further, IL-1β treatment significantly increased the expression of mRNA levels of the IL-1β-driven pathway TLR-MyD88-NF-κB-TNFα and IL-6 (p ≤ 0.05). IL-1β also increased autophagy via elevation of mRNA and protein levels of cathepsin B, LAMP-2, and LC3B. In contrast, IL-1RA and Tolcapone inhibited this proliferation and the expression of these mRNAs and proteins, inhibiting autophagy by downregulating these autophagy proteins and inducing apoptosis by upregulating the expression of pro-apoptotic proteins like caspase-8 and caspase-3. IL-1β and its receptor can be targeted for successful anticancer therapy, as shown here with the use of IL-1RA and/or Tolcapone. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

20 pages, 2852 KiB  
Article
Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6
by Ankit Joshi, Zhousheng Xiao, Shreya Suman, Connor Cooper, Khanh Ha, James A. Carson, Leigh Darryl Quarles, Jeremy C. Smith and Madhulika Gupta
Molecules 2025, 30(14), 2919; https://doi.org/10.3390/molecules30142919 - 10 Jul 2025
Viewed by 560
Abstract
Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. As a critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and [...] Read more.
Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. As a critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high-throughput structure-based computational screening using ensemble docking for small-molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein. Prior knowledge of the contact sites from binary complex studies and experimental work was incorporated into the docking studies. The top 20 scoring ligands from the in silico studies after post analysis were subjected to in vitro functional assays. Among these compounds, the ligand with the second-highest calculated binding affinity experimentally showed an ~84% inhibitory effect on IL6-induced STAT3 reporter activity at 10 μM concentration. This finding may pave the way for designing small-molecule inhibitors of hIL-6 of therapeutic significance. Full article
Show Figures

Graphical abstract

18 pages, 4976 KiB  
Article
Mechanistic Insights into Cytokine Antagonist-Drug Interactions: A Physiologically Based Pharmacokinetic Modelling Approach with Tocilizumab as a Case Study
by Xian Pan, Cong Liu, Felix Stader, Abdallah Derbalah, Masoud Jamei and Iain Gardner
Pharmaceutics 2025, 17(7), 896; https://doi.org/10.3390/pharmaceutics17070896 - 10 Jul 2025
Viewed by 546
Abstract
Background: Understanding interactions between cytokine antagonists and drugs is essential for effective medication management in inflammatory conditions. Recent regulatory authority guidelines emphasise a systematic, risk-based approach to evaluating these interactions, underscoring the need for mechanistic insight. Proinflammatory cytokines, such as interleukin-6 (IL-6), modulate [...] Read more.
Background: Understanding interactions between cytokine antagonists and drugs is essential for effective medication management in inflammatory conditions. Recent regulatory authority guidelines emphasise a systematic, risk-based approach to evaluating these interactions, underscoring the need for mechanistic insight. Proinflammatory cytokines, such as interleukin-6 (IL-6), modulate cytochrome P450 (CYP) enzymes, reducing the metabolism of CYP substrates. Cytokine antagonists (such as IL-6 receptor antagonists) can counteract this effect, restoring CYP activity and increasing drug clearance. However, quantitative prediction of cytokine-mediated drug interactions remains challenging, as existing models often lack the mechanistic detail needed to capture the dynamic relationship between cytokine signalling, receptor engagement, and downstream modulation of drug metabolism. Methods: A physiologically based pharmacokinetic (PBPK) framework incorporating cytokine–receptor binding, subsequent downregulation of CYP expression, and blockade of the cytokine signalling by a therapeutic protein antagonist was developed to simulate and investigate cytokine antagonist-drug interactions. Tocilizumab, a humanised IL-6 receptor antagonist used to treat several inflammatory conditions associated with elevated IL-6 levels, was selected as a model drug to demonstrate the utility of the framework. Results: The developed PBPK model accurately predicted the pharmacokinetics profiles of tocilizumab and captured clinically observed dynamic changes in simvastatin exposure before and after tocilizumab treatment in rheumatoid arthritis (RA) patients. Simulated IL-6 dynamics aligned with observed clinical profiles, showing transient elevation following receptor blockade and associated restoration of CYP3A4 activity. Prospective simulations with commonly co-administered CYP substrates (celecoxib, chloroquine, cyclosporine, ibuprofen, prednisone, simvastatin, and theophylline) in RA patients revealed dose regimen- and drug-dependent differences in interaction magnitude. Conclusions: This study demonstrated the utility of PBPK models in providing a mechanistic understanding of cytokine antagonist-drug interactions, supporting enhanced therapeutic decision-making and optimising patient care in inflammatory conditions. Full article
Show Figures

Figure 1

10 pages, 231 KiB  
Review
From Menopause to Molecular Dysregulation: Proteomic Insights into Obesity-Related Pathways—A Narrative Review
by Basant E. Katamesh, Jithinraj Edakkanambeth Varayil, Nina Pillai and Ann Vincent
Biomedicines 2025, 13(7), 1558; https://doi.org/10.3390/biomedicines13071558 - 25 Jun 2025
Viewed by 454
Abstract
Peri- and postmenopausal women often experience unexplained weight gain despite maintaining consistent dietary and lifestyle habits. While the biological mechanisms underlying this phenomenon remain poorly understood, physiological and pathophysiological changes during the menopausal transition are likely contributors. Proteomic profiling holds potential for revealing [...] Read more.
Peri- and postmenopausal women often experience unexplained weight gain despite maintaining consistent dietary and lifestyle habits. While the biological mechanisms underlying this phenomenon remain poorly understood, physiological and pathophysiological changes during the menopausal transition are likely contributors. Proteomic profiling holds potential for revealing key molecular pathways involved in the pathogenesis of obesity in this population. This review synthesizes current evidence on proteomic alterations linked to overweight and obesity in peri- and postmenopausal women. A structured literature search was performed across Ovid MEDLINE®, EMBASE, the Cochrane Library, and Scopus for studies published between October 2010 and March 2025. Eligible studies included original research involving overweight or obese peri- or postmenopausal women that reported proteomic data. Extracted information encompassed study design, participant characteristics, sample types, and proteomic findings. Identified proteins were cross-referenced with a prior review of consistently dysregulated proteins in obesity. Five studies met the inclusion criteria, collectively revealing consistent proteomic patterns associated with inflammation, metabolic dysfunction, and endothelial dysregulation. These included C-reactive protein, Tissue necrotic factor-alpha, interleukins, adiponectin, and endocan. Notably, one study demonstrated that weight loss led to reductions in IL-6, IL-1 receptor antagonist, and CRP, suggesting that obesity-related inflammation may be at least partially reversible. This review provides preliminary evidence linking chronic inflammation, metabolic dysregulation, and vascular stress to obesity in peri- and postmenopausal women. These proteomic signatures enhance understanding of menopausal weight gain and highlight the potential of proteomics to guide personalized interventions. However, larger, well-designed prospective studies are needed to confirm these associations and clarify causal pathways. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
17 pages, 2969 KiB  
Article
Design, Synthesis, and Evaluation of New 2-Arylpropanoic Acid-l-Tryptophan Derivatives for Mitigating Cisplatin-Induced Nephrotoxicity
by Ming Yuan, Huai Wang, Mingjun Yu, Sen Yao and Risheng Yao
Molecules 2025, 30(11), 2400; https://doi.org/10.3390/molecules30112400 - 30 May 2025
Viewed by 566
Abstract
Cisplatin (CIS) is a widely used chemotherapeutic agent that is highly effective against various cancers. However, its clinical application is frequently limited by its substantial nephrotoxic side effects. The gastrin-releasing peptide receptor (GRPR), a critical regulator in inflammatory diseases, has been identified as [...] Read more.
Cisplatin (CIS) is a widely used chemotherapeutic agent that is highly effective against various cancers. However, its clinical application is frequently limited by its substantial nephrotoxic side effects. The gastrin-releasing peptide receptor (GRPR), a critical regulator in inflammatory diseases, has been identified as a promising therapeutic target. Our previous studies have demonstrated that the GRPR antagonists PD176252 and RH-1402 can mitigate CIS-induced nephrotoxicity through anti-inflammatory mechanisms. Based on these findings, we designed and synthesized a series of 2-arylpropanoic acid-L-tryptophan derivatives to enhance the therapeutic effects. Among these compounds, 3m exhibited superior renal protection by significantly improving mouse renal tubular epithelial cell (mRTEC) viability from 50.2 ± 2.6% to 80.5 ± 3.9%, surpassing PD176252 (70.8 ± 1.4%) and RH-1402 (73.9 ± 3.7%). Moreover, compound 3m markedly reduced the expression of kidney injury molecule-1 (KIM-1) and inflammatory cytokines [Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1)]. Finally, molecular docking results revealed that 3m exhibited a high binding affinity for GRPR. Computational predictions using SwissADME further indicated that 3m possesses favorable drug-like properties, thereby supporting its potential as a promising candidate for mitigating CIS-induced nephrotoxicity. Full article
Show Figures

Graphical abstract

13 pages, 6399 KiB  
Article
Pathophysiology of COVID-19: A Post Hoc Analysis of the ICAT-COVID Clinical Trial of the Bradykinin Antagonist Icatibant
by Pierre Malchair, Jordi Giol, Javier Jacob, Jesús Villoria, Thiago Carnaval and Sebastián Videla
Pathogens 2025, 14(6), 533; https://doi.org/10.3390/pathogens14060533 - 27 May 2025
Viewed by 581
Abstract
We used the data from a successful therapeutic assay that used icatibant in patients with hypoxemic COVID-19 pneumonia (the ICAT·COVID trial) to explore pathophysiological mechanisms. We performed concurrent-type, criterion-related validity analyses to assess the discriminative ability of a panel of nine potential serum [...] Read more.
We used the data from a successful therapeutic assay that used icatibant in patients with hypoxemic COVID-19 pneumonia (the ICAT·COVID trial) to explore pathophysiological mechanisms. We performed concurrent-type, criterion-related validity analyses to assess the discriminative ability of a panel of nine potential serum markers (interleukin 6, ferritin, lactate dehydrogenase, C reactive protein, fibrin fragment D (D-dimer), complement 1 esterase inhibitor (antigenic and functional), complement 4 factor, and lymphocyte count) to predict the clinical milestones. Consistent with previous research, we evidenced a significant relationship between interleukin 6, lactate dehydrogenase and the lymphocyte count, and the clinical events. Furthermore, exposure to icatibant, a bradykinin B2 receptor antagonist (which improved pneumonia and mortality in the aforementioned randomised trial), attenuated this relationship, although this effect faded over time. The results reinforce the key role that the angiotensin-converting enzyme 2 has on COVID-19 pathophysiology as a point of convergence between the renin–angiotensin and kallikrein–kinin systems. This was shown clinically by the successful blocking of inflammatory pathways by icatibant at the bradykinin effector loop level early during the acute hyperinflammatory stage of the disease. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 4245 KiB  
Article
Aldosterone-Induced Transformation of Vascular Smooth Muscle Cells into Macrophage-like Cells Participates in Inflammatory Vascular Lesions
by Boya Zhang, Ziqian Liu, Yi Chang, Ruyan Lv, Haixia Guo, Panpan Qiang, Tatsuo Shimosawa, Qingyou Xu and Fan Yang
Int. J. Mol. Sci. 2025, 26(7), 3345; https://doi.org/10.3390/ijms26073345 - 3 Apr 2025
Viewed by 802
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell type in blood vessels, participating in cardiovascular diseases in various ways, among which their transformation into macrophage-like cells has become a research hotspot. In this study, rats were infused with aldosterone for 12 [...] Read more.
Vascular smooth muscle cells (VSMCs) are the most abundant cell type in blood vessels, participating in cardiovascular diseases in various ways, among which their transformation into macrophage-like cells has become a research hotspot. In this study, rats were infused with aldosterone for 12 weeks, and VSMCs stimulated with aldosterone in vitro were used to observe aortic injury and the role of VSMC transformation. Vascular changes were detected via small animal ultrasound and H&E staining. Moreover, immunohistochemistry, immunofluorescence, Western blot, and flow cytometry were used to verify that the transformation of VSMCs into macrophage-like cells is regulated by mineralocorticoid receptor (MR) activation and macrophage colony-stimulating factor (M-CSF) and its receptor. Rat vasculature and in vitro cellular experiments revealed that VSMCs transformed into macrophage-like cells and secreted inflammatory factors such as interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1), thereby exacerbating inflammatory vascular lesions, which was inhibited by the MR antagonist esaxerenone. These results reveal that increased levels of aldosterone activate MR, leading to the secretion of M-CSF by VSMCs. This further promotes the transformation of VSMCs into macrophage-like cells, which participate in inflammatory vascular lesions. Therefore, inhibiting the formation of macrophage-like cells can effectively reduce inflammatory vascular lesions. Full article
(This article belongs to the Special Issue The Angiotensin in Human Health and Diseases)
Show Figures

Figure 1

18 pages, 3306 KiB  
Article
Hepatic Growth Factor as a Potential Biomarker for Lung Adenocarcinoma: A Multimodal Study
by Mengxuan Sun, Yang Yu, Hanci Zhu, Yan Yao, Xintong Zhou, Xue Wang, Yubao Zhang, Xiaowei Xu, Jing Zhuang and Changgang Sun
Curr. Issues Mol. Biol. 2025, 47(3), 208; https://doi.org/10.3390/cimb47030208 - 19 Mar 2025
Viewed by 805
Abstract
(1) Background: Despite previous studies linking inflammatory cytokines to lung adenocarcinoma (LUAD), their causal mechanisms remain unclear. This study aims to explore the causal relationship between inflammatory cytokines and LUAD to fill this knowledge gap. (2) Methods: This study employs a comprehensive approach, [...] Read more.
(1) Background: Despite previous studies linking inflammatory cytokines to lung adenocarcinoma (LUAD), their causal mechanisms remain unclear. This study aims to explore the causal relationship between inflammatory cytokines and LUAD to fill this knowledge gap. (2) Methods: This study employs a comprehensive approach, integrating Mendelian randomization (MR) analysis, single-cell RNA sequencing (scRNA-seq), and transcriptomic sequencing (RNA-seq) data to investigate the relationship between inflammatory cytokines and LUAD. (3) Results: In forward MR analysis, elevated levels of hepatocyte growth factor (HGF), interleukin-1 receptor antagonist (IL-1RA), IL-5, monocyte chemoattractant protein-3, and monokine induced by interferon-γ were causally associated with an increased risk of LUAD. In reverse MR analysis, LUAD exhibited a positive causal relationship with the levels of regulated upon activation normal T cell expressed and secreted factor (RANTES) and stromal cell-derived factor-1α. The scRNA-seq data further identified specific cell populations that may influence LUAD onset and progression through the expression of particular inflammatory genes and intercellular communication. RNA-seq data analysis highlighted the role of the HGF gene in LUAD diagnosis, demonstrating its strong correlation with patient prognosis and immune cell infiltration within the tumor microenvironment. (4) Conclusions: The findings reveal a causal relationship between inflammatory cytokines and LUAD, with HGF emerging as a potential biomarker of significant clinical relevance. This study provides new insights into the molecular mechanisms underlying LUAD and lays the foundation for future therapeutic strategies. Full article
Show Figures

Figure 1

25 pages, 363 KiB  
Review
Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals
by Maria Guerra-Gomes, Carla Ferreira-Baptista, Joana Barros, Sofia Alves-Pimenta, Pedro Gomes and Bruno Colaço
Animals 2025, 15(4), 589; https://doi.org/10.3390/ani15040589 - 18 Feb 2025
Viewed by 1242
Abstract
Stifle joint diseases present a significant challenge in companion animals that often lead to hind limb lameness, with osteoarthritis being a prevalent degenerative condition causing pain and reduced mobility. Regenerative medicine offers a promising avenue for improving treatment outcomes, with a range of [...] Read more.
Stifle joint diseases present a significant challenge in companion animals that often lead to hind limb lameness, with osteoarthritis being a prevalent degenerative condition causing pain and reduced mobility. Regenerative medicine offers a promising avenue for improving treatment outcomes, with a range of emerging therapies showing potential to alleviate symptoms and promote joint health. Among these, hyaluronic acid and platelet-rich plasma have been widely used as intra-articular treatments to enhance joint lubrication, reduce inflammation, and provide symptomatic relief. Interleukin-1 receptor antagonist protein, autologous conditioned serum, and autologous protein solution represent the next generation of regenerative therapies, offering more disease-modifying effects by inhibiting key mediators of joint inflammation. More recently, the MSC-derived secretome has emerged as an innovative, cell-free approach that leverages the diverse bioactive factors secreted by MSCs to support tissue repair and modulate inflammation. This review highlights the evidence base behind these non-cellular orthobiologic treatments for stifle joint disease, aiming to inform veterinary practitioners and owners about available options and their efficacy in supporting conventional treatments. Full article
(This article belongs to the Section Companion Animals)
16 pages, 628 KiB  
Review
Therapeutic Advancements in Psoriasis and Psoriatic Arthritis
by Robin C. Yi, Maya Akbik, Logan R. Smith, Yael Klionsky and Steven R. Feldman
J. Clin. Med. 2025, 14(4), 1312; https://doi.org/10.3390/jcm14041312 - 16 Feb 2025
Cited by 3 | Viewed by 4368
Abstract
Background: Within the past few years, many new therapies have emerged for psoriasis and psoriatic arthritis (PsA). Current topical therapies—including corticosteroids, vitamin D analogs, tapinarof, and roflumilast—remain the mainstay for mild disease, while oral systemic and biologic options are for moderate to severe [...] Read more.
Background: Within the past few years, many new therapies have emerged for psoriasis and psoriatic arthritis (PsA). Current topical therapies—including corticosteroids, vitamin D analogs, tapinarof, and roflumilast—remain the mainstay for mild disease, while oral systemic and biologic options are for moderate to severe cases. Biologics—such as Tumor necrosis factor-alpha (TNF-alpha), Interleukin 12/23 (IL-12/23), Interleukin-17 (IL-17), and Interleukin-23 (IL-23)—have revolutionized care by providing highly effective and safer alternatives. Oral small molecules, including Janus kinase (JAK) and tyrosine kinase 2 (TYK2) inhibitors, further expand the therapeutic options. Objectives: The goal for this review article was to examine current and latest treatments for psoriasis and PsA and discuss whether these emerging therapeutic options address the unmet needs of current treatments. Methods: The search for this review article included PubMed, Google Scholar, and ClinicalTrials.gov for relevant articles and current clinical trials using keywords. Results: A wide range of novel psoriatic and PsA therapies are currently undergoing clinical trials. These include selective JAK inhibitors, TYK2 inhibitors, retinoic acid-related orphan receptor (RORγT) inhibitors, oral IL-23 receptor inhibitors, oral IL-17A inhibitors, nanobody products, sphingosine-1-phosphate (S1P1R) antagonists, A3 adenosine receptor (A3AR) agonists, heat shock protein (HSP) 90 inhibitors, and rho-associated protein kinases (ROCK-2) inhibitors. Conclusions: These different mechanisms of action not only expand treatment options but may offer potential solutions for patients who do not achieve adequate response with existing therapies. However, the safety and contraindications of these newer agents remain an important consideration to ensure appropriate patient selection and minimize potential risks. Certain mechanisms may pose increased risks for infection, cardiovascular manifestations, malignancy, or other immune-related adverse events, necessitating careful monitoring and individualized treatment decisions. Ongoing clinical research aims to address unmet needs for patients who do not respond to previous agents to achieve sustained remission, monitor long-term safety outcomes, and assess patient preferences for delivery, including a preference for oral delivery. Oral IL-23 inhibitors hold potential due to their robust safety profiles. In contrast, oral IL-17 inhibitors and TYK-2 inhibitors are effective but may present side effects that could impact their acceptability. It is essential to balance efficacy, safety, and patient preferences to guide the selection of appropriate therapies. Full article
(This article belongs to the Special Issue Therapeutic Advancements in Psoriasis and Psoriatic Arthritis)
Show Figures

Figure 1

14 pages, 228 KiB  
Article
Study of Blood Biomarkers in Athletes with Lower Gastrointestinal Symptoms After an Ultra-Trail Race
by Joshua Teyssier, Sébastien Perbet, Bruno Pereira, Stéphane Bergzoll, Mathieu Kuentz, Julie Durif, Vincent Sapin, Matthieu Jabaudon and Damien Bouvier
J. Clin. Med. 2025, 14(3), 1024; https://doi.org/10.3390/jcm14031024 - 6 Feb 2025
Viewed by 1142
Abstract
Background/Objectives: To investigate the value of intestinal fatty acid-binding protein (I-FABP), D-Lactate, interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-1 receptor antagonist (IL-1Ra), tumor necrosis factor-alpha (TNF-alpha), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), electrolytes and creatinine in athletes with [...] Read more.
Background/Objectives: To investigate the value of intestinal fatty acid-binding protein (I-FABP), D-Lactate, interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-1 receptor antagonist (IL-1Ra), tumor necrosis factor-alpha (TNF-alpha), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), electrolytes and creatinine in athletes with lower gastrointestinal symptoms in a cohort of ultra-trailers. Methods: This is a prospective study set in the ultra-trail of Puy Mary Aurillac, a 105 km race. Athletes included were given two questionnaires to collect demographic data and clinical signs related to the race. Blood samples were also collected before and 1 h after the race. Biomarker results were interpreted according to the occurrence of exercise-induced lower gastrointestinal symptoms, and whether the race was completed or forfeited. Results: Of the 76 runners included, 35 (45.5%) presented lower gastrointestinal symptoms. Runners that presented these symptoms had significantly higher IL-10 concentrations (8.7 pg/mL (interquartile range (IQR): 4.2–1.6)) when compared to runners without symptoms (4.8 pg/mL (IQR: 2.4–9)) (p = 0.01). The pre/post-race amplitude of IL-1Ra variation was greater in the group of runners with lower gastrointestinal symptoms (median: +231% (IQR: 169–551)) compared to runners without symptoms (median: +172% (IQR: 91–393)) (p = 0.04). Finally, the 13 (16.9%) runners who forfeited the race displayed lower AST (p < 0.001), LDH (p = 0.002) and IL-6 (p = 0.002) concentrations, compared to runners who finished the race. These lower concentrations were independent from running time. Conclusions: IL-10 and IL-1Ra could be associated with the occurrence of lower gastrointestinal symptoms. Full article
(This article belongs to the Section Sports Medicine)
14 pages, 4556 KiB  
Article
Ouabain Counteracts Retinal Ganglion Cell Death Through Modulation of BDNF and IL-1 Signaling Pathways
by Amanda Candida da Rocha Oliveira, Camila Saggioro Figueiredo, Ícaro Raony, Juliana Salles Von-Held-Ventura, Marcelo Gomes Granja, Thalita Mázala-de-Oliveira, Vinícius Henrique Pedrosa-Soares, Aline Araujo dos Santos and Elizabeth Giestal-de-Araujo
Brain Sci. 2025, 15(2), 123; https://doi.org/10.3390/brainsci15020123 - 26 Jan 2025
Viewed by 1056
Abstract
Background: Ouabain is a steroid hormone that binds to the sodium pump (Na+, K+-ATPase) at physiological (nanomolar) concentrations, activating different signaling pathways. This interaction has been shown to prevent the axotomy-induced death of retinal ganglion cells (RGCs), although the [...] Read more.
Background: Ouabain is a steroid hormone that binds to the sodium pump (Na+, K+-ATPase) at physiological (nanomolar) concentrations, activating different signaling pathways. This interaction has been shown to prevent the axotomy-induced death of retinal ganglion cells (RGCs), although the underlying mechanisms remain unclear. Objective: In this study, we investigated potential mechanisms by which ouabain promotes RGC survival using primary cultures of rat neural retina. Results: Our findings indicate that ouabain regulates brain-derived neurotrophic factor (BDNF) signaling in retinal cells via matrix metalloproteinase-9-mediated processing of proBDNF to mature BDNF (mBDNF) and by increasing the phosphorylation of the mBDNF receptor, tropomyosin-related receptor kinase B. Ouabain also enhances the maturation of interleukin (IL)-1β through the increased activation of caspase-1, which mediates the processing of proIL-1β into IL-1β, and transiently upregulates both IL-1 receptor and IL-1 receptor antagonist (IL-1Ra). Treatment using either IL-1β or IL-1Ra alone is sufficient to enhance RGC survival similarly to that achieved with ouabain. Finally, we further show that ouabain prevents RGC death through a complex signaling mechanism shared by BDNF and IL-1β, which includes the activation of the Src and protein kinase C pathways. Conclusions: Collectively, these results suggest that ouabain stimulates the maturation and signaling of both BDNF and IL-1β, which act as key mediators of RGC survival. Full article
(This article belongs to the Special Issue Retinal Neurochemistry and Development)
Show Figures

Figure 1

19 pages, 1313 KiB  
Article
Cardiovascular Risk Biomarkers in Women with and Without Polycystic Ovary Syndrome
by Manjula Nandakumar, Priya Das, Thozhukat Sathyapalan, Alexandra E. Butler and Stephen L. Atkin
Biomolecules 2025, 15(1), 4; https://doi.org/10.3390/biom15010004 - 24 Dec 2024
Viewed by 1493
Abstract
Objective: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder with an increased risk for cardiovascular disease (CVD) that is enhanced by obesity. This study sought to determine whether a panel of cardiovascular risk proteins (CVRPs) would be dysregulated in overweight/obese PCOS patients, [...] Read more.
Objective: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder with an increased risk for cardiovascular disease (CVD) that is enhanced by obesity. This study sought to determine whether a panel of cardiovascular risk proteins (CVRPs) would be dysregulated in overweight/obese PCOS patients, highlighting potential biomarkers for CVD in PCOS. Methods: In this exploratory cross-sectional study, plasma levels of 54 CVRPs were analyzed in women with PCOS (n = 147) and controls (n = 97). CVRPs were measured using the SOMAscan proteomic platform (version 3.1), with significant proteins identified through linear models, regression analysis, and receiver operating characteristic (ROC) analysis. Analysis on BMI-matched subsets of the cohort were undertaken. Functional enrichment and protein–protein interaction analyses elucidated the pathways involved. Results: Eleven CVRPs were dysregulated in PCOS (whole set, without matching for body mass index (BMI) or insulin resistance (IR)): leptin, Interleukin-1 receptor antagonist protein (IL-1Ra), polymeric immunoglobulin receptor (PIGR), interleukin-18 receptor (IL-18Ra), C-C motif chemokine 3 (MIP-1a), and angiopoietin-1 (ANGPT1) were upregulated whilst advanced glycosylation end product-specific receptor, soluble (sRAGE), bone morphogenetic protein 6 (BMP6); growth/differentiation factor 2 (GDF2), superoxide dismutase [Mn] mitochondrial (MnSOD), and SLAM family member 5 (SLAF5) were downregulated versus the controls. In BMI-matched (overweight/obese, BMI ≥ 26 kg/m2) subset analysis, six CVRPs were common to the whole set: ANGPT1 and IL-1Ra were upregulated; and sRAGE, BMP6, GDF2, and Mn-SOD were downregulated. In addition, lymphotactin (XCL1) was upregulated and placenta growth factor (PIGF), alpha-L-iduronidase (IDUA), angiopoietin-1 receptor, and soluble (sTie-2) and macrophage metalloelastase (MMP12) were downregulated. A subset analysis of BMI-matched plus insulin resistance (IR)-matched women revealed only upregulation of tissue factor (TF) and renin in PCOS, potentially serving as biomarkers for cardiovascular risk in overweight/obese women with PCOS. Conclusions: A combination of upregulated obesity-related CVRPs (ANGPT1/IL/1Ra/XCL1) and downregulated cardioprotective proteins (sRAGE/BMP6/Mn-SOD/GDF2) in overweight/obese PCOS women may contribute to the increased risk for CVD. TF and renin upregulation observed in the BMI- and IR-matched limited sample PCOS subgroup indicates their potential risk of CVD. Full article
(This article belongs to the Special Issue New Insights into Cardiometabolic Diseases)
Show Figures

Figure 1

30 pages, 712 KiB  
Review
IL-18 and IL-18BP: A Unique Dyad in Health and Disease
by Daniela Novick
Int. J. Mol. Sci. 2024, 25(24), 13505; https://doi.org/10.3390/ijms252413505 - 17 Dec 2024
Cited by 8 | Viewed by 4414
Abstract
Interleukin-18 (IL-18) serves a dual function in the immune system, acting as a “double-edged sword” cytokine. Depending on the microenvironment and timing, IL-18 can either drive harmful inflammation or restore immune homeostasis. Pathologies characterized by elevated IL-18, recently proposed to be termed IL-18opathies, [...] Read more.
Interleukin-18 (IL-18) serves a dual function in the immune system, acting as a “double-edged sword” cytokine. Depending on the microenvironment and timing, IL-18 can either drive harmful inflammation or restore immune homeostasis. Pathologies characterized by elevated IL-18, recently proposed to be termed IL-18opathies, highlight the therapeutic potential for IL-18 blockade. IL-18 Binding Protein (IL-18BP) is one of only four natural cytokine antagonists encoded by a separate gene, distinguishing it from canonical soluble receptors. IL-18BP’s exceptionally high affinity and slow dissociation rate make it an effective regulator of IL-18, essential for maintaining immune balance and influencing disease outcomes, and positions IL-18BP as a promising alternative to more aggressive treatments that carry risks of severe infections and other complications. Tadekinig alfa, the drug form of IL-18BP, represents a targeted therapy that modulates the IL-18/IL-18BP axis, offering a safe adverse-effect-free option. With orphan drug designation, Phase III clinical trial completion, and seven years of compassionate use, Tadekinig alfa holds promise in treating autoimmune and inflammatory diseases, cancer, and genetically linked disorders. Levels of IL-18, free IL-18 and IL-18BP, may serve as biomarkers for disease severity and therapeutic response. Given its pivotal role in immune balance, the IL-18/IL-18BP dyad has attracted interest from over ten pharmaceutical companies and startups, which are currently developing innovative strategies to either inhibit or enhance IL-18 activity depending on the therapeutic need. The review focuses on the features of the dyad members and screens the therapeutic approaches. Full article
(This article belongs to the Special Issue Immunomodulatory Molecules in Cancer)
Show Figures

Figure 1

20 pages, 2879 KiB  
Article
Activation of Bradykinin B2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling
by Ying Lu, Yishan Gu, Anthony S. L. Chan, Ying Yung and Yung H. Wong
Int. J. Mol. Sci. 2024, 25(23), 13079; https://doi.org/10.3390/ijms252313079 - 5 Dec 2024
Viewed by 1271
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we [...] Read more.
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF. Full article
Show Figures

Figure 1

Back to TopTop